id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
3,012,071,335
fully_shard() for huggingface 72B model: pytorch caches too much GPU memory
mingdianliu
open
[ "oncall: distributed", "triaged", "module: dtensor" ]
5
NONE
Dear Community, I'm working on fine-tuning the Qwen2-VL model using `fully_shard()` and wrote a script for it. However, it will run into OOM when I try to fine tune 72B model with 128 GPUs. I found it is due to pytorch cache. The allocated and reserved GPU memory is quite small while the cached GPU memory is even higher than 50GB. I had a shoot on torch.cuda.empty_cache() after each training iteration but the GPU memory cache during each training iteration is also high (~20GB). I wonder if it is a bug of FSDP2. If not, is there any method that can mitigate this issue? I'd really appreciate any insights or suggestions you might have. Thanks in advance! ### My code ``` import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from transformers import Qwen2VLForConditionalGeneration, Qwen2VLProcessor, AutoModelForVision2Seq, AutoConfig from qwen_vl_utils import process_vision_info from peft import LoraConfig, get_peft_model from datasets import load_dataset import numpy as np from PIL import Image import io import logging import os from torch.nn.parallel import DistributedDataParallel as DDP import torch.distributed as dist import torch.distributed.checkpoint as dcp from torch.distributed.device_mesh import init_device_mesh from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLDecoderLayer, Qwen2VLVisionBlock from torch.distributed._composable.fsdp import fully_shard from torch.distributed import init_process_group, destroy_process_group from torch.distributed.checkpoint import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed._composable.fsdp import ( CPUOffloadPolicy, fully_shard, MixedPrecisionPolicy, ) # Set up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # init dist distributed_backend = "nccl" # gloo for cpu dist.init_process_group(distributed_backend) local_rank = int(os.environ["LOCAL_RANK"]) world_size = int(os.environ["WORLD_SIZE"]) device = torch.device(f"cuda:{local_rank}") torch.cuda.set_device(device) # model_name = "Qwen/Qwen2-VL-2B-Instruct" # revision = "895c3a49bc3fa70a340399125c650a463535e71c" model_name = "Qwen/Qwen2-VL-7B-Instruct" revision = "a28a094eb66a9f2ac70eef346f040d8a79977472" # model_name = "Qwen/Qwen2-VL-72B-Instruct" # revision = "f9b556a74d58e6d9915f73227c21045c87342b42" dataset_id = "HuggingFaceM4/ChartQA" processor = Qwen2VLProcessor.from_pretrained(model_name, revision=revision, ) # Configuration class Config: dataset_id = "HuggingFaceM4/ChartQA" output_dir = "/tmp_ckpt" batch_size = 2 num_epochs = 3 learning_rate = 5e-5 max_seq_length = 512 lora_rank = 32 lora_alpha = 64 lora_dropout = 0.1 device = "cuda" if torch.cuda.is_available() else "cpu" system_message = """You are a Vision Language Model specialized in interpreting visual data from chart images. Your task is to analyze the provided chart image and respond to queries with concise answers, usually a single word, number, or short phrase. The charts include a variety of types (e.g., line charts, bar charts) and contain colors, labels, and text. Focus on delivering accurate, succinct answers based on the visual information. Avoid additional explanation unless absolutely necessary.""" def format_data(sample): return [ { "role": "system", "content": [{"type": "text", "text": system_message}], }, { "role": "user", "content": [ { "type": "image", "image": sample["image"], }, { "type": "text", "text": sample["query"], }, ], }, { "role": "assistant", "content": [{"type": "text", "text": sample["label"][0]}], }, ] # Training function def train_model(model, train_loader, optimizer, config): model.train() total_steps = len(train_loader) * config.num_epochs step = 0 scaler = torch.amp.GradScaler("cuda", enabled=True) for epoch in range(config.num_epochs): total_loss = 0 for batch_idx, batch in enumerate(train_loader): inputs, labels = batch inputs = inputs.to(config.device) labels = labels.to(config.device) # Mixed precision training loss = model(**inputs, labels=labels).loss loss.backward() # no scaler optimizer.step() optimizer.zero_grad() step += 1 logger.info(f"Epoch {epoch+1}/{config.num_epochs}, Step {step}/{total_steps}, Loss: {loss.item():.4f}") del loss # Create a data collator to encode text and image pairs def collate_fn(examples): # Get the texts and images, and apply the chat template texts = [ processor.apply_chat_template(example, tokenize=False) for example in examples ] # Prepare texts for processing image_inputs = [process_vision_info(example)[0] for example in examples] # Process the images to extract inputs # Tokenize the texts and process the images batch = processor( text=texts, images=image_inputs, return_tensors="pt", padding=True ) # Encode texts and images into tensors # The labels are the input_ids, and we mask the padding tokens in the loss computation labels = batch["input_ids"].clone() # Clone input IDs for labels labels[labels == processor.tokenizer.pad_token_id] = -100 # Mask padding tokens in labels # Ignore the image token index in the loss computation (model specific) if isinstance(processor, Qwen2VLProcessor): # Check if the processor is Qwen2VLProcessor image_tokens = [151652, 151653, 151655] # Specific image token IDs for Qwen2VLProcessor else: image_tokens = [processor.tokenizer.convert_tokens_to_ids(processor.image_token)] # Convert image token to ID # Mask image token IDs in the labels for image_token_id in image_tokens: labels[labels == image_token_id] = -100 # Mask image token IDs in labels return batch, labels # Main function def main(): config = Config() # Load model and processor logger.info("Loading model and processor...") hf_config = AutoConfig.from_pretrained( model_name, revision=revision, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", ) with torch.device("meta"): model = AutoModelForVision2Seq.from_config(hf_config, torch_dtype=torch.bfloat16) mp_policy=MixedPrecisionPolicy(param_dtype=torch.bfloat16, reduce_dtype=torch.bfloat16, output_dtype=torch.bfloat16, cast_forward_inputs=True) offload_policy = CPUOffloadPolicy(pin_memory=False) # apply FSDP2 device_mesh = init_device_mesh("cuda", (world_size,)) for module in model.modules(): if isinstance(module, Qwen2VLDecoderLayer): fully_shard(module, mesh=device_mesh, reshard_after_forward=True, mp_policy=mp_policy, # offload_policy=offload_policy, ) model = fully_shard(model, mesh=device_mesh, reshard_after_forward=True, mp_policy=mp_policy, # offload_policy=offload_policy, ) model.to_empty(device='cuda') model_state_dict = model.state_dict() model_dir = "/cache/fsdp_test/72B_8_files" # load qwen2-vl model dcp.load( state_dict=model_state_dict, checkpoint_id=model_dir, planner=DefaultLoadPlanner(allow_partial_load=True), ) model = model.to(torch.bfloat16).cuda() # Load dataset logger.info("Loading dataset...") train_dataset, eval_dataset, test_dataset = load_dataset( config.dataset_id, split=['train[:10%]', 'val[:10%]', 'test[:10%]']) train_dataset = [format_data(sample) for sample in train_dataset] train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=1, collate_fn=collate_fn, shuffle=True, ) # Optimizer optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate) # Create output directory os.makedirs(config.output_dir, exist_ok=True) # Train logger.info("Starting training...") train_model(model, train_dataloader, optimizer, config) if __name__ == "__main__": main() destroy_process_group() logger.info("Training completed.") ``` ### Running command `torchrun --nnodes=2 --nproc_per_node=8 qwenvl_train_fsdp.py` `torchrun --nnodes=4 --nproc_per_node=8 qwenvl_train_fsdp.py` `torchrun --nnodes=8 --nproc_per_node=8 qwenvl_train_fsdp.py` ### GPU memory monitor The following is the screenshot of the result of `nvidia-smi`: 16 GPU: ![Image](https://github.com/user-attachments/assets/be24d977-156b-438c-a8d4-be61b26b4d57) 32 GPU: ![Image](https://github.com/user-attachments/assets/4b8f1ea9-150d-44f8-8ab4-c9a26c3dcd43) 64 GPU: ![Image](https://github.com/user-attachments/assets/45f3d7cb-b8bc-4044-a6f4-882c708aaf9c) cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @tianyu-l @XilunWu
true
3,012,059,868
[Observability][Optimus] Fix the tlparse name
mengluy0125
open
[ "fb-exported", "module: inductor", "module: dynamo", "ciflow/inductor", "release notes: inductor" ]
3
CONTRIBUTOR
Summary: This is a followup of PR https://github.com/pytorch/pytorch/pull/151635 As suggested by James Wu, we need to remove the space for the name. Test Plan: ``` TORCH_TRACE=~/my_trace_log_dir CUDA_VISIBLE_DEVICES=5 buck2 run mode/opt aps_models/ads/ecosystem/tooling/tools/efficient_module_suite/benchmark:omnifm_perf_benchmark -- benchmark-with-prod-model --prod_config mast_omnifm_v1-5_mwb --prod_config_override prod_config_override_jointarch --batch_size 1024 --enable_pt2 True --mfu_profile_module uniarch_layers.0.seq_summarization_layer.seq_summarization_modules.fb_feed_vpv_p90 ``` tlparse link: https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/.tmpyYiYdN/dedicated_log_torch_trace_vz90m_xo.log/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000 Differential Revision: D73459951 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,012,041,979
`torch.bmm` is slow on non-contiguous BF16 CPU tensors
ar0ck
open
[ "module: performance", "module: cpu", "triaged", "module: bfloat16", "module: half", "matrix multiplication" ]
3
CONTRIBUTOR
### 🐛 Describe the bug I observe that `torch.bfloat16` is ~4x slower than `torch.float32` on the following benchmark: ```python import torch from torch.utils.benchmark import Compare, Timer B = 1 << 6 N = 1 << 12 results = [] for dtype in (torch.float32, torch.bfloat16): x = torch.randn(B, 1, N, dtype=dtype) y = torch.randn(1, N, N, dtype=dtype).expand(B, N, N) results.append(Timer( "torch.bmm(x, y)", globals={"x": x, "y": y}, description=str(dtype), ).timeit(1)) Compare(results).print() ``` On my machine, this produces: ``` [--------------------------- ---------------------------] | torch.float32 | torch.bfloat16 1 threads: ----------------------------------------------- torch.bmm(x, y) | 209.1 | 855.3 Times are in milliseconds (ms). ``` Things which "fix" this include: - making `y` contiguous - using `device="cuda"` - using `torch.compile` ### Versions ``` Collecting environment information... PyTorch version: 2.8.0.dev20250422+cpu Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.14 (main, Apr 6 2024, 18:45:05) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.15.0-134-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 11.5.119 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 Nvidia driver version: 570.124.06 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz CPU family: 6 Model: 106 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 1 Stepping: 6 CPU max MHz: 3400.0000 CPU min MHz: 800.0000 BogoMIPS: 4800.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 768 KiB (16 instances) L1i cache: 512 KiB (16 instances) L2 cache: 20 MiB (16 instances) L3 cache: 24 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] torch==2.8.0.dev20250422+cpu [conda] Could not collect ``` cc @msaroufim @jerryzh168 @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
3,012,033,982
[CI] Remove protobuf from docker image
clee2000
closed
[ "module: rocm", "Merged", "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
Pretty sure the source should be the one in third-party cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
3,011,993,116
Exporting the operator 'aten::lift_fresh' to ONNX - not supported
kraza8
open
[ "module: onnx", "triaged" ]
3
NONE
