id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
3,018,372,613
[logging] Clean up dynamo_timed usages in cudagraph_trees
masnesral
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152136 Summary: I'm investigating differences in total torch.compile overhead in our two main internal sources: dynamo_compile and pt2_compile_events. One source of discrepancy is due to cudagraphs overheads. Currently, we have a context manager that optionally attributes a dynamo_timed region to a cudagraph-related column logged to dynamo_compile, but _all_ dynamo_timed regions show up in pt2_compile_events (hence the discrepancy; pt2_compile_events is overcounting). We could filter out these specific events from pt2_compile_events when measuring overall overhead. But I'm going to argue that those timed regions that we DO NOT consider as a compiler-related overhead don't have much value in logging in the first place. So I'm suggesting we just remove those instances. Here's the production job with the discrepancy: * dynamo_compile: https://fburl.com/scuba/dynamo_compile/3604eypl * pt2_compile_events: https://fburl.com/scuba/pt2_compile_events/c2dv8sty Test Plan: torchbench nanogpt: * tlparse: https://fburl.com/h1n2ascc * dynamo_compile: https://fburl.com/scuba/dynamo_compile/sandbox/u37yrynp * pt2_compile_events: https://fburl.com/scuba/pt2_compile_events/s7avd0di cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,018,317,780
Unaccaptable OOMs all the time.
Deathawaits4
open
[ "needs reproduction", "module: cuda", "module: memory usage", "triaged" ]
3
NONE
Hello, i don't want to sound harsh, but pytorch has ruined me many training runs, and wasted many hours of training torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 250.00 MiB. GPU 0 has a total capacity of 79.26 GiB of which 104.75 MiB is free. Process 1007710 has 79.14 GiB memory in use. Of the allocated memory 74.77 GiB is allocated by PyTorch, and 3.87 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) It is unaccaptable that with 4gigs of free memory, the allocator is unable to create large enough segments to finish a training run! The worst part is, that this keeps happening after it already has trained hours, with expandable segements set to true. This issue has been plaguing pytorch since forever and is happening in every version. cc @ptrblck @msaroufim @eqy @jerryzh168
true
3,018,241,032
[RFC] Proposed Changes to Feature Tracking & Classification for PyTorch Releases starting Release 2.8
atalman
open
[ "triaged" ]
0
CONTRIBUTOR
RFC Authors: @anitakat @atalman Hello everyone, Following feedback and discussion on existing gaps of the feature review process, below are proposed changes for which we are keen to have your input. ## Feature Tracking Process Beginning with release 2.8, the PyTorch release will only track major features. At this time we do not have a comprehensive list and welcome examples from the community of what they would like tracked. * All major features will require an RFC from the start with an estimated timeline. This will allow the maintainers to provide async feedback before feature implementation begins. * The RFC for these major features will have a current status that will enable partners and the community at large, to reference the progress of a given feature with ease. [Example of an RFC](https://github.com/pytorch/pytorch/issues/130249). * These RFCs will be tagged and labelled appropriately for tracking and when a feature is complete/stable, they will be untagged and no longer tracked. * Release notes will highlight new major features and improvements made to existing features, and will follow the new classification of API-Stable and API-Unstable. For any features not on this list, the only requirement is to follow the path to stable below, to be classified as stable when ready. ## Feature Classification: Beginning with release 2.8, feature submissions will be classified as either API-Stable or API-Unstable, and the previous classifications of Prototype, Beta and Stable, will no longer be used. ### API-Stable (Previously called Stable) An API-Stable feature means that the user value-add has been proven, the API isn’t expected to change, the feature is performant and all documentation exists to support end user adoption. Examples of API-Stable features include Accelerated Transformers, DataLoader, Autograd Engine, and CUDA support in PyTorch CI/CD. Commitment from the PyTorch team: We expect to maintain these features long term and generally there should be no major performance limitations or gaps in documentation. We also expect to maintain backwards compatibility (although breaking changes can happen and notice will be given one release ahead of time). ### API-Unstable (Previously Prototype or Beta) Encompasses all features that are under active development where API may change based on user feedback, requisite performance improvements or because coverage across operators is not yet complete. Commitment from the PyTorch team: We are not committing to backwards compatibility. The APIs and performance characteristics of this feature may change. ### Classification Requirements Requirement | API-Unstable | API-Stable | Path to API-Stable -- | -- | -- | -- RFC Created | X | X | - Doc Strings | X | X | - Unit Tests | X | X | - CI Coverage | X | X | - Complete Workflow Coverage (e.g. CV or NLP) |   | X | Phase 1 Recipe or Tutorial |   | X | Phase 1 User Feedback (Features with User API surface) |   | X | Phase 2 Dogfooding: 1-2 early adopter teams (internal or external) have found this feature useful and their feedback has been incorporated |   | X | Phase 2 Design review / TL Signoff |   | X | Phase 2 API Stability |   | X | - Full Op Coverage |   | X | - ### Path To Stable API <img width="778" alt="Image" src="https://github.com/user-attachments/assets/e9ae8fcc-6d4c-41fe-bcb6-26330f82fdd8" /> Thank you for reading and we look forward to your feedback. Cheers, Team PyTorch
true
3,018,235,081
[ROCm] Fixes to enable VM-based MI300 CI runners
jithunnair-amd
closed
[ "module: rocm", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/rocm" ]
3
COLLABORATOR
New VM-based MI300 CI runners tested in https://github.com/pytorch/pytorch/pull/151708 exposed some issues in CI that this PR fixes: * HSAKMT_DEBUG_LEVEL is a debug env var that was introduced to debug driver issues. However, in the new MI300 runners being tested, since they run inside a VM, the driver emits a debug message `Failed to map remapped mmio page on gpu_mem 0` when calling `rocminfo` or doing other GPU-related work. This results in multiple PyTorch unit tests failing when doing a string match on the stdout vs expected output. * HSA_FORCE_FINE_GRAIN_PCIE was relevant for rccl performance improvement, but is not required now. * amdsmi doesn't return metrics like [power_info](https://rocm.docs.amd.com/projects/amdsmi/en/latest/reference/amdsmi-py-api.html#amdsmi-get-power-cap-info) and [clock_info](https://rocm.docs.amd.com/projects/amdsmi/en/latest/reference/amdsmi-py-api.html#amdsmi-get-clock-info) in a VM ("Guest") environment. Return 0 as the default in cases where amdsmi returns "N/A" * amdsmi throws an exception when calling `amdsmi.amdsmi_get_clock_info` on the VM-based runners. Temporarily skipping the unit test for MI300 until we find a resolution. cc @jeffdaily @sunway513 @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
3,018,233,465
Remove some instances of uninitialized memory use
pganssle-google
open
[ "open source", "topic: not user facing" ]
5
CONTRIBUTOR
Two changes, one caught by MSAN, the other caught because it was blowing up tests. The change in test_ir fixes a use-after-free by capturing the variable being closed over by value. The change in debug_util initializes all values for the SourceLocation object.