### 🐛 Describe the bug Hi, Attempting to export this model to onnx. Export keeps failing: **torch.onnx.errors.UnsupportedOperatorError: Exporting the operator 'aten::lift_fresh' to ONNX opset version 17 is not supported. Please feel free to request support or submit a pull request on PyTorch GitHub: https://github.com/pytorch/pytorch/issues.** Tried with lower and higher opset versions, same failure. **Code:** wrapperpolicy = PolicyWrapper(policy) dummy_obs = torch.randn(56, 2, 20, dtype=torch.float32) dummy_mask = torch.ones(56, 2, 20, dtype=torch.bool) onnx_model_path = "/proj/work/kraza/git/diffusion_policy_cnn_stanford/DynamoWrapperDiffusionPolicyCNN.onnx" print("starting onnx export\n\n") torch.onnx.export(wrapperpolicy, (dummy_obs, dummy_mask), onnx_model_path, opset_version=17, input_names=["input_node"], output_names=["output_node"], report=True, export_params=True) **Error:** :: # /proj/work/kraza/git/diffusion_policy_cnn_stanford/diffusion_policy/diffusion_policy/policy/diffusion_unet_lowdim_policy.py:165:0 return (%1270965) Traceback (most recent call last): File "/proj/work/kraza/git/diffusion_policy_cnn_stanford/diffusion_policy/eval_dynamo_mlir_compile_v2_onnx_wrapper.py", line 105, in <module> main() File "/proj/work/kraza/git/mlir-compiler2/mlir-compiler/venv/lib/python3.10/site-packages/click/core.py", line 1128, in __call__ return self.main(*args, **kwargs) File "/proj/work/kraza/git/mlir-compiler2/mlir-compiler/venv/lib/python3.10/site-packages/click/core.py", line 1053, in main rv = self.invoke(ctx) File "/proj/work/kraza/git/mlir-compiler2/mlir-compiler/venv/lib/python3.10/site-packages/click/core.py", line 1395, in invoke return ctx.invoke(self.callback, **ctx.params) File "/proj/work/kraza/git/mlir-compiler2/mlir-compiler/venv/lib/python3.10/site-packages/click/core.py", line 754, in invoke return __callback(*args, **kwargs) File "/proj/work/kraza/git/diffusion_policy_cnn_stanford/diffusion_policy/eval_dynamo_mlir_compile_v2_onnx_wrapper.py", line 82, in main torch.onnx.export(wrapperpolicy, (dummy_obs, dummy_mask), onnx_model_path, opset_version=17, input_names=["input_node"], output_names=["output_node"], report=True, export_params=True) File "/proj/work/kraza/git/mlir-compiler2/mlir-compiler/venv/lib/python3.10/site-packages/torch/onnx/__init__.py", line 383, in export export( File "/proj/work/kraza/git/mlir-compiler2/mlir-compiler/venv/lib/python3.10/site-packages/torch/onnx/utils.py", line 495, in export _export( File "/proj/work/kraza/git/mlir-compiler2/mlir-compiler/venv/lib/python3.10/site-packages/torch/onnx/utils.py", line 1428, in _export graph, params_dict, torch_out = _model_to_graph( File "/proj/work/kraza/git/mlir-compiler2/mlir-compiler/venv/lib/python3.10/site-packages/torch/onnx/utils.py", line 1057, in _model_to_graph graph = _optimize_graph( File "/proj/work/kraza/git/mlir-compiler2/mlir-compiler/venv/lib/python3.10/site-packages/torch/onnx/utils.py", line 632, in _optimize_graph graph = _C._jit_pass_onnx(graph, operator_export_type) File "/proj/work/kraza/git/mlir-compiler2/mlir-compiler/venv/lib/python3.10/site-packages/torch/onnx/utils.py", line 1709, in _run_symbolic_function raise errors.UnsupportedOperatorError( torch.onnx.errors.UnsupportedOperatorError: Exporting the operator 'aten::lift_fresh' to ONNX opset version 17 is not supported. Please feel free to request support or submit a pull request on PyTorch GitHub: https://github.com/pytorch/pytorch/issues. ### Versions **Environment:** Collecting environment information... PyTorch version: 2.6.0+cpu Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (aarch64) GCC version: (GCC) 13.3.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.29.6 Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.5.0-1019-nvidia-64k-aarch64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 11.5.119 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GH200 480GB Nvidia driver version: 550.90.07 cuDNN version: Probably one of the following: /usr/lib/aarch64-linux-gnu/libcudnn.so.9.3.0 /usr/lib/aarch64-linux-gnu/libcudnn_adv.so.9.3.0 /usr/lib/aarch64-linux-gnu/libcudnn_cnn.so.9.3.0 /usr/lib/aarch64-linux-gnu/libcudnn_engines_precompiled.so.9.3.0 /usr/lib/aarch64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.3.0 /usr/lib/aarch64-linux-gnu/libcudnn_graph.so.9.3.0 /usr/lib/aarch64-linux-gnu/libcudnn_heuristic.so.9.3.0 /usr/lib/aarch64-linux-gnu/libcudnn_ops.so.9.3.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: aarch64 CPU op-mode(s): 64-bit Byte Order: Little Endian CPU(s): 72 On-line CPU(s) list: 0-71 Vendor ID: ARM Model name: Neoverse-V2 Model: 0 Thread(s) per core: 1 Core(s) per socket: 72 Socket(s): 1 Stepping: r0p0 Frequency boost: disabled CPU max MHz: 3375.0000 CPU min MHz: 81.0000 BogoMIPS: 2000.00 Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm jscvt fcma lrcpc dcpop sha3 sm3 sm4 asimddp sha512 sve asimdfhm dit uscat ilrcpc flagm ssbs sb paca pacg dcpodp sve2 sveaes svepmull svebitperm svesha3 svesm4 flagm2 frint svei8mm svebf16 i8mm bf16 dgh bti L1d cache: 4.5 MiB (72 instances) L1i cache: 4.5 MiB (72 instances) L2 cache: 72 MiB (72 instances) L3 cache: 114 MiB (1 instance) NUMA node(s): 9 NUMA node0 CPU(s): 0-71 NUMA node1 CPU(s): NUMA node2 CPU(s): NUMA node3 CPU(s): NUMA node4 CPU(s): NUMA node5 CPU(s): NUMA node6 CPU(s): NUMA node7 CPU(s): NUMA node8 CPU(s): Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; __user pointer sanitization Vulnerability Spectre v2: Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.23.3 [pip3] onnx==1.17.0 [pip3] onnxruntime-training==1.20.0+cpu [pip3] onnxscript==0.2.3 [pip3] torch==2.6.0 [pip3] torchvision==0.13.1 [conda] Could not collect
true
3,011,871,773
[inductor] fix lowering for cummin, cummax for one element tensors
isuruf
closed
[ "open source", "Merged", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: inductor" ]
8
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151931 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov Fixes https://github.com/pytorch/pytorch/issues/151738
true
3,011,847,417
Add operator name to the size/strides/alignment assertion
shunting314
closed
[ "triaged", "oncall: pt2", "module: inductor", "internal ramp-up task" ]
3
CONTRIBUTOR
### 🐛 Describe the bug _No response_ ### Error logs _No response_ ### Versions Inductor would generates size/strides/alignment assertions for ir.FallbackKernel (e.g. output of a custom op). Those assertions looks like this: ``` assert_size_stride(buf2, (16, 32), (32, 1)) assert_alignment(buf2, 16) ``` The assertion does not contains the name of the op concerned. It would be convenient if Inductor could add the op name to the error message of the assertion. This test case can be a good start point: ``` python test/inductor/test_torchinductor.py -k test_custom_op_1_cuda ``` It defines a custom op torch.ops.test.foo . We should have this op name in the error message of the assertion. Add TORCH_LOGS=output_code to see the Inductor generated code. cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov @zou3519 who asks for this a few times. cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
3,011,814,244
[ROCm][CI] Update dockerfile to use centos9
ethanwee1
open
[ "module: rocm", "open source", "topic: not user facing" ]
1
CONTRIBUTOR
Upstream contents of centos stream dockerfile into upstream dockerfile cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
3,011,810,740
Improve cache key graph printing performance
aorenste
closed
[ "Merged", "ciflow/trunk", "release notes: fx", "topic: not user facing", "fx", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Teach the graph printer how to allow overriding printing SymTypes (`SymInt`, `SymFloat`, `SymBool`) and then use that to reuse the fast SymNode printing from `torch._inductor.utils.sympy_str()` to make computing the cache key faster. On my computer the repro from #151823 goes from 480s -> 80s (still terrible... but better). Fixes #151823 Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151928 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,011,792,848
[rocm6.4_internal_testing] Dockerfile swap
ethanwee1
closed
[ "oncall: distributed", "module: rocm", "release notes: releng", "module: inductor", "module: dynamo" ]
2
CONTRIBUTOR
rocm6.4_internal_testing move contents of centos stream dockerfile into dockerfile cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,011,780,475
[Break XPU] generalize newly introduced device bias code in Inductor UT.
etaf
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "keep-going", "ciflow/xpu" ]
4
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151926 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,011,774,747
[feature request][AOTI] Expand check input assertions to cover input guards created during compilation?
henrylhtsang
open
[ "oncall: pt2", "export-triaged", "oncall: export" ]
2
CONTRIBUTOR
### 🚀 The feature, motivation and pitch Hi, I want to request the following feature. The purpose is for debugging. There is a chance it exists already, in which case please let me know. # Feature Add input assertions for guards for AOTI. Check for shapes at least. # Problem The following function expects the size of x to be divisible by 100. ``` import torch def main(): class M(torch.nn.Module): def forward(self, x): y = x.reshape(100, -1).clone() y = y + 1 return y input1 = (torch.rand(100, device="cuda"),) input2 = (torch.rand(2099, device="cuda"),) inputs = [input1, input2] model = M().cuda() _ = model(*input1) dynamic_shapes = { "x": {0: torch.export.Dim.DYNAMIC}, } ep = torch.export.export(model, input1, dynamic_shapes=dynamic_shapes, strict=False) path = torch._inductor.aoti_compile_and_package(ep) aot_model = torch._inductor.aoti_load_package(path) for input in inputs: _ = aot_model(*input) print("done") if __name__ == "__main__": main() ``` Side note: To my surprise, AOTI can run **without errors**. This is after me adding flags like ``` TORCH_SHOW_CPP_STACKTRACES=1 TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 TORCH_LOGS="output_code" PYTORCH_NO_CUDA_MEMORY_CACHING=1 CUDA_LAUNCH_BLOCKING=1 ``` and even using compute-sanitizer. But regardless, this kind of function is expected to fail. It fails in eager mode, it fails in torch.compile. ``` # eager RuntimeError: shape '[100, -1]' is invalid for input of size 2099 # torch.compile torch._dynamo.exc.TorchRuntimeError: Dynamo failed to run FX node with fake tensors: call_method reshape(*(FakeTensor(..., device='cuda:0', size=(s77,)), 100, -1), **{}): got RuntimeError("shape '[100, -1]' is invalid for input of size s77") ``` # Guards If you look at tlparse, you can actually see the following guards: ``` **Eq(Mod(s35, 100), 0) | User Stack | Framework Stack** Ne(100*((s35//100)), 0) | User Stack | Framework Stack Eq((s35//100), 1) | User Stack | Framework Stack Eq(Max(1, (s35//100)), 1) | User Stack | Framework Stack Eq(s35, 100*((s35//100))) | User Stack | Framework Stack 100*((s35//100)) < 2147483648 | User Stack | Framework Stack ((s35//100)) + 99 < 2147483648 | User Stack | Framework Stack s35 < 2147483648 | User Stack | Framework Stack ``` In fact, if we look at AOTI codegen, it has some input guards. Just the trivial ones: ``` AOTI_NOINLINE static void check_input_0( AtenTensorHandle* input_handles ) { ConstantHandle arg0_1 = ConstantHandle(input_handles[0]); int32_t arg0_1_dtype; AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_get_dtype(arg0_1, &arg0_1_dtype)); int32_t arg0_1_expected_dtype = aoti_torch_dtype_float32(); if (arg0_1_expected_dtype != arg0_1_dtype) { std::stringstream ss; ss << "input_handles[0]: unmatched dtype, " << "expected: " << arg0_1_expected_dtype << "(at::kFloat), " << "but got: " << arg0_1_dtype << "\n"; throw std::runtime_error(ss.str()); } auto arg0_1_size = arg0_1.sizes(); if (arg0_1_size[0] < 2) { std::stringstream ss; ss << "input_handles[0]: dim value is too small at 0, " << "expected it to be >= 2, " << "but got: " << arg0_1_size[0] << "\n"; throw std::runtime_error(ss.str()); } if (arg0_1_size[0] > 2147483647) { std::stringstream ss; ss << "input_handles[0]: dim value is too large at 0, " << "expected to be <= 2147483647, " << "but got: " << arg0_1_size[0] << "\n"; throw std::runtime_error(ss.str()); } auto arg0_1_stride = arg0_1.strides(); if (1 != arg0_1_stride[0]) { std::stringstream ss; ss << "input_handles[0]: unmatched stride value at 0, " << "expected: 1, " << "but got: " << arg0_1_stride[0] << "\n"; throw std::runtime_error(ss.str()); } int32_t arg0_1_device_type; AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_get_device_type(arg0_1, &arg0_1_device_type)); int32_t arg0_1_expected_device_type = 1; if (arg0_1_expected_device_type != arg0_1_device_type) { std::stringstream ss; ss << "input_handles[0]: unmatched device type, " << "expected: " << arg0_1_expected_device_type << "1(cuda), " << "but got: " << arg0_1_device_type << "\n"; throw std::runtime_error(ss.str()); } } ``` ### Alternatives _No response_ ### Additional context _No response_ cc @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
true
3,011,743,615
Skip fuse attention on fp32 if not tf32
eellison
open
[ "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
10
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151924 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,011,725,922
[pytorch][triton] flex attention fwd kernel with Q and K TMA loads
mandroid6
closed
[ "fb-exported", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
4
CONTRIBUTOR
Summary: Device side TMA for flex_attention fwd kernel, Q K tensors NOTE: V tensor TMA has numeric issues, to be updated in followup. Test Plan: Unit test: ``` buck test 'fbcode//mode/opt' fbcode//caffe2/test/inductor:flex_attention -- test_tma_with_customer_kernel_options ``` https://www.internalfb.com/intern/testinfra/testrun/14355223891618726 Bench comparison: - with TMA: 41.03 - without TMA (default best): 49.78 TMA shows a ~`18%` speed up. Differential Revision: D71082691 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,011,715,478
[StandaloneCompile] Autotune at compile time
oulgen
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
7
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151922 * #151921 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,011,715,005
[MegaCache] Return None on no compilation
oulgen
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151922 * __->__ #151921 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,011,670,828
Add precedence to the infix printing done by sympy_str.
aorenste
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
12
CONTRIBUTOR
Add precedence to the infix printing done by sympy_str. Without this change sympy_str will print the same string for both `a+b*(c+d)` and `(a+b)*(c+d)`. While there I also cleaned up the printing for `-a` and `a - b`. Added some tests. Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151920 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,011,660,204
[WIP]: track remaining runtime time asserts for backward coddgen instead of trying to regenerate all
laithsakka
open
[ "release notes: fx", "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151919 address https://github.com/pytorch/pytorch/issues/151879. The runtime assertion code generation tracks defined unbacked symints, when all defined unabacked summits for a given assert are seen(defined), the runtime assertion is emitted. Before this PR, unbacked symints that are input to the graph were not detected as defined, hence dependent assertions used to never be triggered. One issue with the fix is handling emitting runtime assertion for backward .Before this PR, backward will try to regenerate all the assertions again, not considering input defined unabcked symints used to operate as a proxy to avoid generating assertions that should have been defined in the forward (based on the assumption that the unbacked symint is coming from forward output and it would have been defined). However now as i removed that check we start failing. While I can say (for backward do not consider input defined unbacked symint, this sounds risky and not a complete solution)? What if an assertion depends on both forward .item() call and backward .item() call? The proposed fix is, (1) when we finish forward codegen we store the remaining runtime assertions and we only try to emit those in backward. (2) after backward we ensure all runtime assertions are emitted. My only concern is if caching forward and not backward can interfere here. basically if we cache hit forward and miss backward! we wont know what is remaining to lower. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,011,657,528
Inductor generates wrong code for `torch.embedding`
YouJiacheng
open
[ "triaged", "oncall: pt2", "module: decompositions", "module: inductor" ]
6
CONTRIBUTOR
### 🐛 Describe the bug Without `torch.compile`, negative indices will trigger ```/pytorch/aten/src/ATen/native/cuda/Indexing.cu:1369: indexSelectSmallIndex: block: [0,0,0], thread: [0,0,0] Assertion `srcIndex < srcSelectDimSize` failed.``` on CUDA, and `IndexError: index out of range in self` on CPU. With `torch.compile`, negative indices will be viewed as indices starting from the end of the array (behaves like `w[idx]`). Interestingly, the gradient for `-1` (which is the place holder for `padding_idx`) will be zero'd. ```python import torch from torch import Tensor from torch._logging._internal import trace_structured # type: ignore import torch._inductor.codecache import torch._inductor.graph def _patched_trace_structured(name, metadata_fn, **kwargs): if name == "inductor_output_code": print(f"inductor_output_code: {metadata_fn().get('filename', 'Unknown')}") trace_structured(name, metadata_fn, **kwargs) torch._inductor.codecache.trace_structured = _patched_trace_structured # type: ignore torch._inductor.graph.trace_structured = _patched_trace_structured # type: ignore @torch.compile def foo(w: Tensor, idx: Tensor): return torch.embedding(w, idx) dtype = torch.float32 # bfloat16 also has this problem with torch.device("cuda"): w = torch.zeros(8, 1, dtype=dtype) + torch.arange(8)[:, None] w.requires_grad_(True) idx = torch.arange(8) - 4 out = foo(w.detach(), idx) out_w_grad = foo(w, idx) out_w_grad.backward(torch.ones_like(out)) print(out) print(out_w_grad) print(w.grad) ``` The output: ``` inductor_output_code: /tmp/torchinductor_root/ik/cik6xiyvgk4l6qrmtzhstl7y2rii35e6ypnrlerwhzu6sy2l6vmx.py inductor_output_code: /tmp/torchinductor_root/g7/cg7qb4d3yn5u7hzorvswvawpbul4dcyenxexcd3jxq3lavvuhai6.py inductor_output_code: /tmp/torchinductor_root/gz/cgzm7ubuxpihujm7bnkl2jknrcqvufyv64gu6foclevh3yx5gamn.py tensor([[4.], [5.], [6.], [7.], [0.], [1.], [2.], [3.]], device='cuda:0') tensor([[4.], [5.], [6.], [7.], [0.], [1.], [2.], [3.]], device='cuda:0', grad_fn=<CompiledFunctionBackward>) tensor([[1.], [1.], [1.], [1.], [1.], [1.], [1.], [0.]], device='cuda:0') ``` The backward code generated by Inductor: ```python triton_poi_fused_embedding_dense_backward_1 = async_compile.triton('triton_poi_fused_embedding_dense_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, DeviceProperties triton_helpers.set_driver_to_gpu() @triton_heuristics.pointwise( size_hints={'x': 8}, filename=__file__, triton_meta={'signature': {'in_ptr0': '*i64', 'in_ptr1': '*fp32', 'out_ptr0': '*fp32', 'xnumel': 'i32'}, 'device': DeviceProperties(type='cuda', index=0, multi_processor_count=132, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, warp_size=32), 'constants': {}, 'configs': [AttrsDescriptor.from_dict({'arg_properties': {'tt.divisibility': (0, 1, 2), 'tt.equal_to': ()}, 'cls': 'AttrsDescriptor'})]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_embedding_dense_backward_1', 'mutated_arg_names': ['out_ptr0'], 'optimize_mem': True, 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A0D3A2B50857E9501D843044B01F725922648D76E6D26323B14F8A4EA4473D1B', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_embedding_dense_backward_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp8 = tl.load(in_ptr1 + (x0), xmask) tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert(((0 <= tmp4) & (tmp4 < 8)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 8") tmp6 = tl.full([1], -1, tl.int64) tmp7 = tmp0 == tmp6 tmp9 = 0.0 tmp10 = tl.where(tmp7, tmp9, tmp8) tl.atomic_add(out_ptr0 + (tl.broadcast_to(tmp4, [XBLOCK])), tmp10, xmask, sem='relaxed') ''', device_str='cuda') ``` ### Versions Collecting environment information... PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.12.9 (main, Mar 11 2025, 17:26:57) [Clang 20.1.0 ] (64-bit runtime) Python platform: Linux-5.4.250-2-velinux1u1-amd64-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.4.131 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3 GPU 1: NVIDIA H100 80GB HBM3 GPU 2: NVIDIA H100 80GB HBM3 GPU 3: NVIDIA H100 80GB HBM3 Nvidia driver version: 535.129.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 168 On-line CPU(s) list: 0-74 Off-line CPU(s) list: 75-167 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8457C CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 42 Socket(s): 2 Stepping: 8 BogoMIPS: 5199.99 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 wbnoinvd arat avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid cldemote movdiri movdir64b md_clear arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 3.9 MiB (84 instances) L1i cache: 2.6 MiB (84 instances) L2 cache: 168 MiB (84 instances) L3 cache: 195 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-83 NUMA node1 CPU(s): 84-167 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Unknown: No mitigations Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==2.2.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.6.0 [pip3] triton==3.2.0 [conda] Could not collect cc @chauhang @penguinwu @SherlockNoMad @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
3,011,618,840
Reland fast gather and index implementation
ngimel
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: cuda", "ciflow/inductor", "ci-no-td" ]
5
COLLABORATOR
This PR reapplies #151490 and #151753 together, and adds some missing checks when applying the fast path. Previously missed checks: 1) indexing path has the stride in the indexed dimension in bytes, gather path has the stride in the indexed dimension in elements. When checking if fast path is applicable, I didn't take this difference into account, and still multiplied the indexing stride by element size. Fixed and test added 2) We want to take fast path only when we are copying contiguous equally spaced slices of inputs + all the necessary alignment requirements. The effective tensor size should be 2d (after all possible flattening is applied), the index stride in the last dimension should be 0, and, since in the kernel we are not applying non-indexing-related offsets to src tensor, the src tensor stride in the second dimension should be 0. This automatically happens for gather with dim=0, so I didn't put in an explicit condition for this. Sometimes all conditions except first dim "effective" stride equal to 0 are satisfied for scatter on non-zero dim, when index size in the indexing dimension is 1 and thus it is collapsed (dimensions of size 1 are always collapsed), e.g. ``` # test gather along 1st dim that can accidentally trigger fast path # because due to index dimension in the gather dim being 1 # an unexpected squashing in tensorIterator happens src = make_tensor((16, 2, 16), device=device, dtype=dtype) ind = torch.randint(2, (16, 1), device=device).view(16, 1, 1).expand(16, 1, 16) res = torch.gather(src, dim=1, index=ind) if res.device.type == "cuda": ref_cpu = torch.gather(src.cpu(), dim=1, index=ind.cpu()) self.assertEqual(res.cpu(), ref_cpu, atol=0, rtol=0) ``` Note that if index size here was (16, 2, 16) instead of (16, 1, 16) then the middle dimension could not be collapsed and we wouldn't end up incorrectly taking fast path. We could update the kernel to take this stride into account when computing offsets into src tensor, or we could specifically disallow non-zero stride on the first dimension. I took the second path for now. cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
3,011,558,696
[WIP] Deprecate AcceleratorHooksInterface isPinnedPtr, use at::getHostAllocator()->is_pinned instead
guangyey
open
[ "open source", "release notes: mps", "ciflow/mps" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151531 * __->__ #151916 * #151913
true
3,011,497,088
Deprecated pkg_resources and use distributions instead
FFFrog
open
[ "open source", "topic: not user facing" ]
2
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151915 As the title stated.
true
3,011,480,148
[OpenReg] Add _lazy_init and rng_state support for OpenReg
FFFrog
closed
[ "open source", "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "ci-no-td" ]
12
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151914 As the title stated. **Changes**: - Add get_rng_state & set_rng_state support for OpenReg - Add _lazy_init support for OpenReg - Remove redundant code for cuda/Module.cpp
true
3,011,401,982
Add MPS support for getHostAllocator API
guangyey
open
[ "open source", "release notes: mps", "ciflow/mps" ]
3
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151531 * #151916 * __->__ #151913 # Motivation In https://github.com/pytorch/pytorch/pull/151431, PyTorch provides a unified API `at::getHostAllocator(...)` that facilitates writing device-agnostic code. This PR aims to add MPS support for `at::getHostAllocator` API. # Additional Context The following APIs are not support on `at::getHostAllocator(at::kMPS)` yet: - `at::getHostAllocator()->record_event` - `at::getHostAllocator()->get_stats` - `at::getHostAllocator()->reset_accumulated_stats` - `at::getHostAllocator()->reset_peak_stats`
true
3,011,150,732
bfloat16 numerical errors for SDPA math backend
AmdSampsa
open
[ "triaged", "oncall: pt2" ]
4
COLLABORATOR
### 🐛 Describe the bug ## Faulty triton kernel in the math backend SDPA attention for `bfloat16` has numerical errors (as compared to eager mode), when using the math backend (`SDPBackend.MATH`). Comparing the results between eager mode and `torch.compile` gives a maximum abs difference of `0.0156`. I've confirmed this both for MI300 and A100. For a minimum repro, please see [this gist](https://gist.github.com/AmdSampsa/ea1d8a6daddcc4d9bdf8fbf34d9b25cc). When looking at the triton code produced by `torch.compile` and for the math backend, one finds this suspicious kernel: ```python def triton_poi_fused_add_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 196608 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None).to(tl.float32) tmp1 = tl.load(in_ptr1 + (x0), None) tmp2 = tmp1.to(tl.float32) tmp3 = tmp0 + tmp2 tl.store(out_ptr0 + (x0), tmp3, None) ``` I've located the numerical errors into this kernel and it is likely because of that casting into `tl.float32` even when we are doing `bfloat16`. As a side note, `SDPBackend.FLASH_ATTENTION` works allright. ## Defaulting to math backend I also find this weird behaviour (when using the provided repro): `rm -rf /tmp/torchinductor_root && python sdpa_repro.py --flash` -> **OK** `rm -rf /tmp/torchinductor_root && python sdpa_repro.py --math` -> **ERRORS** `rm -rf /tmp/torchinductor_root && python sdpa_repro.py --math && python sdpa_repro.py --flash` -> **ERRORS IN BOTH CASES!** So it seems that SDPA defaults to math backend if it has been used earlier even when we try to force the FA backend! ## Summary - Found numerical errors in the math backend for bfloat16 because of a dodgy triton kernel produced by inductor - Forcing flash attention SDPA backend doesn't work if math backend has previously been used.. to get rid of this persistence, one must clear the inductor cache - Of course, it's another matter if the math backend is as of today relevant for SDPA..? ## Related - maybe/kinda: https://github.com/pytorch/pytorch/issues/139352 ### Error logs _No response_ ### Versions ```bash Collecting environment information... PyTorch version: 2.7.0a0+ecf3bae40a.nv25.02 Is debug build: False CUDA used to build PyTorch: 12.8 ROCM used to build PyTorch: N/A OS: Ubuntu 24.04.1 LTS (x86_64) GCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 Clang version: Could not collect CMake version: version 3.31.4 Libc version: glibc-2.39 Python version: 3.12.3 (main, Jan 17 2025, 18:03:48) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-5.19.0-42-generic-x86_64-with-glibc2.39 Is CUDA available: True CUDA runtime version: 12.8.61 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100 80GB PCIe Nvidia driver version: 555.42.02 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.7.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz CPU family: 6 Model: 106 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 2 Stepping: 6 CPU(s) scaling MHz: 30% CPU max MHz: 3400.0000 CPU min MHz: 800.0000 BogoMIPS: 4800.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.5 MiB (32 instances) L1i cache: 1 MiB (32 instances) L2 cache: 40 MiB (32 instances) L3 cache: 48 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-15,32-47 NUMA node1 CPU(s): 16-31,48-63 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] nvidia-cudnn-frontend==1.10.0 [pip3] nvtx==0.2.5 [pip3] onnx==1.17.0 [pip3] optree==0.14.0 [pip3] pynvjitlink==0.3.0 [pip3] pytorch-triton==3.2.0+git0d4682f0b.nvinternal [pip3] torch==2.7.0a0+ecf3bae40a.nv25.2 [pip3] torch_geometric==2.5.3 [pip3] torch_tensorrt==2.6.0a0 [pip3] torchprofile==0.0.4 [pip3] torchvision==0.22.0a0 [conda] Could not collect ``` cc @chauhang @penguinwu
true
3,011,092,138
Enable type promotions in slice_scatter (pytorch#147842)
tommyadams5
open
[ "triaged", "open source", "topic: not user facing", "module: inductor" ]
4
CONTRIBUTOR
Fixes #147842 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,011,006,903
DISABLED test_builtin_score_mods_different_block_size_float32_score_mod0_BLOCK_SIZE_256_cuda_float32 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
1
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_builtin_score_mods_different_block_size_float32_score_mod0_BLOCK_SIZE_256_cuda_float32&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40921259228). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_builtin_score_mods_different_block_size_float32_score_mod0_BLOCK_SIZE_256_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 1219, in test_builtin_score_mods_different_block_size self.run_test(score_mod, dtype, block_mask=block_mask, device=device) File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 509, in run_test golden_out.backward(backward_grad.to(torch.float64)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_tensor.py", line 648, in backward torch.autograd.backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 354, in backward _engine_run_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 679, in backward ) = flex_attention_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 320, in maybe_run_autograd return self(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 881, in sdpa_dense_backward grad_scores = torch.where( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/_trace_wrapped_higher_order_op.py", line 142, in __torch_function__ return func(*args, **(kwargs or {})) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU 0 has a total capacity of 22.05 GiB of which 864.12 MiB is free. Including non-PyTorch memory, this process has 21.19 GiB memory in use. Of the allocated memory 6.78 GiB is allocated by PyTorch, and 14.15 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) To execute this test, run the following from the base repo dir: python test/inductor/test_flex_attention.py TestFlexAttentionCUDA.test_builtin_score_mods_different_block_size_float32_score_mod0_BLOCK_SIZE_256_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,011,006,767
DISABLED test_builtin_score_mods_different_block_size_float32_score_mod3_BLOCK_SIZE3_cuda_float32 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
1
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_builtin_score_mods_different_block_size_float32_score_mod3_BLOCK_SIZE3_cuda_float32&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40921259228). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_builtin_score_mods_different_block_size_float32_score_mod3_BLOCK_SIZE3_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 1219, in test_builtin_score_mods_different_block_size self.run_test(score_mod, dtype, block_mask=block_mask, device=device) File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 509, in run_test golden_out.backward(backward_grad.to(torch.float64)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_tensor.py", line 648, in backward torch.autograd.backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 354, in backward _engine_run_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 679, in backward ) = flex_attention_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 320, in maybe_run_autograd return self(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 873, in sdpa_dense_backward grad_scores = grad_scores * scale torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU 0 has a total capacity of 22.05 GiB of which 718.12 MiB is free. Including non-PyTorch memory, this process has 21.34 GiB memory in use. Of the allocated memory 6.84 GiB is allocated by PyTorch, and 14.23 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) To execute this test, run the following from the base repo dir: python test/inductor/test_flex_attention.py TestFlexAttentionCUDA.test_builtin_score_mods_different_block_size_float32_score_mod3_BLOCK_SIZE3_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,011,006,617
DISABLED test_captured_buffers_all_dims_float32_cuda_float32 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
1
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_captured_buffers_all_dims_float32_cuda_float32&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40921259228). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_captured_buffers_all_dims_float32_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,011,006,465
DISABLED test_builtin_score_mods_dynamic_float16_score_mask_mod0_cuda_float16 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
1
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_builtin_score_mods_dynamic_float16_score_mask_mod0_cuda_float16&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40920556633). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_builtin_score_mods_dynamic_float16_score_mask_mod0_cuda_float16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,010,943,907
Exempt overriding methods from docstring_linter (fix #151692)
rec
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
7
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152256 * #148959 * __->__ #151906
true
3,010,790,742
Fix dependencies version error when building docs locally
dangnguyen2910
closed
[ "open source", "topic: not user facing" ]
1
NONE
Fixes #151786 This PR downgrades version of 2 dependencies, which allow `pip install -r docs/requirements.txt`
true
3,010,771,607
[graph pickler] [inductor compile async] imprecise filter for non standard op?