true
3,018,181,623
[C10D] Autograd Support for Collectives
wconstab
open
[ "oncall: distributed", "triaged" ]
0
CONTRIBUTOR
Building on #148690 and following from [this post](https://discuss.pytorch.org/t/supporting-autograd-for-collectives/219430) there are a few we should make to support autograd properly in our collective library. **Problem:** Collectives today silently no-op during backwards The first thing we should do since it's simplest is to prevent accidental silent incorrectness by issuing an error whenever the backwards pass of a collective that currently has no backwards formula is executed. - https://github.com/pytorch/pytorch/issues/152127 Then, we should support backwards properly. It is shown to be useful in some cases for some ops. We should probably just support all of the ops. **Option 1: Naive Implementation** We can start by just implementing the backwards formulas as described in this table, for the ops we care about. gather | scatter |   -- | -- | -- scatter | gather |   reduce (avg, sum, premul_sum) | broadcast | Bitwise ops not supported for grad (band, bor, bxor) reduce (max, min) | Identity (for max/min src) Scaled (for a tie) 0 (for others) |   reduce (product) | fwd_out / fwd_in * dout |   broadcast | reduce(sum) |   all_to_all | all_to_all |   all_reduce (avg, sum, premul_sum) | all_reduce(sum) | Common exception, e.g. megatron TP, see below; Bitwise ops not supported for grad (band, bor, bxor) all_reduce (max, min) | all_reduce(sum) (for max/min src) 0 (for others) |   all_reduce (product) | fwd_out / fwd_in * allreduce(sum, dout) |   all_gather | reduce_scatter(sum) |   reduce_scatter | all_gather |   all_to_all | all_to_all The problem with this option is that during backwards, there will be no communication / compute overlap. For some use cases, this is not a problem because there is little or no opportunity to overlap the collective anyways, but for others it would be catastrophic. For use cases where Option 1 is useful, we should just land the change to enable the backwards formula and unblock them. **Option 2: Improved Overlap** During forward, we also observe a 'wait_tensor' op (when using functional collectives), or a 'work.wait()' call (in C10D). Users may call this as late as possible in Forwards, and this gives us a good place during backwards to start the backwards collective 'early' so it will overlap with the forwards pass. We could implement the backwards pass of 'wait_tensor' op to launch an appropriate collective corredsponding to the collective launched during forward before the wait. Credit to @fmassa for this idea. 1) dCollective = wait_tensor 2) dWait_tensor = the backwards for 'collective' To implement (2) we'd have to store metadata about the collective we launched (or the backwards we want to run) on the Work object or some other way. This needs further design investigation. The alternative to Option 2 is we just live with bad performance in Eager, and rely on torch.compile() to get overlapping back during backwards. This may also be OK. cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @d4l3k
true
3,018,174,869
AOTI cannot move tensors between cuda devices
yushangdi
open
[ "oncall: pt2", "export-triaged", "oncall: export" ]
1
CONTRIBUTOR
### 🐛 Describe the bug When we move tensors between cuda devices, AOTI just does a `AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_copy_(buf0, arg0_1, 0));`, which doesn't really change the device index. The resulting tensor is still in device 0. Exported Program: ``` def forward(self, x): x, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec) _assert_tensor_metadata_default = torch.ops.aten._assert_tensor_metadata.default(x, dtype = torch.float32, device = device(type='cuda', index=0), layout = torch.strided); _assert_tensor_metadata_default = None to = torch.ops.aten.to.dtype_layout(x, dtype = torch.float32, layout = torch.strided, device = device(type='cuda', index=1)) return pytree.tree_unflatten((x, to), self._out_spec) ``` ``` import torch class M(torch.nn.Module): def forward(self, x): y = x.to("cuda:1") return x, y x = torch.rand(100, device="cuda:0") model = M().cuda() ep = torch.export.export(model, (x,)) gm = ep.module() print(gm(x)) # this is correct path = torch._inductor.aoti_compile_and_package(ep) aot_model = torch._inductor.aoti_load_package(path) out = aot_model(x) print(out) # this is wrong ``` cc @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4 @desertfire ### Versions master
true
3,018,159,218
[dynamic shapes] aten.constant_pad_nd meta impl
pianpwk
closed
[ "Merged", "ciflow/trunk", "release notes: export" ]
5
CONTRIBUTOR
We know the output shape, and we know this always produces a clone. Avoids data-dependent errors from the decomposition. along with https://github.com/pytorch/pytorch/pull/150483, should fix https://github.com/pytorch/pytorch/issues/123855
true
3,018,156,403
FlexAttention + Export / AOTI
drisspg
open
[ "triaged", "oncall: pt2", "module: higher order operators", "module: pt2-dispatcher", "module: flex attention" ]
0
CONTRIBUTOR
# Summary cc @chauhang @penguinwu @zou3519 @ydwu4 @bdhirsh @Chillee @yanboliang @BoyuanFeng
true
3,018,149,226
[C10D] Make collectives backwards throw an error
wconstab
open
[ "oncall: distributed", "triaged" ]
1
CONTRIBUTOR
Today functional collectives and C10D collectives silently ignore backwards, which can surprise users and lead to missing gradients and incorrect training. Many users of these collectives do not intend to use the backwards pass, so this limitation is not affecting them. They either call functional_collectives _during_ the backward pass, in an explicit no_grad context, (e.g. DDP, FSDP) or they write a custom autograd.Function that performs some explicitly chosen collectives as part of forward pass and backward pass. Other users may use the collective directly during forward, and expect to have proper autograd support. These users would observe silent correctness problems. We should explicitly register a backwards kernel for functional collectives that throws an error. Later, we can replace this kernel with an actual backwards implementation, but we don't have to do that all at once and there are some more other design decisions to make regarding performance of the backwards pass, so we should plug this hole first. cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @d4l3k
true
3,018,070,853
[CI] [anaconda] Utilities
atalman
closed
[ "module: ci", "triaged", "better-engineering" ]
0
CONTRIBUTOR
### 🐛 Describe the bug Related to https://github.com/pytorch/pytorch/issues/138506 ``` torch/utils/data/dataframes_pipes.ipynb torch/utils/data/datapipes/utils/decoder.py torch/utils/data/standard_pipes.ipynb tools/setup_helpers/env.py ``` ### Versions 2.8.0 cc @seemethere @malfet @pytorch/pytorch-dev-infra
true
3,018,069,234
Add runtime asserts to AOTI
yushangdi
closed
[ "fb-exported", "Merged", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: export" ]
22
CONTRIBUTOR
Summary: Solves https://github.com/pytorch/pytorch/issues/151925 Currently, AOTI only generate runtime asserts for unbacked symints. We should generate asserts for all `_assert_scalar` calls in the input graph. Also factored out the run time assertion logic to a separate function. We need to generate runtime asserts directly in Inductor instead of just re-using the asserts from input graphs becase we reuse the same ShapeEnv as before. In particular, on subsequent graph passes, we would immediately turn all of these assertions into noops, because when we evaluated their expressions, we would see that because we had a deferred runtime assert in the ShapeEnv, we know "oh, of course this expression is True" already. One example is below: ``` class Model(torch.nn.Module): def forward(self, a, b, c): nz = torch.nonzero(a) ones = a.new_ones([nz.size(0), b.size(0)]) torch._check(ones.size(0) >= 1) equals = torch.add(ones, c) return equals torch._dynamo.mark_dynamic(c, 0) ``` When we re-use the ShapeEnv in Inductor lowering, the check that checks a and nonzero have the same shape would be evaluted to True after we resolve unbacked bindings using the ShapeEnv. See test_unbacked_equals_input_size_runtime_assertion in test_aot_inductor. In addition to the Inductor generated runtime asserts, we also need the runtime asserts from the input graph, because some derived runtime asserts are not generated in Inductor. One example is below: ``` class Model(torch.nn.Module): def forward(self, x): y = x.reshape(100, -1).clone() y = y + 1 return y dynamic_shapes = { "x": {0: torch.export.Dim.DYNAMIC}, } x.shape[0] needs to be a multiple of 100. ``` See test_aoti_runtime_asserts_backed_symint in test_aot_inductor. Example: ``` def forward(self): arg0_1: "f32[s35]"; arg0_1, = fx_pytree.tree_flatten_spec([], self._in_spec) # File: /data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/73a672eb896e7996/scripts/shangdiy/__pt__/pt#link-tree/scripts/shangdiy/pt.py:11 in forward, code: y = x.reshape(100, -1).clone() sym_size_int: "Sym(s35)" = torch.ops.aten.sym_size.int(arg0_1, 0) # mod: "Sym(Mod(s35, 100))" = sym_size_int % 100; sym_size_int = None eq_2: "Sym(Eq(Mod(s35, 100), 0))" = mod == 0; mod = None _assert_scalar = torch.ops.aten._assert_scalar.default(eq_2, "Runtime assertion failed for expression Eq(Mod(s35, 100), 0) on node 'eq'"); eq_2 = _assert_scalar = None # File: /data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/73a672eb896e7996/scripts/shangdiy/__pt__/pt#link-tree/scripts/shangdiy/pt.py:11 in forward, code: y = x.reshape(100, -1).clone() view: "f32[100, (s35//100)]" = torch.ops.aten.reshape.default(arg0_1, [100, -1]); arg0_1 = None clone: "f32[100, (s35//100)]" = torch.ops.aten.clone.default(view); view = None # File: /data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/73a672eb896e7996/scripts/shangdiy/__pt__/pt#link-tree/scripts/shangdiy/pt.py:12 in forward, code: y = y + 1 add_6: "f32[100, 1]" = torch.ops.aten.add.Tensor(clone, 1); clone = None return (add_6,) ``` Generated cpp code: ``` auto inputs = steal_from_raw_handles_to_raii_handles(input_handles, 1); auto arg0_1 = std::move(inputs[0]); auto arg0_1_size = arg0_1.sizes(); int64_t s35 = arg0_1_size[0]; inputs.clear(); auto& kernels = static_cast<AOTInductorModelKernels&>(*this->kernels_.get()); if (!((s35 % 100L) == 0L)) { throw std::runtime_error("Expected Eq(Mod(s35, 100), 0) to be True but received " + std::to_string(s35)); } ``` Test Plan: ``` buck run fbcode//mode/dev-nosan //caffe2/test/inductor:test_aot_inductor -- -r aoti_runtime_asserts_backed_symint ``` Differential Revision: D73596786 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,018,065,203
[CI] [anaconda] Utility scripts and workflows
atalman
closed
[ "module: ci", "triaged", "better-engineering" ]
1
CONTRIBUTOR
### 🐛 Describe the bug Related to https://github.com/pytorch/pytorch/issues/138506 ``` .ci/pytorch/python_doc_push_script.sh#L76 .github/workflows/upload-test-stats-while-running.yml .github/workflows/llm_td_retrieval.yml .github/scripts/test_trymerge.py tools/code_coverage/package/tool/print_report.py ``` ### Versions 2.8.0 cc @seemethere @malfet @pytorch/pytorch-dev-infra
true
3,018,048,393
[CI] [anaconda] Benchmarks anaconda removal
atalman
closed
[ "module: ci", "triaged", "better-engineering" ]
0
CONTRIBUTOR
### 🐛 Describe the bug Related to #138506 Benchmarks files ``` benchmarks/dynamo/Makefile benchmarks/dynamo/runner.py benchmarks/sparse/test_csr.sh torch/utils/benchmark/examples/blas_compare_setup.py torch/utils/benchmark/examples/prepare_e2e.sh ``` ### Versions 2.8.0 cc @seemethere @malfet @pytorch/pytorch-dev-infra
true
3,018,043,192
[NJT] `.bmm`'s BmmBackward0 fails compilation when second arg requires grad
imh
open
[ "module: autograd", "triaged", "module: nestedtensor", "oncall: pt2" ]
1
NONE
### 🐛 Describe the bug When we try to compile `njt_tensor.bmm(default_tensor)` and `default_tensor` requires grad, compilation fails. ```python import torch def do_bmm(x, y): return x.bmm(y.transpose(1,2)) d = 4 x = torch.nested.nested_tensor( [ torch.randn((1,d)), torch.randn((1,d)), torch.randn((2,d)) ], layout=torch.jagged, requires_grad=True ) y = torch.randn((3, 5, d), requires_grad=True) # works just fine fwd/backwards uncompiled z = do_bmm(x, y).mean().backward() # Also works compiled when y doesn't need grad x.grad = y.grad = None # reset y.requires_grad_(False) do_bmm_compiled = torch.compile(do_bmm, fullgraph=True) z = do_bmm_compiled(x, y).mean().backward() # It fails to compile when y needs grad: x.grad = y.grad = None # reset y.requires_grad_(True) # # Succeeds when not requiring fullgraph, but logs "Backend compiler exception" # do_bmm_compiled = torch.compile(do_bmm) # z = do_bmm_compiled(x, y).mean().backward() # x.grad = y.grad = None # reset # # if we uncomment this block, then the next block *doesn't* fail, weirdly # Fails to handle fullgraph when y requires grad do_bmm_compiled = torch.compile(do_bmm, fullgraph=True) z = do_bmm_compiled(x, y) ``` Here's a [log](https://gist.github.com/imh/232555f7b4cb7b73c3ab1d0933df548b) with TORCHDYNAMO_VERBOSE=1. The non-verbose version is here: ``` /home/imh/code/hmer/modeling/.venv/lib/python3.12/site-packages/torch/autograd/graph.py:824: UserWarning: Error detected in BmmBackward0. Traceback of forward call that caused the error: File "/home/imh/.config/JetBrains/PyCharm2024.3/scratches/scratch_2.py", line 4, in do_bmm return x.bmm(y.transpose(1,2)) (Triggered internally at /pytorch/torch/csrc/autograd/python_anomaly_mode.cpp:122.) return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass W0424 10:54:09.598000 477854 modeling/.venv/lib/python3.12/site-packages/torch/_dynamo/exc.py:514] [0/1] Backend compiler exception W0424 10:54:09.598000 477854 modeling/.venv/lib/python3.12/site-packages/torch/_dynamo/exc.py:514] [0/1] Explanation: Backend compiler `inductor` failed with aten._local_scalar_dense.default. Adding a graph break. W0424 10:54:09.598000 477854 modeling/.venv/lib/python3.12/site-packages/torch/_dynamo/exc.py:514] [0/1] Hint: Report an issue to the backend compiler repo. W0424 10:54:09.598000 477854 modeling/.venv/lib/python3.12/site-packages/torch/_dynamo/exc.py:514] [0/1] W0424 10:54:09.598000 477854 modeling/.venv/lib/python3.12/site-packages/torch/_dynamo/exc.py:514] [0/1] Developer debug context: Backend: inductor W0424 10:54:09.598000 477854 modeling/.venv/lib/python3.12/site-packages/torch/_dynamo/exc.py:514] [0/1] Exception:aten._local_scalar_dense.default W0424 10:54:09.598000 477854 