ChuanqiXu9
closed
[ "triaged", "oncall: pt2", "module: inductor" ]
6
CONTRIBUTOR
### 🐛 Describe the bug In https://github.com/pytorch/pytorch/blob/159e2f96e3d7aec0187b03c483e177c5e96b1ebb/torch/fx/_graph_pickler.py#L410-L413 there is a check for `torch.ops.aten` and the pickler will raise an exception saying it is not picklable. This is slightly confusing to me. I feel, if something is not picklable, it will fail automatically. And in practice, in my demo, it prevents something to work and everything works fine after I commented this check out. Then at least, the condition may be incomplete to me. Reproducer: ``` import torch import json from transformers import BertModel, BertConfig CONFIG = """ { "architectures": [ "BertForMaskedLM" ], "attention_probs_dropout_prob": 0.1, "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 12, "pad_token_id": 0, "position_embedding_type": "absolute", "transformers_version": "4.6.0.dev0", "type_vocab_size": 2, "use_cache": true, "vocab_size": 30522 } """ config = json.loads(CONFIG) bloom_config = BertConfig(**config) model = BertModel(bloom_config).half().cuda() vocab_size = 30522 torch.compiler.reset() torch.cuda.empty_cache() warmup = torch.randint(0, vocab_size, (2, 3)).cuda() warmup_attention_mask = torch.ones(2, 3).cuda() torch._dynamo.mark_dynamic(warmup, (0, 1)) torch._dynamo.mark_dynamic(warmup_attention_mask, (0, 1)) compiled_fn = torch.compile(model) with torch.no_grad(): compiled_fn(warmup, warmup_attention_mask) ``` And we need to raise an exception here or look at the exception here: https://github.com/pytorch/pytorch/blob/159e2f96e3d7aec0187b03c483e177c5e96b1ebb/torch/_inductor/compile_fx_ext.py#L484-L491 otherwise it may continue unexpectedly and silently. Then we need to compile the reproducer with compile async mode: ``` TORCHINDUCTOR_FX_COMPILE_MODE=async+SUBPROCESS TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 python reproducer.py ``` ### Versions trunk 2.8+9c2ac2b876b1f74aaf7ed3fbfa04db8c973f4b52 cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
3,010,632,970
[cp] Context Parallel: dispatch flex_attention to CP impl in TorchDispatchMode
XilunWu
closed
[ "oncall: distributed", "topic: not user facing" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151903 * #151900 * #151685 * #151507 * #151495 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
3,010,632,843
[cp] cast tensor to DTensor for flex_attention
XilunWu
closed
[ "oncall: distributed", "topic: not user facing" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151903 * __->__ #151902 * #151900 * #151685 * #151497 * #151507 * #151495
true
3,010,531,506
Issue while Building the Documentation
rohit-kumar-manav
open
[ "module: build", "module: docs", "triaged" ]
1
NONE
### 📚 The doc issue Trying to build the documentation from the below link. https://github.com/pytorch/pytorch#from-source Steps mentioned: 1. cd docs/ 2. pip install -r requirements.txt 3. make html 4. make serve Getting following error in step2 attached below: ![Image](https://github.com/user-attachments/assets/49a4ac6f-2cdb-45f9-a51f-7b02916d2021) @ezyang @svekars ### Suggest a potential alternative/fix _No response_ cc @malfet @seemethere @svekars @sekyondaMeta @AlannaBurke
true
3,010,513,141
[cp] dispatch flex_attention on DTensor to cp implementation
XilunWu
open
[ "oncall: distributed", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151900 * #151495 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
3,010,508,314
[BE] Upgrade XPU support package to 2025.1 in CICD
chuanqi129
open
[ "open source", "release notes: releng", "topic: not user facing", "ciflow/binaries_wheel", "ciflow/xpu" ]
2
COLLABORATOR
Address #151097. Including below changes, - Add XPU support package 2025.1 build and test in CI for both Linux and Windows - Keep XPU support package 2025.0 build in CI to ensure no break issue until PyTorch 2.8 release - Upgrade XPU support package from 2025.0 to 2025.1 in CD for both Linux and Windows - Enable XCCL in Linux CD wheel and oneMKL integration in both both Linux and Windows - Update XPU runtime pypi packages of CD wheels - Remove deprecated support package docker image build
true
3,010,430,112
[XPU] Get [ZE]: 0x78000011 on torch.compile with new driver
Stonepia
closed
[ "triaged", "module: xpu" ]
1
CONTRIBUTOR
### 🐛 Describe the bug The latest Intel GPU Driver introduces breaking changes that may lead to `torch.compile` failure with the error message of `Triton Error [ZE]: 0x78000011` on Windows. For instance, one might fail in the following cases: - Due to the renaming of `imf` function. It means that Triton can't find the former libdevice name, so it will raise a load failure. For example: https://github.com/intel/intel-xpu-backend-for-triton/pull/3936 - There are errors when there is `select_scatter`, and it might fail on interacting with the `slice` op. For example: https://github.com/intel/intel-xpu-backend-for-triton/issues/3916 Currently, the Intel GPU driver is working on the process to fix the failure. During the fixing stage, it can be mitigated by rolling back to the prior version. Please see the final `Solution` section for details. ### Error logs Here is an example of the error message. ```Bash Traceback (most recent call last): "C:\Users\user\AppData\Local\Temp\torchinductor_user\7n\c7nlelwrngcnizvcufhtqm7gds4sbaacn7qzxwal23rzxxt34efu.py", line 49, in <module> triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' ... File "F:\miniforge\envs\nightly\lib\site-packages\triton\compiler\compiler.py", line 422, in _init_handles self.module, self.function, self.n_regs, self.n_spills = driver.active.utils.load_binary( File "F:\miniforge\envs\nightly\lib\site-packages\triton\backends\intel\driver.py", line 208, in load_binary return self.shared_library.load_binary(args) RuntimeError: Triton Error [ZE]: 0x78000011 ``` ### Solution A temporary solution is to roll back to the previous version of the driver. #### Affected Driver Only on Windows did we detect such an issue. The `32.0.101.6734` and `32.0.101.6737` are affected. #### Rollback method One could download the previous driver from [Intel® Arc™ & Iris® Xe Graphics - Windows*](https://www.intel.com/content/www/us/en/download/785597/intel-arc-iris-xe-graphics-windows.html) page. One could use the previous version, like `32.0.101.6647` for example. Please click on the "perform a clean installation" checkbox when installing. Also, note that if you failed with other issues of Triton on XPU Windows, it might be because of the setting of `LEVEL_ZERO_V1_SDK_PATH`. The old driver will need to set this manually. Please refer to [Windows.md](https://github.com/intel/intel-xpu-backend-for-triton/blob/main/.github/WINDOWS.md#level-zero-sdk) for details. Normally, it requires two additional steps: 1. Download level-zero-win-sdk-*.*.*.zip from https://github.com/oneapi-src/level-zero/releases and extract it somewhere, like `C:'\level_zero`. 2. Set an environment variable. For example, if you are using PowerShell, use `$env:LEVEL_ZERO_V1_SDK_PATH = "C:\level_zero"`. Then you could run normally. cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
3,010,404,620
Add an additional check to trigger graph break for sparse tensor
js00070
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo" ]
20
CONTRIBUTOR
Fixes #151522 This PR fixes the issue that Dynamo fails to trigger a graph break for sparse tensors in certain code paths. I added an additional check to handle this case, and it resolves the original problem. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,010,182,920
Avoid differing results in `linalg.(tensor_)solve`
Flamefire
open
[ "triaged", "module: mkldnn", "open source", "ciflow/trunk", "release notes: nn", "ciflow/linux-aarch64" ]
7
COLLABORATOR
Remove an optimization potentially using a transposed matrix as input for `linalg_lu_factor_ex_out`. Depending on whether the input memory layout is contiguous or not this may lead to slightly different results which may cause larger differences in subsequent steps ultimately leading to test failures in e.g. `test_vmapvjp_linalg_tensorsolve_cpu_float32` & `test_vmapvjpvjp_linalg_tensorsolve_cpu_float32`. The intended optimization no longer applies after 59bc76f so this code can be removed too resolving the accuracy issues observed in those tests. With this change the code path used for the "regular" and "vmap" cases are identical: A batched tensor is iterated over in the batch dimension in [lu_solve](https://github.com/pytorch/pytorch/blob/f84062f78d723543e4962ffa1d38dcf42947e3f1/aten/src/ATen/native/BatchLinearAlgebraKernel.cpp#L1009) and [lu_factor](https://github.com/pytorch/pytorch/blob/f84062f78d723543e4962ffa1d38dcf42947e3f1/aten/src/ATen/native/BatchLinearAlgebraKernel.cpp#L955) Prior to this it might not be the case as either tensor would/could have been non-contiguous leading to using a transposed tensor for the LU factorization instead. So the (CPU) results should now be identical. Fixes #151440 Fixes #114868 cc @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @snadampal
true
3,010,140,950
[Dynamo] Replace `unimplemented` with `unimplemented_v2` in `torch/_dynamo/variables/nn_module.py`
shink
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo" ]
15
CONTRIBUTOR
Part of #147913 Replace `unimplemented` with`unimplemented_v2` in `torch/_dynamo/variables/nn_module.py` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,010,057,266
Add `LinearLR` compute lr formula in doc
zeshengzong
open
[ "triaged", "open source", "release notes: optim" ]
3
CONTRIBUTOR
Fixes #68058 ## Test Result ### Before ![image](https://github.com/user-attachments/assets/5bb4058c-98ca-4218-88a7-67b4b61082cc) ### After ![image](https://github.com/user-attachments/assets/bba22599-66f6-4e72-b3a2-631d8a410799)
true
3,010,048,156
DISABLED test_builtin_score_mods_different_block_size_float32_score_mod0_BLOCK_SIZE3_cuda_float32 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "module: flaky-tests", "skipped", "oncall: pt2", "module: higher order operators", "module: pt2-dispatcher", "module: flex attention" ]
3
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_builtin_score_mods_different_block_size_float32_score_mod0_BLOCK_SIZE3_cuda_float32&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40911525300). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_builtin_score_mods_different_block_size_float32_score_mod0_BLOCK_SIZE3_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `inductor/test_flex_attention.py` ResponseTimeoutError: Response timeout for 5000ms, GET https://raw.githubusercontent.com/pytorch/pytorch/main/test/inductor/test_flex_attention.py 200 (connected: true, keepalive socket: false, socketHandledRequests: 1, socketHandledResponses: 1) headers: {"connection":"keep-alive","content-length":"202619","cache-control":"max-age=300","content-security-policy":"default-src 'none'; style-src 'unsafe-inline'; sandbox","content-type":"text/plain; charset=utf-8","etag":"\"b35816086647517b7d683a331f8b787d0c8e182c5620a6887a28f30e26065ae4\"","strict-transport-security":"max-age=31536000","x-content-type-options":"nosniff","x-frame-options":"deny","x-xss-protection":"1; mode=block","x-github-request-id":"293D:1DB346:246775:2FBBCA:68073AEE","accept-ranges":"bytes","date":"Tue, 22 Apr 2025 06:45:03 GMT","via":"1.1 varnish","x-served-by":"cache-sjc1000089-SJC","x-cache":"HIT","x-cache-hits":"1","x-timer":"S1745304303.120667,VS0,VE215","vary":"Authorization,Accept-Encoding,Origin","access-control-allow-origin":"*","cross-origin-resource-policy":"cross-origin","x-fastly-request-id":"8b3ab0021c515283fb5a151c06d0b32dc1a4bff6","expires":"Tue, 22 Apr 2025 06:50:03 GMT","source-age":"0"} cc @clee2000 @chauhang @penguinwu @zou3519 @ydwu4 @bdhirsh @Chillee @drisspg @yanboliang @BoyuanFeng
true
3,010,048,059
DISABLED test_builtin_score_mods_different_block_size_float32_score_mod3_BLOCK_SIZE2_cuda_float32 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "module: flaky-tests", "skipped", "oncall: pt2", "module: higher order operators", "module: pt2-dispatcher", "module: flex attention" ]
2
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_builtin_score_mods_different_block_size_float32_score_mod3_BLOCK_SIZE2_cuda_float32&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40909504426). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_builtin_score_mods_different_block_size_float32_score_mod3_BLOCK_SIZE2_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 1219, in test_builtin_score_mods_different_block_size self.run_test(score_mod, dtype, block_mask=block_mask, device=device) File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 509, in run_test golden_out.backward(backward_grad.to(torch.float64)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_tensor.py", line 648, in backward torch.autograd.backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 354, in backward _engine_run_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 679, in backward ) = flex_attention_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 320, in maybe_run_autograd return self(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 873, in sdpa_dense_backward grad_scores = grad_scores * scale torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU 0 has a total capacity of 22.05 GiB of which 718.12 MiB is free. Including non-PyTorch memory, this process has 21.34 GiB memory in use. Of the allocated memory 6.84 GiB is allocated by PyTorch, and 14.23 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) To execute this test, run the following from the base repo dir: python test/inductor/test_flex_attention.py TestFlexAttentionCUDA.test_builtin_score_mods_different_block_size_float32_score_mod3_BLOCK_SIZE2_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_flex_attention.py` ResponseTimeoutError: Response timeout for 5000ms, GET https://raw.githubusercontent.com/pytorch/pytorch/main/test/inductor/test_flex_attention.py 200 (connected: true, keepalive socket: false, socketHandledRequests: 1, socketHandledResponses: 1) headers: {"connection":"keep-alive","content-length":"202619","cache-control":"max-age=300","content-security-policy":"default-src 'none'; style-src 'unsafe-inline'; sandbox","content-type":"text/plain; charset=utf-8","etag":"\"b35816086647517b7d683a331f8b787d0c8e182c5620a6887a28f30e26065ae4\"","strict-transport-security":"max-age=31536000","x-content-type-options":"nosniff","x-frame-options":"deny","x-xss-protection":"1; mode=block","x-github-request-id":"293D:1DB346:246775:2FBBCA:68073AEE","accept-ranges":"bytes","date":"Tue, 22 Apr 2025 06:45:03 GMT","via":"1.1 varnish","x-served-by":"cache-sjc10020-SJC","x-cache":"HIT","x-cache-hits":"1","x-timer":"S1745304303.118866,VS0,VE216","vary":"Authorization,Accept-Encoding,Origin","access-control-allow-origin":"*","cross-origin-resource-policy":"cross-origin","x-fastly-request-id":"71c222560767cf0e88506d4af998df65d396a759","expires":"Tue, 22 Apr 2025 06:50:03 GMT","source-age":"0"} cc @clee2000 @chauhang @penguinwu @zou3519 @ydwu4 @bdhirsh @Chillee @drisspg @yanboliang @BoyuanFeng
true
3,010,048,058
DISABLED test_skip_odd_keys_bfloat16_cuda_bfloat16 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "module: flaky-tests", "skipped", "oncall: pt2", "module: higher order operators", "module: pt2-dispatcher", "module: flex attention" ]
1
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_skip_odd_keys_bfloat16_cuda_bfloat16&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40909504426). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_skip_odd_keys_bfloat16_cuda_bfloat16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 1445, in test_skip_odd_keys self.run_test(score_mod, dtype, device=device) File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 509, in run_test golden_out.backward(backward_grad.to(torch.float64)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_tensor.py", line 648, in backward torch.autograd.backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 354, in backward _engine_run_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 679, in backward ) = flex_attention_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 320, in maybe_run_autograd return self(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 873, in sdpa_dense_backward grad_scores = grad_scores * scale torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU 0 has a total capacity of 22.05 GiB of which 808.12 MiB is free. Including non-PyTorch memory, this process has 21.25 GiB memory in use. Of the allocated memory 6.89 GiB is allocated by PyTorch, and 14.08 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) To execute this test, run the following from the base repo dir: python test/inductor/test_flex_attention.py TestFlexAttentionCUDA.test_skip_odd_keys_bfloat16_cuda_bfloat16 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_flex_attention.py` ResponseTimeoutError: Response timeout for 5000ms, GET https://raw.githubusercontent.com/pytorch/pytorch/main/test/inductor/test_flex_attention.py 200 (connected: true, keepalive socket: false, socketHandledRequests: 1, socketHandledResponses: 1) headers: {"connection":"keep-alive","content-length":"202619","cache-control":"max-age=300","content-security-policy":"default-src 'none'; style-src 'unsafe-inline'; sandbox","content-type":"text/plain; charset=utf-8","etag":"\"b35816086647517b7d683a331f8b787d0c8e182c5620a6887a28f30e26065ae4\"","strict-transport-security":"max-age=31536000","x-content-type-options":"nosniff","x-frame-options":"deny","x-xss-protection":"1; mode=block","x-github-request-id":"293D:1DB346:246775:2FBBCA:68073AEE","accept-ranges":"bytes","date":"Tue, 22 Apr 2025 06:45:03 GMT","via":"1.1 varnish","x-served-by":"cache-sjc10075-SJC","x-cache":"HIT","x-cache-hits":"1","x-timer":"S1745304303.122203,VS0,VE213","vary":"Authorization,Accept-Encoding,Origin","access-control-allow-origin":"*","cross-origin-resource-policy":"cross-origin","x-fastly-request-id":"af0bd73ed2604f3fcd181542baa76097bf35e805","expires":"Tue, 22 Apr 2025 06:50:03 GMT","source-age":"0"} cc @clee2000 @chauhang @penguinwu @zou3519 @ydwu4 @bdhirsh @Chillee @drisspg @yanboliang @BoyuanFeng
true
3,010,047,232
DISABLED test_cublas_and_lt_reduced_precision_fp16_accumulate_cuda (__main__.TestMatmulCudaCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "module: cublas", "skipped" ]
4
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_cublas_and_lt_reduced_precision_fp16_accumulate_cuda&suite=TestMatmulCudaCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40909504436). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_cublas_and_lt_reduced_precision_fp16_accumulate_cuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/test_matmul_cuda.py", line 183, in test_cublas_and_lt_reduced_precision_fp16_accumulate out = torch.baddbmm(a, b, c) RuntimeError: CUDA error: CUBLAS_STATUS_INVALID_VALUE when calling `cublasLtMatmulAlgoGetHeuristic( ltHandle, computeDesc.descriptor(), Adesc.descriptor(), Bdesc.descriptor(), Cdesc.descriptor(), Cdesc.descriptor(), preference.descriptor(), 1, &heuristicResult, &returnedResult)` To execute this test, run the following from the base repo dir: python test/test_matmul_cuda.py TestMatmulCudaCUDA.test_cublas_and_lt_reduced_precision_fp16_accumulate_cuda This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_matmul_cuda.py` ResponseTimeoutError: Response timeout for 5000ms, GET https://raw.githubusercontent.com/pytorch/pytorch/main/test/test_matmul_cuda.py 200 (connected: true, keepalive socket: false, socketHandledRequests: 1, socketHandledResponses: 1) headers: {"connection":"keep-alive","content-length":"82572","cache-control":"max-age=300","content-security-policy":"default-src 'none'; style-src 'unsafe-inline'; sandbox","content-type":"text/plain; charset=utf-8","etag":"\"60cdeeb596d078346db904097b9b5a15014242587f2e1a6637f974cb29443593\"","strict-transport-security":"max-age=31536000","x-content-type-options":"nosniff","x-frame-options":"deny","x-xss-protection":"1; mode=block","x-github-request-id":"28E9:12A213:2598BB:30EDB3:68073AED","accept-ranges":"bytes","date":"Tue, 22 Apr 2025 06:45:03 GMT","via":"1.1 varnish","x-served-by":"cache-sjc1000103-SJC","x-cache":"MISS","x-cache-hits":"0","x-timer":"S1745304303.125742,VS0,VE193","vary":"Authorization,Accept-Encoding,Origin","access-control-allow-origin":"*","cross-origin-resource-policy":"cross-origin","x-fastly-request-id":"23f40ef721841e24aaf0fec1afdc86cbdd84d23c","expires":"Tue, 22 Apr 2025 06:50:03 GMT","source-age":"0"} cc @clee2000 @csarofeen @ptrblck @xwang233 @eqy
true
3,010,047,171
DISABLED test_builtin_score_mods_dynamic_float16_score_mask_mod7_cuda_float16 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "module: flaky-tests", "skipped", "oncall: pt2", "module: higher order operators", "module: pt2-dispatcher", "module: flex attention" ]
3
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_builtin_score_mods_dynamic_float16_score_mask_mod7_cuda_float16&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40909504426). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_builtin_score_mods_dynamic_float16_score_mask_mod7_cuda_float16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `inductor/test_flex_attention.py` ResponseTimeoutError: Response timeout for 5000ms, GET https://raw.githubusercontent.com/pytorch/pytorch/main/test/inductor/test_flex_attention.py 200 (connected: true, keepalive socket: false, socketHandledRequests: 1, socketHandledResponses: 1) headers: {"connection":"keep-alive","content-length":"202619","cache-control":"max-age=300","content-security-policy":"default-src 'none'; style-src 'unsafe-inline'; sandbox","content-type":"text/plain; charset=utf-8","etag":"\"b35816086647517b7d683a331f8b787d0c8e182c5620a6887a28f30e26065ae4\"","strict-transport-security":"max-age=31536000","x-content-type-options":"nosniff","x-frame-options":"deny","x-xss-protection":"1; mode=block","x-github-request-id":"293D:1DB346:246775:2FBBCA:68073AEE","accept-ranges":"bytes","date":"Tue, 22 Apr 2025 06:45:03 GMT","via":"1.1 varnish","x-served-by":"cache-sjc1000119-SJC","x-cache":"HIT","x-cache-hits":"1","x-timer":"S1745304303.123932,VS0,VE211","vary":"Authorization,Accept-Encoding,Origin","access-control-allow-origin":"*","cross-origin-resource-policy":"cross-origin","x-fastly-request-id":"661440a4a2ddc72240b75b4325b23ac5d5dc74ea","expires":"Tue, 22 Apr 2025 06:50:03 GMT","source-age":"0"} cc @clee2000 @chauhang @penguinwu @zou3519 @ydwu4 @bdhirsh @Chillee @drisspg @yanboliang @BoyuanFeng
true
3,009,950,458
Fix xrefs
shoumikhin
closed
[ "oncall: distributed", "oncall: jit", "Merged", "release notes: quantization", "fx", "release notes: distributed (torchelastic)" ]
3
CONTRIBUTOR
Fix existing cross references and removed old ones cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @EikanWang @jgong5 @wenzhe-nrv @sanchitintel @ezyang @SherlockNoMad
true
3,009,933,351
[Inductor][CPP] Fix Codegen Issue when Parallel Reduction under the vectorization
leslie-fang-intel
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151887 **Summary** Fixes [#151290](https://github.com/pytorch/pytorch/issues/151290) and [#151523](https://github.com/pytorch/pytorch/issues/151523), which are regressions introduced by [#144020](https://github.com/pytorch/pytorch/pull/144020). That PR enabled parallelization at the inner loop level. However, a currently unsupported case arises when parallel reduction occurs under the vectorization loop level, specifically in patterns like: ``` for vec_loop_level: do_parallel_reduction ``` In such cases, a temporary buffer `tmp_acc_array` is allocated for tail scalar kernels, and another temporary buffer `tmp_acc_array` is also defined for parallel reduction. This results in a conflict due to overlapping temporary buffers. This PR disables the problematic case to avoid the conflict until proper support is implemented. **Test Plan** ``` python test/inductor/test_flex_attention.py -k test_make_block_mask_cpu python test/inductor/test_cpu_repro.py -k test_parallel_reduction_vectorization ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,903,839
[Do Not Merge] update get start xpu
ZhaoqiongZ
open
[ "triaged", "open source", "topic: not user facing" ]
3
CONTRIBUTOR
update link and product name add print to print ```torch.xpu.is_available()``` result in code snippet for user not using command python
true
3,009,902,114
Remove as_tensor epilogue from float outputs
bobrenjc93
open
[ "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151885 * #151766 Fixes #151470 This was originally added as a nicety - ensuring all graphs maintain the invariant that ouputs are tensors. This, however, breaks simple graphs such as ``` def f(y): y_scalar = y.item() return y_scalar ``` since inductor only knows how to codegen tensors and sizevars (aka ints), it ends up barfing when doing the codegen of this epilogue. Notice in particular for the following example, it doesn't correctly codegen the float kernel argument. ``` cpp_fused_scalar_tensor_0 = async_compile.cpp_pybinding(['double*'], ''' extern "C" void kernel(double* out_ptr0) { { { { auto tmp0 = zuf0; auto tmp1 = c10::convert<double>(tmp0); out_ptr0[static_cast<int64_t>(0L)] = tmp1; } } } } ''') ``` Since this is just a nicety, let's get rid of it for now until we officially support floats in inductor. By doing this we stay in python when doing item() calls, resulting in same behavior for eager vs compile ``` def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (), ()) zuf0 = arg0_1.item() buf0 = None del arg0_1 return (zuf0, ) ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,009,842,421
The "eager" and "aot_eager" backends have different behavior for the expected gradient tensor of the torch.expend_as operator
yihuaxu
open
[ "triaged", "oncall: pt2", "module: aotdispatch", "module: pt2-dispatcher" ]
3
NONE
### 🐛 Describe the bug It can not get the expected grad of "expand_as" when used "aot_eager" backend. **Reproduce steps:** 1. install torch $pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu 2. run the below scripts: python expand_as_ut_cpu.py **Exception Result:** Traceback (most recent call last): File "/tmp/expand_as_ut_cpu.py", line 61, in <module> assert((result_bwd_0[0] is None) == (result_bwd_1[0] is None)) AssertionError **Basic Analyze:** To use aot_dispatch_autograd_graph to create fx graph with trace method will lost the relation between "self" and "other" tensor (replaced "expand_as" operator with "expand" + "shape"). **Before:** > /home/test/torch/lib/python3.10/site-packages/torch/_dynamo/repro/after_dynamo.py(150)__call__() -> compiled_gm = compiler_fn(gm, example_inputs) ![Image](https://github.com/user-attachments/assets/05185394-0964-4cfe-b573-62ea745d076a) **After:** > /home/test/torch/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/jit_compile_runtime_wrappers.py(818)aot_dispatch_autograd() -> disable_amp = torch._C._is_any_autocast_enabled() ![Image](https://github.com/user-attachments/assets/a4c0e860-5ecb-44b1-bb17-8b66018fb612) ### Error logs _No response_ ### Versions $ python collect_env.py Collecting environment information... PyTorch version: 2.8.0.dev20250421+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 160 On-line CPU(s) list: 0-159 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8380 CPU @ 2.30GHz CPU family: 6 Model: 106 Thread(s) per core: 2 Core(s) per socket: 40 Socket(s): 2 Stepping: 6 CPU max MHz: 3400.0000 CPU min MHz: 800.0000 BogoMIPS: 4600.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 3.8 MiB (80 instances) L1i cache: 2.5 MiB (80 instances) L2 cache: 100 MiB (80 instances) L3 cache: 120 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-39,80-119 NUMA node1 CPU(s): 40-79,120-159 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.1.2 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.8.0.dev20250421+cpu [pip3] torchaudio==2.6.0.dev20250421+cpu [pip3] torchvision==0.22.0.dev20250421+cpu [pip3] triton==3.2.0 [conda] Could not collect cc @chauhang @penguinwu @zou3519 @bdhirsh
true
3,009,803,440
[Easy] Remove redundant code
FFFrog
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
7
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151883 As the title stated.