modeling/.venv/lib/python3.12/site-packages/torch/_dynamo/exc.py:514] [0/1] Traceback: W0424 10:54:09.598000 477854 modeling/.venv/lib/python3.12/site-packages/torch/_dynamo/exc.py:514] [0/1] File "/home/imh/.config/JetBrains/PyCharm2024.3/scratches/scratch_2.py", line 4, in do_bmm W0424 10:54:09.598000 477854 modeling/.venv/lib/python3.12/site-packages/torch/_dynamo/exc.py:514] [0/1] return x.bmm(y.transpose(1,2)) W0424 10:54:09.598000 477854 modeling/.venv/lib/python3.12/site-packages/torch/_dynamo/exc.py:514] [0/1] W0424 10:54:09.598000 477854 modeling/.venv/lib/python3.12/site-packages/torch/_dynamo/exc.py:514] [0/1] Traceback (most recent call last): File "/home/imh/.config/JetBrains/PyCharm2024.3/scratches/scratch_2.py", line 40, in <module> z = do_bmm_compiled(x, y) ^^^^^^^^^^^^^^^^^^^^^ File "/home/imh/code/hmer/modeling/.venv/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py", line 659, in _fn raise e.with_traceback(None) from None torch._dynamo.exc.Unsupported: Backend compiler exception Explanation: Backend compiler `inductor` failed with aten._local_scalar_dense.default. Adding a graph break. Hint: Report an issue to the backend compiler repo. Developer debug context: Backend: inductor Exception:aten._local_scalar_dense.default Traceback: File "/home/imh/.config/JetBrains/PyCharm2024.3/scratches/scratch_2.py", line 4, in do_bmm return x.bmm(y.transpose(1,2)) Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo" ``` ### Versions ``` PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 24.04.2 LTS (x86_64) GCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.39 Python version: 3.12.3 (main, Feb 4 2025, 14:48:35) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-6.8.0-57-generic-x86_64-with-glibc2.39 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090 Nvidia driver version: 565.57.01 cuDNN version: /usr/lib/x86_64-linux-gnu/libcudnn.so.7.6.4 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 8 On-line CPU(s) list: 0-7 Vendor ID: GenuineIntel Model name: Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz CPU family: 6 Model: 94 Thread(s) per core: 2 Core(s) per socket: 4 Socket(s): 1 Stepping: 3 CPU(s) scaling MHz: 95% CPU max MHz: 4200.0000 CPU min MHz: 800.0000 BogoMIPS: 7999.96 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault pti ssbd ibrs ibpb stibp tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp vnmi md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 128 KiB (4 instances) L1i cache: 128 KiB (4 instances) L2 cache: 1 MiB (4 instances) L3 cache: 8 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-7 Vulnerability Gather data sampling: Vulnerable: No microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP conditional; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Mitigation; Microcode Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] Could not collect [conda] Could not collect ``` cc @ezyang @albanD @gqchen @nikitaved @soulitzer @Varal7 @xmfan @cpuhrsch @jbschlosser @bhosmer @drisspg @davidberard98 @YuqingJ @chauhang @penguinwu
true
3,018,024,782
[poetry] 2.7.0+cpu includes cuda as a dependency
peter-axion
closed
[ "triage review", "module: binaries", "module: regression", "topic: binaries" ]
6
NONE
### 🐛 Describe the bug I use torch `+cpu` variants in images I run on VMs without GPUs because the CUDA libraries are huge, so if I don't need them then I definitely don't want them. When I use `poetry lock` on poetry 1 or 2 with torch `2.7.0+cpu` in my pyproject.toml, the cuda libraries and triton are added as dependencies (11GB image), while with `2.5.1+cpu`, they were not (3.7GB image). I'm reporting this as a bug because I assume it was unintentional, given that the +cpu addition seems to imply the user won't be running on a GPU. ### Versions I already deleted the big image with torch `2.7.0+cpu` :( cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @seemethere @malfet @osalpekar @atalman
true
3,018,023,445
[dynamo] Remove unnecessary guarding on callable user defined objects
anijain2305
closed
[ "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152120 * #151847 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,017,977,356
[dynamo][ca] support dynamic annotations on tensors in ListVariables/TupleVariables
xmfan
open
[ "Merged", "Reverted", "ciflow/trunk", "module: inductor", "module: dynamo", "ciflow/inductor", "release notes: dynamo", "ci-no-td" ]
12
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151860 * __->__ #152119 * #151962 * #151731 Together with https://github.com/pytorch/pytorch/pull/151962, FIXES https://github.com/pytorch/pytorch/issues/133575 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,017,949,132
Update torch/optim/optimizer.py
janeyx99
closed
[ "release notes: optim" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152118 * #152117 * #152116
true
3,017,948,908
Update torch/optim/optimizer.py
janeyx99
closed
[ "release notes: optim" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152118 * __->__ #152117 * #152116
true
3,017,948,639
Include other accelerators in capturable docstr for optimizers
janeyx99
closed
[ "release notes: optim" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152118 * #152117 * __->__ #152116
true
3,017,910,917
Unify how we create random inputs for auto-tuning
masnesral
closed
[ "module: rocm", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152115 Summary: We're creating autotune inputs slightly differently when autotuning in-process vs. in a subprocess: One implementation is in TensorMeta.to_tensor() and another in AlgorithmSelectorCache.benchmark_example_value. Move the TensorMeta definition to select_algorith.py and call that implementation from AlgorithmSelectorCache.benchmark_example_value(). Test Plan: Existing unit tests cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,017,899,222
[Torch Profiler] Only two streams captured in CUDA graph but multiple streams shown in Torch Profiler
ispobock
closed
[ "module: cuda", "triaged" ]
6
NONE
### 🐛 Describe the bug As shown in the following demo code, I use two streams to overlap the `set_kv_buffer` operation, which will be captured in a CUDA graph. The `alt_stream` is created when the KVPool object initialized, so this stream should be reused all the runtime. There is no more stream created during the runtime. However, in the trace file of Torch Profiler, it shows 40 streams, seems each loop creates a new stream. Could you help check if it's a bug for Torch Profiler? Code for reproduction: ```python import torch class KVPool: def __init__(self): self.alt_stream = torch.cuda.Stream() self.k_buffer = [torch.zeros(10000, 8, 128, device='cuda') for _ in range(40)] self.v_buffer = [torch.zeros(10000, 8, 128, device='cuda') for _ in range(40)] def set_kv_buffer(self, layer_id, loc, k, v): current_stream = torch.cuda.current_stream() self.alt_stream.wait_stream(current_stream) with torch.cuda.stream(self.alt_stream): self.k_buffer[layer_id][loc] = k self.v_buffer[layer_id][loc] = v current_stream.wait_stream(self.alt_stream) kv_pool = KVPool() stream = torch.cuda.Stream() graph = torch.cuda.CUDAGraph() with torch.cuda.graph(graph, stream=stream): for layer_id in range(40): k = torch.randn(10, 8, 128, device='cuda') v = torch.randn(10, 8, 128, device='cuda') loc = torch.randint(0, 10000, (10,), device='cuda') kv_pool.set_kv_buffer(layer_id, loc, k, v) with torch.profiler.profile(activities=[torch.profiler.ProfilerActivity.CUDA], record_shapes=True, profile_memory=True, with_stack=True) as prof: graph.replay() prof.export_chrome_trace("trace.json") ``` Profile trace: <img width="1204" alt="Image" src="https://github.com/user-attachments/assets/6aee1806-002a-4fcc-b933-0bbc186e991e" /> ### Versions ``` PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 Python version: 3.10.12 (main, Feb 4 2025, 14:57:36) [GCC 11.4.0] (64-bit runtime) Versions of relevant libraries: [pip3] flashinfer-python==0.2.3+cu124torch2.5 [pip3] mypy-extensions==1.0.0 [pip3] numpy==2.2.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.6.0 [pip3] torchao==0.9.0 [pip3] torchvision==0.21.0 [pip3] triton==3.2.0 ``` cc @ptrblck @msaroufim @eqy @jerryzh168
true