true
3,009,785,997
Add upload of rc source code to download.pytorch.org
zklaus
closed
[ "open source", "topic: not user facing" ]
2
COLLABORATOR
Adds upload of pre-release source code to `create_release.yml`. Closes #124759 Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152098 * __->__ #151882
true
3,009,771,264
Update description for torch.random.fork_rng
FFFrog
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
4
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151881 As the title stated. Related ISSUE: https://github.com/pytorch/pytorch/issues/151784
true
3,009,733,122
[BE] Replace `std::runtime_error` with `TORCH_CHECK` [1/N]
shink
closed
[ "open source", "module: amp (automated mixed precision)", "Merged", "topic: not user facing" ]
7
CONTRIBUTOR
Part of: #148114 cc @mcarilli @ptrblck @leslie-fang-intel @jgong5 @albanD
true
3,009,725,255
Runtime assertion not generated in inductor for input unbacked symints
laithsakka
open
[ "triaged", "oncall: pt2", "module: dynamic shapes" ]
0
CONTRIBUTOR
``` import torch @torch.compile(fullgraph=True, dynamic=True, backend="inductor") def func(a, b, c): torch._check(a.size()[0]==b.size()[0]) return a * 10, c.item() a = torch.rand(1,1) b = torch.rand(2,2) c = torch.tensor([2]) torch._dynamo.decorators.mark_unbacked(a, 0) torch._dynamo.decorators.mark_unbacked(a, 1) torch._dynamo.decorators.mark_unbacked(b, 0) torch._dynamo.decorators.mark_unbacked(b, 1) with fresh_inductor_cache(): func(a, b, c) ``` cc @chauhang @penguinwu @ezyang @bobrenjc93
true
3,009,703,101
Potential error in calling scaled_dot_product_attention in pytorch/torch/testing/_internal/distributed/_tensor /common_dtensor.py ?
githubsgi
open
[ "oncall: distributed", "triaged", "module: dtensor", "module: context parallel" ]
2
CONTRIBUTOR
### 🐛 Describe the bug Wondering whether the following call at [here ](https://github.com/pytorch/pytorch/blob/a02eae8142ddd8fbf068a3e17fc0dd276d92fc78/torch/testing/_internal/distributed/_tensor/common_dtensor.py#L155) is correct . The mask is set to None and use_attn_mask is set to True. ` output = F.scaled_dot_product_attention( queries, keys, values, None, self.dropout_p if self.training else 0, self.use_attn_mask, ) ` Per these documentations, [here ](https://github.com/pytorch/pytorch/blob/40cf49d4607cf59453193321986eac34a8fbaa93/torch/nn/functional.py#L5806) and [here ](https://github.com/pytorch/pytorch/blob/40cf49d4607cf59453193321986eac34a8fbaa93/aten/src/ATen/native/transformers/attention.cpp#L718), there is no use_attn_mask argument for scaled_dot_product_attention. ### Versions version is master , but does not matter here. cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @tianyu-l @XilunWu
true
3,009,664,362
[dynamo][ci] Fix recently broken test
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
10
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151847 * __->__ #151877 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,009,660,009
[Inductor] define custom pass as list
Valentine233
open
[ "triaged", "oncall: pt2", "module: inductor" ]
3
COLLABORATOR
### 🐛 Describe the bug Custom passes are defined as a `CustomGraphPassType` or an optional `Callable Function`. So for now, we can only register one pass as the custom pass. ``` post_grad_custom_pre_pass: torch._inductor.custom_graph_pass.CustomGraphPassType = None post_grad_custom_post_pass: torch._inductor.custom_graph_pass.CustomGraphPassType = None joint_custom_pre_pass: Optional[Callable[[torch.fx.Graph], None]] = None joint_custom_post_pass: Optional[Callable[[torch.fx.Graph], None]] = None pre_grad_custom_pass: Optional[Callable[[torch.fx.graph.Graph], None]] = None ``` For example, if `joint_custom_pre_pass` is assigned two times, the latter pass will overwrite the previous one, without any warning. Hence, it is better to extend the custom pass to a list. ### Versions Pytorch: main branch cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
3,009,647,075
[cutlass backend] delay construction of cutlass presets to when called
henrylhtsang
closed
[ "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ci-no-td" ]
7
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151875 In hindsight, always constructing the dict is a bit silly. We should only construct it when we need it. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,644,647
The operator 'aten::_linalg_eigh.eigenvalues' is not currently implemented for the MPS device
PhysicsMizu
open
[ "triaged", "enhancement", "module: linear algebra", "actionable", "module: mps" ]
1
NONE
### 🚀 The feature, motivation and pitch I'm working on projects that require calculating eigenvalues repeatedly on an apple silicon device and would like _linalg_eigh to work for mps devices ### Alternatives _No response_ ### Additional context _No response_ cc @jianyuh @nikitaved @mruberry @walterddr @xwang233 @Lezcano @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
3,009,623,352
[Dynamo] Replace `unimplemented` with `unimplemented_v2` in `torch/_dynamo/variables/lists.py`
shink
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo" ]
19
CONTRIBUTOR
Part of #147913 Replace `unimplemented` with`unimplemented_v2` in `torch/_dynamo/variables/lists.py` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,009,615,927
[Testing] Enable `test_mutations_loop_fusion_mps`
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151872 * #151871 * #151869 By testing it against float32 rather than double dtype cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,613,384
[MPSInductor] Implement `atomic_add` store mode
malfet
closed
[ "Merged", "topic: bug fixes", "release notes: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151872 * __->__ #151871 * #151869 Which fixes `GPUTests.test_index_put2_mps`, `GPUTests. test__unsafe_masked_index_put_accumulate_mps` and dozen of scatter/gather tests that relied on atomic_add store mode cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,612,805
Add BufferDict works like ParameterDict
zeshengzong
open
[ "open source" ]
2
CONTRIBUTOR
Fixes #37386
true
3,009,599,111
[MPS] Extend index_put to half precision floats
malfet
closed
[ "Merged", "topic: improvements", "release notes: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151872 * #151871 * __->__ #151869 By reusing `c10/metal/atomic.h` This also fixes `GPUTests.test_index_put_fallback[12]_mps` that is unrolled by inductor, so no need for dedicated atomic_add support TODOs: - Get rid of indexing kernel and compute it directly when kernel is run - Simulate atomic_add for int64 types as series of int32 atomic-add-and-fetch - Setup tolerances correctly to pass float16/bfloat16 tests (as CPU always takes sequential strategy) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,599,058
[Metal][BE] Move atomic ops to c10/metal/atomic.h
malfet
closed
[ "Merged", "release notes: mps", "ciflow/mps" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151872 * #151871 * #151869 * __->__ #151868 To be reused from indexing and MPSInductor implementaiton of atomic_add stores Added wrapper for `metal::atomic<int>`(to be used by followup PR)
true
3,009,582,609
DISABLED test_builtin_score_mods_different_block_size_float32_score_mod1_BLOCK_SIZE2_cuda_float32 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
1
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_builtin_score_mods_different_block_size_float32_score_mod1_BLOCK_SIZE2_cuda_float32&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40900492673). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_builtin_score_mods_different_block_size_float32_score_mod1_BLOCK_SIZE2_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 1201, in test_builtin_score_mods_different_block_size self.run_test(score_mod, dtype, block_mask=block_mask, device=device) File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 491, in run_test golden_out.backward(backward_grad.to(torch.float64)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_tensor.py", line 648, in backward torch.autograd.backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 354, in backward _engine_run_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 679, in backward ) = flex_attention_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 320, in maybe_run_autograd return self(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 873, in sdpa_dense_backward grad_scores = grad_scores * scale torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU 0 has a total capacity of 22.05 GiB of which 718.12 MiB is free. Including non-PyTorch memory, this process has 21.34 GiB memory in use. Of the allocated memory 6.84 GiB is allocated by PyTorch, and 14.23 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) To execute this test, run the following from the base repo dir: python test/inductor/test_flex_attention.py TestFlexAttentionCUDA.test_builtin_score_mods_different_block_size_float32_score_mod1_BLOCK_SIZE2_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,582,483
DISABLED test_builtin_score_mods_different_block_size_float32_score_mod0_BLOCK_SIZE2_cuda_float32 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
2
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_builtin_score_mods_different_block_size_float32_score_mod0_BLOCK_SIZE2_cuda_float32&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40900463508). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_builtin_score_mods_different_block_size_float32_score_mod0_BLOCK_SIZE2_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 1201, in test_builtin_score_mods_different_block_size self.run_test(score_mod, dtype, block_mask=block_mask, device=device) File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 491, in run_test golden_out.backward(backward_grad.to(torch.float64)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_tensor.py", line 648, in backward torch.autograd.backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 354, in backward _engine_run_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 679, in backward ) = flex_attention_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 320, in maybe_run_autograd return self(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 881, in sdpa_dense_backward grad_scores = torch.where( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/_trace_wrapped_higher_order_op.py", line 142, in __torch_function__ return func(*args, **(kwargs or {})) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU 0 has a total capacity of 22.05 GiB of which 864.12 MiB is free. Including non-PyTorch memory, this process has 21.19 GiB memory in use. Of the allocated memory 6.78 GiB is allocated by PyTorch, and 14.15 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) To execute this test, run the following from the base repo dir: python test/inductor/test_flex_attention.py TestFlexAttentionCUDA.test_builtin_score_mods_different_block_size_float32_score_mod0_BLOCK_SIZE2_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,582,482
DISABLED test_builtin_score_mods_different_block_size_float32_score_mod2_BLOCK_SIZE_128_cuda_float32 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
1
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_builtin_score_mods_different_block_size_float32_score_mod2_BLOCK_SIZE_128_cuda_float32&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40900463508). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_builtin_score_mods_different_block_size_float32_score_mod2_BLOCK_SIZE_128_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 1201, in test_builtin_score_mods_different_block_size self.run_test(score_mod, dtype, block_mask=block_mask, device=device) File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 491, in run_test golden_out.backward(backward_grad.to(torch.float64)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_tensor.py", line 648, in backward torch.autograd.backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 354, in backward _engine_run_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 679, in backward ) = flex_attention_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 320, in maybe_run_autograd return self(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 870, in sdpa_dense_backward grad_scores, _, _, _, _, *grad_score_mod_captured = joint_score_mod( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/apis.py", line 202, in wrapped return vmap_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 334, in vmap_impl return _flat_vmap( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 484, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/apis.py", line 202, in wrapped return vmap_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 334, in vmap_impl return _flat_vmap( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 484, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/apis.py", line 202, in wrapped return vmap_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 334, in vmap_impl return _flat_vmap( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 484, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/apis.py", line 202, in wrapped return vmap_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 334, in vmap_impl return _flat_vmap( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 484, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 833, in call_wrapped return self._wrapped_call(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 409, in __call__ raise e File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 396, in __call__ return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc] File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "<eval_with_key>.1013 from /opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/experimental/proxy_tensor.py:1265 in wrapped", line 7, in forward mul_2 = torch.ops.aten.mul.Tensor(arg5_1, arg0_1); arg5_1 = arg0_1 = None File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 806, in __call__ return self._op(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/_trace_wrapped_higher_order_op.py", line 142, in __torch_function__ return func(*args, **(kwargs or {})) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 806, in __call__ return self._op(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU 0 has a total capacity of 22.05 GiB of which 452.12 MiB is free. Including non-PyTorch memory, this process has 21.60 GiB memory in use. Of the allocated memory 6.77 GiB is allocated by PyTorch, and 14.57 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) To execute this test, run the following from the base repo dir: python test/inductor/test_flex_attention.py TestFlexAttentionCUDA.test_builtin_score_mods_different_block_size_float32_score_mod2_BLOCK_SIZE_128_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,582,270
DISABLED test_builtin_score_mods_different_block_size_float16_score_mod6_BLOCK_SIZE2_cuda_float16 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
2
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_builtin_score_mods_different_block_size_float16_score_mod6_BLOCK_SIZE2_cuda_float16&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40900463508). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_builtin_score_mods_different_block_size_float16_score_mod6_BLOCK_SIZE2_cuda_float16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 1201, in test_builtin_score_mods_different_block_size self.run_test(score_mod, dtype, block_mask=block_mask, device=device) File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 491, in run_test golden_out.backward(backward_grad.to(torch.float64)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_tensor.py", line 648, in backward torch.autograd.backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 354, in backward _engine_run_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 679, in backward ) = flex_attention_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 320, in maybe_run_autograd return self(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 870, in sdpa_dense_backward grad_scores, _, _, _, _, *grad_score_mod_captured = joint_score_mod( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/apis.py", line 202, in wrapped return vmap_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 334, in vmap_impl return _flat_vmap( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 484, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/apis.py", line 202, in wrapped return vmap_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 334, in vmap_impl return _flat_vmap( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 484, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/apis.py", line 202, in wrapped return vmap_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 334, in vmap_impl return _flat_vmap( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 484, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/apis.py", line 202, in wrapped return vmap_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 334, in vmap_impl return _flat_vmap( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 484, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 833, in call_wrapped return self._wrapped_call(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 409, in __call__ raise e File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 396, in __call__ return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc] File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "<eval_with_key>.905 from /opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/experimental/proxy_tensor.py:1265 in wrapped", line 9, in forward where = torch.ops.aten.where.self(ge, add, scalar_tensor); add = scalar_tensor = where = None File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 806, in __call__ return self._op(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/_trace_wrapped_higher_order_op.py", line 142, in __torch_function__ return func(*args, **(kwargs or {})) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 806, in __call__ return self._op(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU 0 has a total capacity of 22.05 GiB of which 588.12 MiB is free. Including non-PyTorch memory, this process has 21.46 GiB memory in use. Of the allocated memory 6.70 GiB is allocated by PyTorch, and 14.50 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) To execute this test, run the following from the base repo dir: python test/inductor/test_flex_attention.py TestFlexAttentionCUDA.test_builtin_score_mods_different_block_size_float16_score_mod6_BLOCK_SIZE2_cuda_float16 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,582,267
DISABLED test_non_equal_head_dims_score_mod4_float32_head_dims0_cuda_float32 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
2
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_non_equal_head_dims_score_mod4_float32_head_dims0_cuda_float32&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40900463508). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_non_equal_head_dims_score_mod4_float32_head_dims0_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,582,141
DISABLED test_cublas_addmm_size_1000_cuda_float16 (__main__.TestMatmulCudaCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "module: linear algebra", "skipped" ]
3
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_cublas_addmm_size_1000_cuda_float16&suite=TestMatmulCudaCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40900492676). Over the past 3 hours, it has been determined flaky in 4 workflow(s) with 8 failures and 4 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_cublas_addmm_size_1000_cuda_float16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_matmul_cuda.py` cc @clee2000 @jianyuh @nikitaved @mruberry @walterddr @xwang233 @Lezcano
true
3,009,582,093
DISABLED test_event_elapsed_time (__main__.TestOpenReg)
pytorch-bot[bot]
open
[ "module: windows", "module: cpp", "triaged", "module: flaky-tests", "skipped" ]
2
NONE
Platforms: win, windows This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_event_elapsed_time&suite=TestOpenReg&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40900968612). Over the past 3 hours, it has been determined flaky in 4 workflow(s) with 6 failures and 4 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_event_elapsed_time` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "C:\actions-runner\_work\pytorch\pytorch\test\test_openreg.py", line 133, in test_event_elapsed_time self.assertTrue(ms > 0) File "C:\Jenkins\Miniconda3\lib\unittest\case.py", line 688, in assertTrue raise self.failureException(msg) AssertionError: False is not true To execute this test, run the following from the base repo dir: python test\test_openreg.py TestOpenReg.test_event_elapsed_time This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_openreg.py` cc @peterjc123 @mszhanyi @skyline75489 @nbcsm @iremyux @Blackhex @jbschlosser @clee2000
true
3,009,577,914
[aot][ca] save bw_module in AOTAutogradCache
xmfan
open
[ "Merged", "Reverted", "ciflow/trunk", "release notes: composability", "module: dynamo", "ciflow/inductor", "merging", "module: compiled autograd", "ci-no-td" ]
18
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151860 * #152119 * #151962 * #151731 Compiled Autograd retraces AOT's bw_module at backward runtime into a larger graph, and today this runs into an issue on warm cache runs because the bw_module is not restored. This PR adds it to the cache, by first stripping it bare from unserializable metadata. I also intentionally differentiate the cached and non-cached versions to avoid accidental attempts of AOT compilation with a restored bw_module (would probably crash). Note that since the cache entry may be used by runs that use compiled autograd and runs that do not, we need to cache both the lowered backward and the bw_module. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,009,561,072
[inductor] handle offset in ReinterpretView for alignment
shunting314
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
5
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151859 * #151841 Fix https://github.com/pytorch/pytorch/issues/151589 It's interesting that the Q4_K dequantization example in the referred GH issue does not crash even if Inductor pass triton the wrong alignment information. I dig this a bit. The main reason is, there are 2 things in triton that decides the vectorization size 1. alignement 2. max number of contiguous elements a thread need to process Here is the triton code that decides vectorization size [link](https://github.com/triton-lang/triton/blob/c5fed8e1ca66c1e04b773ffa9d4e49d481fc43ad/third_party/nvidia/lib/TritonNVIDIAGPUToLLVM/LoadStoreOpToLLVM.cpp#L147-L157), and here is the triton code that considers contiguity for vectorization [link](https://github.com/triton-lang/triton/blob/c5fed8e1ca66c1e04b773ffa9d4e49d481fc43ad/lib/Analysis/AxisInfo.cpp#L1250-L1269) When Inductor wrongly tell triton that a unaligned tensor is aligned, Triton may not do vectorization (or not do full vectorization) because of the second restriction. Check this test: ``` @parametrize( "size", ( 128, 1024, 1024 * 1024, ), ) def test_slice_view_dtype(self, size): offset = 1 def f(x): return x[2:].view(dtype=torch.float32) + 1 x = torch.randn((size + offset) * 2, dtype=torch.bfloat16, device=self.device) self.common(f, (x,), reference_in_float=False) ``` Before the fix, Inductor would tell Triton that the output of aten.view.dtype tensor is aligned even though it's not. That tensor will be passed to the triton kernel for the aten.add. Triton may do different vectorization decision depending on the tensor size 1. when size = 128, triton pick ld.global.b32 to load data from global memory 2. when size = 1024, triton uses ld.global.v2.b32 4. when size = 1024 * 1024, triton uses ld.global.v4.b32 So whether wrong alignment metadata causes issue depends on if triton picks the vectorized instructions. The latter depends on the triton config (block size) decided by inductor and triton internal logic (how they assign elements to each thread). We'd better to make sure Inductor always generate correct metadata to make sure such hidden issues does not turn into crash later. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,560,489
construcing DTensor on a 2D device mesh SIGTERMs
wangkuiyi
open
[ "oncall: distributed", "triaged", "module: dtensor" ]
19
CONTRIBUTOR
### 🐛 Describe the bug I am working with @wanchaol on drafting a tutorial about DTensor https://wkyi.quip.com/YVhXArYw2a5c/PyTorch-DTensor-From-Zero-To-Hero You can run all examples in the above Quip doc using the same command line: ```shell OMP_NUM_THREADS=1 torchrun --nproc_per_node=4 a.py ``` All the examples work well on a Runpod.ai pod with four GPUs except for the last one, whose complete source code is attached as the following: ``` # OMP_NUM_THREADS=1 torchrun --nproc_per_node=4 a.py import os import torch import torch.distributed as dist import contextlib @contextlib.contextmanager def distributed_context(): try: local_rank = int(os.environ["LOCAL_RANK"]) local_device = torch.device("cuda", local_rank) dist.init_process_group(backend="nccl", device_id=local_device) yield local_device finally: dist.barrier() dist.destroy_process_group() print(f"Rank {local_rank} finished") def main(local_device): import torch.distributed.tensor.debug import torch.distributed.tensor as dt local_rank = local_device.index mesh = dist.init_device_mesh("cuda", (2, 2), mesh_dim_names=["dp", "tp"]) placements = [dt.Shard(dim=0), dt.Shard(dim=1)] dtensor = dt.full((4, 4), 1.23, device_mesh=mesh, placements=placements) print(f"Rank {local_rank} created \n{dtensor}") dt.debug.visualize_sharding(dtensor) if __name__ == "__main__": with distributed_context() as local_device: main(local_device) ``` Running it gave me the following errors ``` root@42cc9eef3ad3:/w# OMP_NUM_THREADS=1 torchrun --nproc_per_node=4 a.py Rank 0 created DTensor(local_tensor=tensor([[1.2300, 1.2300], [1.2300, 1.2300]], device='cuda:0'), device_mesh=DeviceMesh('cuda', [[0, 1], [2, 3]], mesh_dim_names=('dp', 'tp')), placements=(Shard(dim=0), Shard(dim=1))) Col 0-1 Col 2-3 ------- --------- --------- Row 0-1 cuda:0 cuda:1 Row 2-3 cuda:2 cuda:3 Rank 1 created DTensor(local_tensor=tensor([[1.2300, 1.2300], [1.2300, 1.2300]], device='cuda:0'), device_mesh=DeviceMesh('cuda', [[0, 1], [2, 3]], mesh_dim_names=('dp', 'tp')), placements=(Shard(dim=0), Shard(dim=1))) Rank 2 created DTensor(local_tensor=tensor([[1.2300, 1.2300], [1.2300, 1.2300]], device='cuda:0'), device_mesh=DeviceMesh('cuda', [[0, 1], [2, 3]], mesh_dim_names=('dp', 'tp')), placements=(Shard(dim=0), Shard(dim=1))) Rank 3 created DTensor(local_tensor=tensor([[1.2300, 1.2300], [1.2300, 1.2300]], device='cuda:0'), device_mesh=DeviceMesh('cuda', [[0, 1], [2, 3]], mesh_dim_names=('dp', 'tp')), placements=(Shard(dim=0), Shard(dim=1))) W0422 00:38:25.921000 3596 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3599 closing signal SIGTERM W0422 00:38:25.922000 3596 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3600 closing signal SIGTERM E0422 00:38:26.086000 3596 torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: -11) local_rank: 0 (pid: 3598) of binary: /usr/bin/python Traceback (most recent call last): File "/usr/local/bin/torchrun", line 8, in <module> sys.exit(main()) ^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/run.py", line 892, in main run(args) File "/usr/local/lib/python3.11/dist-packages/torch/distributed/run.py", line 883, in run elastic_launch( File "/usr/local/lib/python3.11/dist-packages/torch/distributed/launcher/api.py", line 139, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/launcher/api.py", line 270, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ====================================================== a.py FAILED ------------------------------------------------------ Failures: [1]: time : 2025-04-22_00:38:25 host : 42cc9eef3ad3 rank : 3 (local_rank: 3) exitcode : -11 (pid: 3601) error_file: <N/A> traceback : Signal 11 (SIGSEGV) received by PID 3601 ------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-04-22_00:38:25 host : 42cc9eef3ad3 rank : 0 (local_rank: 0) exitcode : -11 (pid: 3598) error_file: <N/A> traceback : Signal 11 (SIGSEGV) received by PID 3598 ====================================================== ``` ### Versions Version 2.8.0 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @tianyu-l @XilunWu @chauhang @penguinwu
true
3,009,527,970
Proposal: Beautify torch.distributed.tensor.debug.visualize_sharding
wangkuiyi
closed
[ "oncall: distributed", "triaged", "module: dtensor" ]
3
CONTRIBUTOR
### 🚀 The feature, motivation and pitch `jax.debug.visualize_array_sharding` prints colorized result in terminals or notebooks like the following (cf. [my LinkedIn post](https://www.linkedin.com/posts/yidewang_i-coauthored-this-notebook-with-wanchao-activity-7319523841595076608-bcm3?utm_source=share&utm_medium=member_desktop&rcm=ACoAAALdDjQBRj38KfRE5-nY27SqXVIIS8171vE)): ![](https://media.licdn.com/dms/image/v2/D4D22AQG1F7t0IYBW9w/feedshare-shrink_2048_1536/B4DZZQsI_HHwAo-/0/1745110472692?e=1748476800&v=beta&t=ME6fzgX4QtnxDaYujEmPGsDnMnWZXjHptQzk9eVVFI0) `torch.distributed.tensor.debug.visualize_sharding` prints the following (cf. [a DTensor tutorial draft](https://wkyi.quip.com/YVhXArYw2a5c/PyTorch-Distributed-From-Zero-To-Hero)): <img width="515" alt="Image" src="https://github.com/user-attachments/assets/7a974d53-41b7-4360-8c55-ff49a0e8c275" /> Is it a good idea to make the visualization of DTensors closer to that of JAX arrays? cc. @wanchaol ### Alternatives _No response_ ### Additional context _No response_ cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @tianyu-l @XilunWu
true
3,009,512,171
[draft export] normalize sympy expressions for data-dependent counting
pianpwk
open
[ "release notes: export" ]
1
CONTRIBUTOR
Introduces expression normalization scheme so we don't deduplicate different framework-code expressions with same user-code stack.
true
3,009,504,503
Better error msg for too big to optimize
yushangdi
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
4
CONTRIBUTOR
Summary: In the "too big to optimize" error message, tell the user that they should use the torch._inductor.config.aot_inductor.compile_wrapper_opt_level = 'O0' flag Test Plan: This is not added to unit test cases because it runs for a little longer time before the expected failure ``` def test_runtime_checks_error_msg(self): with torch.library._scoped_library("mylib", "FRAGMENT") as lib: torch.library.define( "mylib::foo", "(Tensor a, Tensor b) -> Tensor", tags=torch.Tag.pt2_compliant_tag, lib=lib, ) torch.library.impl("mylib::foo", "cpu", lib=lib) def foo(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: return a + b torch.library.impl_abstract("mylib::foo", lib=lib) def foo_fake_impl(a, b): return a + b class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, x): for i in range(10000): x = torch.ops.mylib.foo(x, x) return x inputs = (torch.ones(8, 8, 8), ) model = Model() with self.assertRaisesRegex(Exception, "torch._inductor.config.aot_inductor.compile_wrapper_opt_level"): with torch.no_grad(): AOTIRunnerUtil.compile( model, inputs, ) ``` Differential Revision: D72323380 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,496,585
Add assert_on_assumption on to guard_or_true, and guard_or_false
laithsakka
open
[ "release notes: fx", "fx", "module: inductor", "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * (to be filled) One thing that we will be doing often is asserting on the assumption made by guard_or_false, and guard_or_true. For example in expand if the input ==-1. we will assume its not -1 and want to add a runtime assertion that it is not -1 only when we do such assumptions. similarly this will be used for broadcast checks. and some other locations. where we do not want to silently deviate. cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,496,519
[DO NOT REVIEW] PIAN PR PLACE HOLDER
laithsakka
closed
[]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151854 * __->__ #151853 * #151852 * #151041 * #151038 * #151023
true
3,009,496,454
[DO NOT REVIEW] PIAN PR PLACE HOLDER
laithsakka
closed
[ "ciflow/trunk", "release notes: fx", "fx", "ciflow/inductor" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151854 * #151853 * __->__ #151852 * #151041 * #151038 * #151023 Summary: Differential Revision: D72483950 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
3,009,478,741
[MTIA] Store original file path and line number that FX op derives from. Print the file path and line number for each op in IR printing.