3,017,898,839
[CI] [anaconda] CI Build and Test scripts MacOS
atalman
closed
[ "module: ci", "triaged", "better-engineering" ]
1
CONTRIBUTOR
### 🐛 Describe the bug Related to https://github.com/pytorch/pytorch/issues/138506 CI Build and Test scripts to replace: .ci/pytorch/macos-test.sh - used for torchbench astunparse numpy scipy ninja pyyaml setuptools cmake typing-extensions requests protobuf numba cython scikit-learn librosa .github/workflows/_mac-build.yml .github/workflows/_mac-test.yml .github/workflows/_mac-test-mps.yml We would like to remove Anaconda install dependency cc @seemethere @malfet @pytorch/pytorch-dev-infra ### Versions 2.8.0
true
3,017,886,320
Pin to SHA for actions outside of PyTorch
zxiiro
closed
[ "module: rocm", "topic: not user facing" ]
1
COLLABORATOR
Pin actions from repos external to the PyTorch project to their shasums for security. This is a best practice as Git tags are not immutable. https://openssf.org/blog/2024/08/12/mitigating-attack-vectors-in-github-workflows/ cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
3,017,864,752
[ONNX] Implement sym_not
justinchuby
closed
[ "module: onnx", "open source", "Merged", "ciflow/trunk", "release notes: onnx", "topic: improvements" ]
4
COLLABORATOR
Implement onnx support for sym_not. Replaces https://github.com/pytorch/pytorch/pull/147472 Fix https://github.com/pytorch/pytorch/issues/136572
true
3,017,861,114
Pin to SHA for actions outside of PyTorch
zxiiro
closed
[ "module: rocm", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
6
COLLABORATOR
Pin actions from repos external to the PyTorch project to their shasums for security. This is a best practice as Git tags are not immutable. https://openssf.org/blog/2024/08/12/mitigating-attack-vectors-in-github-workflows/ cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
3,017,786,422
Python 3.11 and 3.13 support for Windows Arm64
iremyux
closed
[ "module: windows", "open source", "module: arm", "Merged", "ciflow/binaries", "topic: not user facing" ]
3
COLLABORATOR
This PR adds Python 3.11 and 3.13 support Windows Arm64 wheels and creates the necessary jobs cc @peterjc123 @mszhanyi @skyline75489 @nbcsm @Blackhex @malfet @snadampal @milpuz01 @aditew01 @nikhil-arm @fadara01
true
3,017,759,979
[inductor][cpu] AMP static shape default wrapper AOTInductor performance regression in 2025_04_20 nightly release
zxd1997066
open
[ "module: regression", "topic: performance", "oncall: pt2", "oncall: cpu inductor" ]
1
CONTRIBUTOR
### 🐛 Describe the bug <p>AMP static shape default wrapper AOTInductor</p><table border="1" class="dataframe table"> <thead> <tr style="text-align: right;"> <th>suite</th> <th>name</th> <th>thread</th> <th>batch_size_new</th> <th>speed_up_new</th> <th>inductor_new</th> <th>eager_new</th> <th>compilation_latency_new</th> <th>batch_size_old</th> <th>speed_up_old</th> <th>inductor_old</th> <th>eager_old</th> <th>compilation_latency_old</th> <th>Ratio Speedup(New/old)</th> <th>Eager Ratio(old/new)</th> <th>Inductor Ratio(old/new)</th> <th>Compilation_latency_Ratio(old/new)</th> </tr> </thead> <tbody> <tr> <td>torchbench</td> <td>hf_GPT2</td> <td>multiple</td> <td>1</td> <td>1.855095</td> <td>0.020711079</td> <td>0.038421019097505</td> <td>41.296582</td> <td>1</td> <td>1.966686</td> <td>0.015391351000000001</td> <td>0.030269954532786</td> <td>42.421077</td> <td>0.94</td> <td>0.79</td> <td>0.74</td> <td>1.03</td> </tr> <tr> <td>torchbench</td> <td>hf_GPT2_large</td> <td>multiple</td> <td>1</td> <td>1.206619</td> <td>0.191283364</td> <td>0.23080614138631603</td> <td>67.302233</td> <td>1</td> <td>1.533002</td> <td>0.15207534</td> <td>0.23313180037068001</td> <td>69.351171</td> <td>0.79</td> <td>1.01</td> <td>0.8</td> <td>1.03</td> </tr> <tr> <td>huggingface</td> <td>DistillGPT2</td> <td>multiple</td> <td>16</td> <td>1.730428</td> <td>0.121863231</td> <td>0.21087554709286802</td> <td>35.54343</td> <td>16</td> <td>2.462141</td> <td>0.08568144700000001</td> <td>0.21095980359802702</td> <td>36.301132</td> <td>0.7</td> <td>1.0</td> <td>0.7</td> <td>1.02</td> </tr> <tr> <td>huggingface</td> <td>GPT2ForSequenceClassification</td> <td>multiple</td> <td>4</td> <td>1.151294</td> <td>0.128171088</td> <td>0.147562604587872</td> <td>40.777434</td> <td>4</td> <td>2.2595</td> <td>0.06586300199999999</td> <td>0.14881745301899998</td> <td>41.288425</td> <td>0.51</td> <td>1.01</td> <td>0.51</td> <td>1.01</td> </tr> <tr> <td>torchbench</td> <td>hf_GPT2</td> <td>single</td> <td>1</td> <td>1.23444</td> <td>0.150846848</td> <td>0.18621138304512</td> <td>38.041133</td> <td>1</td> <td>1.407039</td> <td>0.127419733</td> <td>0.179284533700587</td> <td>40.229946</td> <td>0.88</td> <td>0.96</td> <td>0.84</td> <td>1.06</td> </tr> <tr> <td>torchbench</td> <td>hf_GPT2_large</td> <td>single</td> <td>1</td> <td>1.013489</td> <td>4.422686286</td> <td>4.482343901311855</td> <td>49.876722</td> <td>1</td> <td>1.45735</td> <td>3.029691519</td> <td>4.41532093521465</td> <td>53.04356</td> <td>0.7</td> <td>0.99</td> <td>0.69</td> <td>1.06</td> </tr> <tr> <td>huggingface</td> <td>DistillGPT2</td> <td>single</td> <td>1</td> <td>1.31723</td> <td>0.20977825000000003</td> <td>0.27632620424750004</td> <td>32.651317</td> <td>1</td> <td>1.504701</td> <td>0.18449616900000002</td> <td>0.27761156999046904</td> <td>34.461712</td> <td>0.88</td> <td>1.0</td> <td>0.88</td> <td>1.06</td> </tr> <tr> <td>huggingface</td> <td>GPT2ForSequenceClassification</td> <td>single</td> <td>1</td> <td>0.970965</td> <td>0.667234569</td> <td>0.647861413289085</td> <td>35.579949</td> <td>1</td> <td>1.497788</td> <td>0.45225368</td> <td>0.6773801348598399</td> <td>37.857003</td> <td>0.65</td> <td>1.05</td> <td>0.68</td> <td>1.06</td> </tr> </tbody> </table> the bad commit: 90ddb33141b8aecbe0da979d284fff7fa9f93bca ``` /workspace/pytorch# bash inductor_single_run.sh multiple inference performance huggingface GPT2ForSequenceClassification amp first static default 0 aot_inductor Testing with aot_inductor. multi-threads testing.... /opt/conda/lib/python3.10/site-packages/huggingface_hub/file_download.py:896: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`. warnings.warn( loading model: 0it [00:02, ?it/s] cpu eval GPT2ForSequenceClassification skipping cudagraphs due to cpp wrapper enabled running benchmark: 100%|█████████████████████████████████████████████████████████████████| 50/50 [00:19<00:00, 2.56it/s] 1.189x WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] dev,name,batch_size,speedup,abs_latency,compilation_latency,compression_ratio,eager_peak_mem,dynamo_peak_mem,calls_captured,unique_graphs,graph_breaks,unique_graph_breaks,autograd_captures,autograd_compiles,cudagraph_skips cpu,GPT2ForSequenceClassification,4,1.188574,177.095622,58.083640,0.928775,576.566067,620.781158,0,0,0,0,0,0,1 ``` the last good commit: 2e5d95a0828060f816251671e8e59f2680f9f9be ``` /workspace/pytorch# bash inductor_single_run.sh multiple inference performance huggingface GPT2ForSequenceClassification amp first static default 0 aot_inductor Testing with aot_inductor. multi-threads testing.... /opt/conda/lib/python3.10/site-packages/huggingface_hub/file_download.py:896: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`. warnings.warn( loading model: 0it [00:02, ?it/s] cpu eval GPT2ForSequenceClassification skipping cudagraphs due to cpp wrapper enabled running benchmark: 100%|█████████████████████████████████████████████████████████████████| 50/50 [00:16<00:00, 3.08it/s] 1.663x WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] dev,name,batch_size,speedup,abs_latency,compilation_latency,compression_ratio,eager_peak_mem,dynamo_peak_mem,calls_captured,unique_graphs,graph_breaks,unique_graph_breaks,autograd_captures,autograd_compiles,cudagraph_skips cpu,GPT2ForSequenceClassification,4,1.663003,120.465681,57.954118,0.875373,577.577779,659.807846,0,0,0,0,0,0,1 ``` ### Versions </table><p>SW info</p><table border="1" class="dataframe table"> <thead> <tr style="text-align: right;"> <th>name</th> <th>target_branch</th> <th>target_commit</th> <th>refer_branch</th> <th>refer_commit</th> </tr> </thead> <tbody> <tr> <td>torchbench</td> <td>main</td> <td>373ffb19</td> <td>main</td> <td>373ffb19</td> </tr> <tr> <td>torch</td> <td>main</td> <td>1a1a32ce5af880709a761c4cd9e9e43fb67e5058</td> <td>main</td> <td>52135db69a5b02bb9e5120a5fa410c303f649dfe</td> </tr> <tr> <td>torchvision</td> <td>main</td> <td>0.19.0a0+d23a6e1</td> <td>main</td> <td>0.19.0a0+d23a6e1</td> </tr> <tr> <td>torchtext</td> <td>main</td> <td>0.16.0a0+b0ebddc</td> <td>main</td> <td>0.16.0a0+b0ebddc</td> </tr> <tr> <td>torchaudio</td> <td>main</td> <td>2.6.0a0+bccaa45</td> <td>main</td> <td>2.6.0a0+318bace</td> </tr> <tr> <td>torchdata</td> <td>main</td> <td>0.7.0a0+11bb5b8</td> <td>main</td> <td>0.7.0a0+11bb5b8</td> </tr> <tr> <td>dynamo_benchmarks</td> <td>main</td> <td>nightly</td> <td>main</td> <td>nightly</td> </tr> </tbody> </table> </table> Repro: [inductor_single_run.sh](https://github.com/chuanqi129/inductor-tools/blob//main/scripts/modelbench/inductor_single_run.sh) bash inductor_single_run.sh multiple inference performance huggingface GPT2ForSequenceClassification amp first static default 0 aot_inductor Suspected guilty commit: https://github.com/pytorch/pytorch/commit/90ddb33141b8aecbe0da979d284fff7fa9f93bca [huggingface-GPT2ForSequenceClassification-inference-amp-static-default-multiple-performance-drop_guilty_commit.log](https://github.com/user-attachments/files/19895339/huggingface-GPT2ForSequenceClassification-inference-amp-static-default-multiple-performance-drop_guilty_commit.log) cc @chauhang @penguinwu @chuanqi129
true
3,017,750,908
Some Doc Issue about `torch.lobpcg()`
ILCSFNO
open
[ "module: docs", "triaged", "module: linear algebra" ]
0
CONTRIBUTOR
### 📚 The doc issue This issue is about func: `torch.lobpcg()` ### Discuss 1 Seen from #139563, some similar situation in `torch.lobpcg()`: The doc of [torch.lobpcg()](https://pytorch.org/docs/stable/generated/torch.lobpcg.html#torch-lobpcg) shows its description as below: https://github.com/pytorch/pytorch/blob/d743a7bd85d2d793bc0e2a38d4538276ce06b601/torch/_lobpcg.py#L394-L482 But its definition is: https://github.com/pytorch/pytorch/blob/d743a7bd85d2d793bc0e2a38d4538276ce06b601/torch/_lobpcg.py#L345-L360 ### Suggestion 1 * Fix the order of params in doc ### Discuss 2 It is showed that: If :math:`X` is specified, the value of `n`(when specified) must be the number of :math:`X` columns. https://github.com/pytorch/pytorch/blob/d743a7bd85d2d793bc0e2a38d4538276ce06b601/torch/_lobpcg.py#L414-L419 But for n not the number of X, it can run well yet: ### Repro For 2 ```python import torch A = torch.rand(5, 20, 20) X = torch.randn(5, 20, 3) n = 2 torch.lobpcg(A=A, X=X, n=n) ``` ### Output For 2 ```text (tensor([[10.7453, 1.8008, 1.2166], [10.0439, 1.8280, 1.1628], [10.1809, 1.6499, 1.3205], [ 9.8603, 2.0274, 1.4006], [ 9.8713, 2.0663, 1.1549]]), tensor([[[-0.2269, 0.1153, -0.2278], [-0.2074, -0.1190, -0.1559], [-0.2585, -0.1909, 0.1698], ... [ 0.2556, -0.2533, 0.1293], [ 0.2065, 0.0397, -0.2635]]])) ``` ### Suggestion 2 * Remove the doc limit about `n` or add check of `n` and `X` if specified in codes ### Discuss 3 For param's limitation, which is not told in doc, see repro below: ### Repro For 3 ```python import torch def generate_input_data(): A = torch.randn(5, 5) A = (A @ A.t()) X = torch.randn(5, 2) B = torch.eye(5) return (A, B, X) (A, B, X) = generate_input_data() (eigenvalues, eigenvectors) = torch.lobpcg(A=A, B=B, X=X, k=2, method='ortho', tol=1e-06, niter=(- 1)) print('Eigenvalues:', eigenvalues) print('Eigenvectors:', eigenvectors) print('') ``` ### Output For 3 ```text ValueError: LPBPCG algorithm is not applicable when the number of A rows (=5) is smaller than 3 x the number of requested eigenpairs (=2) ``` This limit that `the number of A rows must be bigger than 3 x the number of requested eigenpairs` is not shown. ### Suggestion 3 * Add warning that: ```text .. warning:: `m` must be bigger than 3 x the number of requested eigenpairs. ``` Thanks! ### Suggest a potential alternative/fix Suggestions above listed: * Fix the order of params in doc * Remove the doc limit about `n` or add check of `n` and `X` if specified in codes * Add warning that: ```text .. warning:: `m` must be bigger than 3 x the number of requested eigenpairs. ``` cc @svekars @sekyondaMeta @AlannaBurke @jianyuh @nikitaved @mruberry @walterddr @xwang233 @Lezcano
true
3,017,717,304
Relax tolerance on test_aot_autograd_exhaustive_matmul_cpu_float32 without MKL
Flamefire
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
3
COLLABORATOR
When e.g. OpenBLAS is used instead of MKL the differences get to large: > Greatest absolute difference: 5.91278076171875e-05 at index (7,) (up to 1e-05 allowed) > Greatest relative difference: 3.468156592134619e-06 at index (7,) (up to 1.3e-06 allowed) I traced some of the matmul operations and there are differences of around 8e-6 between MKL and OpenBLAS but I haven't found where exactly the backward pass is calculated which is where the actual differences arise. So I couldn't check if there is some difference in the low-level BLAS function used by the autograd. However it seems odd that there is a difference at all: For the MKL case it seems to be zero up to the accuracy shown by Python. So it seems the AOT compilation has some differences when MKL is not available. Maybe this is also the reason why it fails for ARM and hence the test is skipped there. Maybe @zou3519 knows more as he introduced those skip markers in https://github.com/pytorch/pytorch/pull/85565 Is there any documentation how and where `matmul_backward(_out)` is generated and how AOT transforms it with and without MKL?