patrick-toulme
closed
[ "fb-exported", "fx", "release notes: export" ]
12
NONE
Summary: When tracing with torch export to FX IR, we need to keep track of the original file path and line number that the FX op originates from in the user code. We then need to print this at the far right of the Node in IR printing. Without a mapping of user PyTorch code to FX IR, it is very difficult to debug the IR, especially in cases where there are mysterious ops appearing. I also add support for propagating the line number and file path even with decomposition. Side note: I find it interesting that decomposition actually produces a second traced ExportedProgram. Why do we not just run decomposition during the first tracing? Jax/XLA currently offers this to users, and it is extremely useful for debug. **We default the printing to not print debug file source / line info by default.** IR Example for Llama: **Scroll to the right** ``` %div_tensor_12 : f16[1, 32, 2960, 2960][#users=1] = call_function[target=aten.div.Tensor](kwargs = {input: %reshape_default_906, other: 11.313708498984761}) file_path = transformers/models/llama/modeling_llama.py line_number = 419 %slice_tensor_229 : f16[1, 1, 2960, 2960][#users=1] = call_function[target=aten.slice.Tensor](kwargs = {input: %clone_default_152, dim: 0, start: 0, end: 1, step: 1}) file_path = transformers/models/llama/modeling_llama.py line_number = 423 %slice_tensor_230 : f16[1, 1, 2960, 2960][#users=1] = call_function[target=aten.slice.Tensor](kwargs = {input: %slice_tensor_229, dim: 1, start: 0, end: 1, step: 1}) file_path = transformers/models/llama/modeling_llama.py line_number = 423 %slice_tensor_231 : f16[1, 1, 2960, 2960][#users=1] = call_function[target=aten.slice.Tensor](kwargs = {input: %slice_tensor_230, dim: 2, start: 0, end: 2960, step: 1}) file_path = transformers/models/llama/modeling_llama.py line_number = 423 %slice_tensor_232 : f16[1, 1, 2960, 2960][#users=1] = call_function[target=aten.slice.Tensor](kwargs = {input: %slice_tensor_231, dim: 3, start: 0, end: 2960, step: 1}) file_path = transformers/models/llama/modeling_llama.py line_number = 423 %add_tensor_135 : f16[1, 32, 2960, 2960][#users=1] = call_function[target=aten.add.Tensor](kwargs = {input: %div_tensor_12, other: %slice_tensor_232, alpha: 1}) file_path = transformers/models/llama/modeling_llama.py line_number = 423 %_to_copy_default_194 : f32[1, 32, 2960, 2960][#users=1] = call_function[target=aten._to_copy.default](kwargs = {input: %add_tensor_135, dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: None, non_blocking: False, memory_format: None}) file_path = transformers/models/llama/modeling_llama.py line_number = 426 %_softmax_default_12 : f32[1, 32, 2960, 2960][#users=1] = call_function[target=aten._softmax.default](kwargs = {input: %_to_copy_default_194, dim: -1, half_to_float: False}) file_path = transformers/models/llama/modeling_llama.py line_number = 426 %_to_copy_default_195 : f16[1, 32, 2960, 2960][#users=1] = call_function[target=aten._to_copy.default](kwargs = {input: %_softmax_default_12, dtype: torch.float16, layout: None, device: None, pin_memory: None, non_blocking: False, memory_format: None}) file_path = transformers/models/llama/modeling_llama.py line_number = 426 %clone_default_74 : f16[1, 32, 2960, 2960][#users=1] = call_function[target=aten.clone.default](kwargs = {input: %_to_copy_default_195, memory_format: None}) file_path = transformers/models/llama/modeling_llama.py line_number = 427 %repeat_default_173 : f16[1, 32, 2960, 2960][#users=1] = call_function[target=aten.repeat.default](kwargs = {input: %clone_default_74, repeats: [1, 1, 1, 1]}) file_path = transformers/models/llama/modeling_llama.py line_number = 428 %reshape_default_907 : f16[32, 2960, 2960][#users=1] = call_function[target=aten.reshape.default](kwargs = {input: %repeat_default_173, shape: [32, 2960, 2960]}) file_path = transformers/models/llama/modeling_llama.py line_number = 428 %repeat_default_174 : f16[1, 32, 2960, 128][#users=1] = call_function[target=aten.repeat.default](kwargs = {input: %reshape_default_903, repeats: [1, 1, 1, 1]}) file_path = transformers/models/llama/modeling_llama.py line_number = 428 %reshape_default_908 : f16[32, 2960, 128][#users=1] = call_function[target=aten.reshape.default](kwargs = {input: %repeat_default_174, shape: [32, 2960, 128]}) file_path = transformers/models/llama/modeling_llama.py line_number = 428 %bmm_default_72 : f16[32, 2960, 128][#users=1] = call_function[target=aten.bmm.default](kwargs = {input: %reshape_default_907, mat2: %reshape_default_908}) file_path = transformers/models/llama/modeling_llama.py line_number = 428 %reshape_default_909 : f16[1, 32, 2960, 128][#users=1] = call_function[target=aten.reshape.default](kwargs = {input: %bmm_default_72, shape: [1, 32, 2960, 128]}) file_path = transformers/models/llama/modeling_llama.py line_number = 428 %permute_default_453 : f16[1, 2960, 32, 128][#users=1] = call_function[target=aten.permute.default](kwargs = {input: %reshape_default_909, dims: [0, 2, 1, 3]}) file_path = transformers/models/llama/modeling_llama.py line_number = 436 %clone_default_75 : f16[1, 2960, 32, 128][#users=1] = call_function[target=aten.clone.default](kwargs = {input: %permute_default_453, memory_format: torch.contiguous_format}) file_path = transformers/models/llama/modeling_llama.py line_number = 436 %reshape_default_910 : f16[1, 2960, 4096][#users=1] = call_function[target=aten.reshape.default](kwargs = {input: %clone_default_75, shape: [1, 2960, -1]}) file_path = transformers/models/llama/modeling_llama.py line_number = 438 %permute_default_454 : f16[4096, 4096][#users=1] = call_function[target=aten.permute.default](kwargs = {input: %model_model_model_layers_12_self_attn_o_proj_weight, dims: [1, 0]}) file_path = transformers/models/llama/modeling_llama.py line_number = 445 %reshape_default_911 : f16[2960, 4096][#users=1] = call_function[target=aten.reshape.default](kwargs = {input: %reshape_default_910, shape: [2960, 4096]}) file_path = transformers/models/llama/modeling_llama.py line_number = 445 %mm_default_87 : f16[2960, 4096][#users=1] = call_function[target=aten.mm.default](kwargs = {input: %reshape_default_911, mat2: %permute_default_454}) file_path = transformers/models/llama/modeling_llama.py line_number = 445 %reshape_default_912 : f16[1, 2960, 4096][#users=1] = call_function[target=aten.reshape.default](kwargs = {input: %mm_default_87, shape: [1, 2960, 4096]}) file_path = transformers/models/llama/modeling_llama.py line_number = 445 %add_tensor_136 : f16[1, 2960, 4096][#users=2] = call_function[target=aten.add.Tensor](kwargs = {input: %add_tensor_131, other: %reshape_default_912, alpha: 1}) file_path = transformers/models/llama/modeling_llama.py line_number = 740 ``` Test Plan: Added unit test Differential Revision: D73346635 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
3,009,469,783
Rewrite the guts of torch::jit::Lexer to speed it up
swolchok
closed
[ "oncall: jit", "fb-exported", "Merged", "Reverted", "ciflow/trunk", "release notes: jit", "ci-no-td" ]
17
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151850 * #151849 * #151810 * #151807 * #151806 * #151805 * #151804 * #151803 * #151802 * #151801 The trie-based approach was, apparently, not efficient. This incidentally fixes a bug where "not inp" and "is note" were lexed incorrectly; see test_lexer.cpp update. Differential Revision: [D73129443](https://our.internmc.facebook.com/intern/diff/D73129443/) cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
3,009,469,734
Add simple direct C++ tests for torch::jit::Lexer
swolchok
closed
[ "oncall: jit", "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
10
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151850 * __->__ #151849 * #151810 * #151807 * #151806 * #151805 * #151804 * #151803 * #151802 * #151801 We have test_jit.py, but given that I'm working on significant changes to the lexer, it seems nice to have direct C++ tests. (Also, writing the tests caught a pair of related bugs; see the two tests with "Bug" in their name. The rewrite will fix them.) Differential Revision: [D73402367](https://our.internmc.facebook.com/intern/diff/D73402367/) cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
3,009,463,990
[MKLDNN] Check that strides are positive
malfet
closed
[ "module: cpu", "module: mkldnn", "Merged", "ciflow/trunk", "release notes: nn", "topic: bug fixes", "ciflow/linux-aarch64" ]
5
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151848 For pooling ops. Prevents division-by-zero when argument is wrong Fixes https://github.com/pytorch/pytorch/issues/149274 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @jerryzh168 @gujinghui @PenghuiCheng @jianyuh @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @snadampal
true
3,009,444,879
[Dynamo] Use LazyVariableTracker in base VT
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor", "keep-going", "ci-no-td" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151847 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,009,440,566
[FlexAttention] Fix device test instantation
drisspg
closed
[ "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ciflow/rocm", "ci-no-td" ]
14
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151959 * __->__ #151846 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,402,399
[reland][ROCm] remove caffe2 from hipify
jeffdaily
open
[ "module: rocm", "triaged", "open source", "release notes: rocm", "skip-pr-sanity-checks", "module: inductor", "ciflow/inductor", "ciflow/rocm", "ci-no-td", "ciflow/inductor-rocm" ]
2
COLLABORATOR
Reland of https://github.com/pytorch/pytorch/pull/137157. Needs https://github.com/pytorch/FBGEMM/pull/4028 to be merged first to keep FBGEMM functional. - Remove all "MasqueradingAsCUDA" files and classes. - Do not rename "CUDA" classes to "HIP". cc @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @albanD @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,393,866
Add scripts to check xrefs and urls
shoumikhin
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
12
CONTRIBUTOR
Traverses the docs and code to find any broken links
true
3,009,387,522
[EZ/Profiler] Update Submodule
sraikund16
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
4
CONTRIBUTOR
Summary: Update to https://github.com/pytorch/kineto/commit/d82680bbd44f872aa04394fa5bba23a7992f9fa4 Test Plan: CI Differential Revision: D73397323
true
3,009,377,863
[export] Enable symint inputs for AdditionalInputs and ShapesCollection
angelayi
closed
[ "Merged", "ciflow/trunk", "ciflow/inductor", "release notes: export" ]
3
CONTRIBUTOR
With `AdditionalInputs`, the behavior is the same as with tensors: ```python class M(torch.nn.Module): def forward(self, x, y): return x + y additional_inputs = torch.export.AdditionalInputs() additional_inputs.add((5, 5)) additional_inputs.add((3, 5)) additional_inputs.add((5, 4)) ep = torch.export.export( M(), (6, 7), dynamic_shapes=additional_inputs, strict=False ) ``` With `ShapesCollection`, we now need to wrap integer inputs as `_IntWrapper` so that we can have a unique identifier for each integer input. ```python class M(torch.nn.Module): def forward(self, x, y): return x + y from torch.export.dynamic_shapes import _IntWrapper args = (_IntWrapper(5), _IntWrapper(5)) # Or we can do `args = pytree.tree_map_only(int, lambda a: _IntWrapper(a), orig_args)` shapes_collection = torch.export.ShapesCollection() shapes_collection[args[0]] = Dim.DYNAMIC shapes_collection[args[1]] = Dim.DYNAMIC ep = torch.export.export( M(), args, dynamic_shapes=shapes_collection, strict=False ) ```
true
3,009,362,373
[Inductor] move alignment tests to a separate file
shunting314
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151859 * __->__ #151841 This is a pure code movement. test_torchinductor.py is already 15K lines of code. Move alignment related tests I added recently to a separate file. I need add more such kind of tests. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,361,835
DISABLED test_builtin_score_mods_different_block_size_float16_score_mod6_BLOCK_SIZE3_cuda_float16 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
2
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_builtin_score_mods_different_block_size_float16_score_mod6_BLOCK_SIZE3_cuda_float16&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40883373165). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_builtin_score_mods_different_block_size_float16_score_mod6_BLOCK_SIZE3_cuda_float16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 1201, in test_builtin_score_mods_different_block_size self.run_test(score_mod, dtype, block_mask=block_mask, device=device) File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 491, in run_test golden_out.backward(backward_grad.to(torch.float64)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_tensor.py", line 648, in backward torch.autograd.backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 354, in backward _engine_run_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 679, in backward ) = flex_attention_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 490, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 486, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 346, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 320, in maybe_run_autograd return self(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 490, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 486, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 346, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 870, in sdpa_dense_backward grad_scores, _, _, _, _, *grad_score_mod_captured = joint_score_mod( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/apis.py", line 202, in wrapped return vmap_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 334, in vmap_impl return _flat_vmap( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 484, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/apis.py", line 202, in wrapped return vmap_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 334, in vmap_impl return _flat_vmap( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 484, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/apis.py", line 202, in wrapped return vmap_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 334, in vmap_impl return _flat_vmap( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 484, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/apis.py", line 202, in wrapped return vmap_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 334, in vmap_impl return _flat_vmap( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 484, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 833, in call_wrapped return self._wrapped_call(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 409, in __call__ raise e File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 396, in __call__ return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc] File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "<eval_with_key>.1013 from /opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/experimental/proxy_tensor.py:1265 in wrapped", line 9, in forward where = torch.ops.aten.where.self(ge, add, scalar_tensor); add = scalar_tensor = where = None File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 795, in __call__ return self._op(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/_trace_wrapped_higher_order_op.py", line 142, in __torch_function__ return func(*args, **(kwargs or {})) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 795, in __call__ return self._op(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU 0 has a total capacity of 22.05 GiB of which 452.12 MiB is free. Including non-PyTorch memory, this process has 21.60 GiB memory in use. Of the allocated memory 6.70 GiB is allocated by PyTorch, and 14.63 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) To execute this test, run the following from the base repo dir: python test/inductor/test_flex_attention.py TestFlexAttentionCUDA.test_builtin_score_mods_different_block_size_float16_score_mod6_BLOCK_SIZE3_cuda_float16 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,361,834
DISABLED test_non_equal_head_dims_score_mod3_float16_head_dims1_cuda_float16 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
2
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_non_equal_head_dims_score_mod3_float16_head_dims1_cuda_float16&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40890572206). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_non_equal_head_dims_score_mod3_float16_head_dims1_cuda_float16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,361,833
DISABLED test_builtin_score_mods_different_block_size_float32_score_mod0_BLOCK_SIZE_128_cuda_float32 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
2
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_builtin_score_mods_different_block_size_float32_score_mod0_BLOCK_SIZE_128_cuda_float32&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40883373165). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_builtin_score_mods_different_block_size_float32_score_mod0_BLOCK_SIZE_128_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,359,766
DISABLED test_builtin_score_mods_different_block_size_float16_score_mod7_BLOCK_SIZE_128_cuda_float16 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
2
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_builtin_score_mods_different_block_size_float16_score_mod7_BLOCK_SIZE_128_cuda_float16&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40890572206). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_builtin_score_mods_different_block_size_float16_score_mod7_BLOCK_SIZE_128_cuda_float16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true