true
3,017,686,303
[MTIA] Contribute OpExpanderPass to FX pass infra.
patrick-toulme
open
[ "fb-exported", "release notes: fx", "fx" ]
4
NONE
Summary: MTIA has been using an OpExpanderPass in our compiler. This type of pass allows pass authors to write two functions 1. Pattern Matcher - returns a boolean and an optional metadata tuple 2. Expander - accepts a node and an optional metadata tuple It cleanly organizes the components of a compiler pass, and allows pass authors to not have to script boiler plate. Test Plan: CI Differential Revision: D73592104 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
3,017,591,462
Update _torch_docs.py to Fix torch.bernoulli()
ILCSFNO
open
[ "triaged", "open source", "release notes: python_frontend" ]
1
CONTRIBUTOR
Fixes #152095 @malfet Wondering whether to fix signature that from: ```text @overload def bernoulli(input: Tensor, p: _float, *, generator: Optional[Generator] = None) -> Tensor: ``` to ```text @overload def bernoulli(input: Tensor, p: _float, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: ``` Or just merge them two to: ```text @overload def bernoulli(input: Tensor, p: _float = None, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: ``` which can cover the original both signatures.
true
3,017,586,122
Change test/inductor/test_standalone_compile to test/inductor/test_compile
zou3519
closed
[ "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ci-no-td" ]
11
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152103 These are the tests for torch._inductor.compile, so I renamed the file test_compile. This is to avoid confusion with torch._inductor.standalone_compile, which is now a lot more standalone than torch._inductor.compile. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,017,498,662
Segmentation fault with # FIXME: copy.deepcopy() is not defined on nn.module
cattientk
open
[ "needs reproduction", "module: crash", "module: nn", "triaged" ]
2
NONE
### 🐛 Describe the bug I got error with this app always crash when I ran a model ```python def _get_clones(module, N): # FIXME: copy.deepcopy() is not defined on nn.module return ModuleList([copy.deepcopy(module) for i in range(N)]) ``` err: ``` Thread 0x00000002089f8c80 (most recent call first): File ".venv-py311/lib/python3.11/site-packages/torch/nn/parameter.py", line 68 in __deepcopy__ File ".pyenv/versions/3.11.7/lib/python3.11/copy.py", line 153 in deepcopy File ".pyenv/versions/3.11.7/lib/python3.11/copy.py", line 231 in _deepcopy_dict File ".pyenv/versions/3.11.7/lib/python3.11/copy.py", line 146 in deepcopy File ".pyenv/versions/3.11.7/lib/python3.11/copy.py", line 231 in _deepcopy_dict File ".pyenv/versions/3.11.7/lib/python3.11/copy.py", line 146 in deepcopy File ".pyenv/versions/3.11.7/lib/python3.11/copy.py", line 271 in _reconstruct File ".pyenv/versions/3.11.7/lib/python3.11/copy.py", line 172 in deepcopy File ".pyenv/versions/3.11.7/lib/python3.11/copy.py", line 231 in _deepcopy_dict File ".pyenv/versions/3.11.7/lib/python3.11/copy.py", line 146 in deepcopy File ".pyenv/versions/3.11.7/lib/python3.11/copy.py", line 231 in _deepcopy_dict File ".pyenv/versions/3.11.7/lib/python3.11/copy.py", line 146 in deepcopy File ".pyenv/versions/3.11.7/lib/python3.11/copy.py", line 271 in _reconstruct File ".pyenv/versions/3.11.7/lib/python3.11/copy.py", line 172 in deepcopy File ".venv-py311/lib/python3.11/site-packages/torch/nn/modules/transformer.py", line 1167 in <listcomp> File ".venv-py311/lib/python3.11/site-packages/torch/nn/modules/transformer.py", line 1167 in _get_clones File ".venv-py311/lib/python3.11/site-packages/torch/nn/modules/transformer.py", line 347 in __init__ ``` ### Versions Pytorch version 2.6.0 cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
true
3,017,246,853
linear + relu don't fuse
nairbv
open
[ "triaged", "oncall: pt2", "module: inductor" ]
1
COLLABORATOR
### 🐛 Describe the bug I'm not entirely sure if this is expected behavior, but I think mm + relu are supposed to fuse when using torch.compile, and it looks like it's not happening. example code: ``` import torch import torch.nn as nn model = nn.Sequential(nn.Linear(128, 128), nn.ReLU()).cuda() x = torch.randn(32, 128, device="cuda") compiled = torch.compile(model) compiled(x) ``` I run with: TORCH_LOGS=output_code python test.py in the generated code I see: ``` @triton_heuristics.pointwise( size_hints={'x': 4096}, filename=__file__, triton_meta={'signature': {'in_out_ptr0': '*fp32', 'in_ptr0': '*fp32', 'out_ptr0': '*i1', 'xnumel': 'i32', 'XBLOCK': 'constexpr'}, 'device': DeviceProperties(type='cuda', index=0, multi_processor_count=128, cc=89, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, warp_size=32), 'constants': {}, 'configs': [{(0,): [['tt.divisibility', 16]], (1,): [['tt.divisibility', 16]], (2,): [['tt.divisibility', 16]], (3,): [['tt.divisibility', 16]]}]}, inductor_meta={'grid_type': 'Grid1D', 'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_addmm_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'optimize_mem': False, 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'C11DE0628EED4C0AB66E26CDE84B57CDE9A70547B1A1FB7FCCB8011CFA28CE35', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_addmm_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = (xindex % 128) tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (128, 128), (128, 1)) assert_size_stride(primals_2, (128, ), (1, )) assert_size_stride(primals_3, (32, 128), (128, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((32, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.addmm] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (128, 128), (1, 128), 0), out=buf0) del primals_1 buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((32, 128), (128, 1), torch.bool) # Topologically Sorted Source Nodes: [input_1, input_2], Original ATen: [aten.addmm, aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_addmm_relu_threshold_backward_0.run(buf1, primals_2, buf2, 4096, stream=stream0) del primals_2 return (buf1, primals_3, buf2, ) ``` the function name `triton_poi_fused_addmm_relu_threshold_backward_0` seems to suggest something being fused, but what I see inside the "fused" part looks like it's only the relu, and I do then see `extern_kernels.mm` is used inside `call`. I also see this issue, which I think means they should be fusable, though maybe only happens with certain shapes? https://github.com/pytorch/pytorch/issues/103480 ### Versions Environment: ``` Collecting environment information... PyTorch version: 2.7.0+cu128 Is debug build: False CUDA used to build PyTorch: 12.8 ROCM used to build PyTorch: N/A OS: Ubuntu 24.04.2 LTS (x86_64) GCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 Clang version: 18.1.3 (1ubuntu1) CMake version: version 3.28.3 Libc version: glibc-2.39 Python version: 3.13.3 | packaged by conda-forge | (main, Apr 14 2025, 20:44:03) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-6.8.0-55-generic-x86_64-with-glibc2.39 Is CUDA available: True CUDA runtime version: 12.1.66 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090 Nvidia driver version: 535.183.01 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: AuthenticAMD Model name: AMD Ryzen 9 7950X 16-Core Processor CPU family: 25 Model: 97 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 1 Stepping: 2 CPU(s) scaling MHz: 64% CPU max MHz: 5837.0000 CPU min MHz: 400.0000 BogoMIPS: 8982.45 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid overflow_recov succor smca fsrm flush_l1d Virtualization: AMD-V L1d cache: 512 KiB (16 instances) L1i cache: 512 KiB (16 instances) L2 cache: 16 MiB (16 instances) L3 cache: 64 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.1.2 [pip3] nvidia-cublas-cu12==12.8.3.14 [pip3] nvidia-cuda-cupti-cu12==12.8.57 [pip3] nvidia-cuda-nvrtc-cu12==12.8.61 [pip3] nvidia-cuda-runtime-cu12==12.8.57 [pip3] nvidia-cudnn-cu12==9.7.1.26 [pip3] nvidia-cufft-cu12==11.3.3.41 [pip3] nvidia-curand-cu12==10.3.9.55 [pip3] nvidia-cusolver-cu12==11.7.2.55 [pip3] nvidia-cusparse-cu12==12.5.7.53 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.26.2 [pip3] nvidia-nvjitlink-cu12==12.8.61 [pip3] nvidia-nvtx-cu12==12.8.55 [pip3] torch==2.7.0+cu128 [pip3] torchaudio==2.7.0+cu128 [pip3] torchvision==0.22.0+cu128 [pip3] triton==3.3.0 [conda] numpy 2.1.2 pypi_0 pypi [conda] nvidia-cublas-cu12 12.8.3.14 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.8.57 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.8.61 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.8.57 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.7.1.26 pypi_0 pypi [conda] nvidia-cufft-cu12 11.3.3.41 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.9.55 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.7.2.55 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.5.7.53 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi [conda] nvidia-nccl-cu12 2.26.2 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.8.61 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.8.55 pypi_0 pypi [conda] torch 2.7.0+cu128 pypi_0 pypi [conda] torchaudio 2.7.0+cu128 pypi_0 pypi [conda] torchvision 0.22.0+cu128 pypi_0 pypi [conda] triton 3.3.0 pypi_0 pypi ``` cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
3,017,186,194
What is the difference between normal_tensor.storage().use_count() and viewed_tensor's?
CLiqing
closed
[]
1
CONTRIBUTOR
In the test2() below, why is b.storage().use_count() still 2 even when I deleted the source tensor a? ``` import torch def test1(): print("=============== test 1 ===============") a = torch.empty(size=(17, 32, 128, 16), dtype=torch.float16) b = a.view(-1) # b.storage().use_count() is 2 def test2(): print("=============== test 2 ===============") a = torch.empty(size=(17, 32, 128, 16), dtype=torch.float16) b = a.view(-1) del a # b.storage().use_count() is 2 def test3(): print("=============== test 3 ===============") a = torch.empty(size=(17, 32, 128, 16), dtype=torch.float16) b = a.view(-1) del b # a.storage().use_count() is 1 test1() test2() test3() ``` I thought use_count=2 was because a and b each referenced the storage once, and deleting either tensor would make the use_comunt be 1, but that's not the case.
true
3,017,033,307
Migrate to new Windows Arm64 runners
iremyux
open
[ "triaged", "open source", "ciflow/binaries", "topic: not user facing" ]
1
COLLABORATOR
This PR moves the Windows Arm64 nightly jobs to the new runner image, see [arm-windows-11-image](https://github.com/actions/partner-runner-images/blob/main/images/arm-windows-11-image.md ) Fixes #151671
true
3,016,777,788
Switch to standard pep517 sdist generation
zklaus
open
[ "open source", "release notes: releng" ]
2
COLLABORATOR
Generate source tarball with PEP 517 conform build tools instead of the custom routine in place right now. Closes #150461. The current procedure for generating the source tarball consists in creation of a source tree by manual copying and pruning of source files. This PR replaces that with a call to the standard [build tool](https://build.pypa.io/en/stable/), which works with the build backend to produce an sdist. For that to work correctly, the build backend also needs to be configured. In the case of Pytorch, the backend currently is (the legacy version of) the setuptools backend, the source dist part of which is mostly configured via the `MANIFEST.in` file. At the moment, this is still a draft due to two issues: - According to PEP 517, the name of the source distribution file must coincide with the project name, or [more precisely](https://peps.python.org/pep-0517/#source-distributions), the source distribution of a project that generates `{NAME}-{...}.whl` wheels are required to be named `{NAME}-{...}.tar.gz`. Currently, the source tarball is called `pytorch-{...}.tar.gz`, but the generated wheels and python package are called `torch-{...}`. - The source tree at the moment contains a small number of symbolic links. This [has been seen as problematic](https://github.com/pypa/pip/issues/5919) largely because of lack of support on Windows. Particularly unfortunate is a circular symlink in the third party `ittapi` module, which can not be resolved by replacing it with a copy. For the first issue, the proposed solution is to distribute the source tarball as `torch-{...}.tar.gz`. For the second issue, the best solution would be to eliminate all symbolic links in the source tree. If that is not possible, further investigation is needed. PEP 721 (now integrated in the [Source Distribution Format Specification](https://packaging.python.org/en/latest/specifications/source-distribution-format/#source-distribution-archive-features)) clarified which kinds of symbolic links are permissible. Possible solutions must be evaluated on a case-by-case basis for every existing symbolic link. Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152098
true
3,016,700,597
When using torch to convert to oxxn model, testing the inference results with actual images shows tensor mismatch
Zhengqinze05
open
[ "module: onnx", "triaged", "onnx-needs-info" ]
2
NONE
### 🐛 Describe the bug Here is my test code : ```py import os import torch import torch.nn as nn import torch import torchvision from torchvision.models.detection import fasterrcnn_mobilenet_v3_large_320_fpn from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from torch.utils.data import Dataset, DataLoader, random_split from torchvision.transforms import functional as F import cv2 import numpy as np import json from torchvision.models.detection import ssdlite320_mobilenet_v3_large from torchvision.models.detection.ssdlite import SSDLiteClassificationHead import onnx import onnxruntime as ort ONNX_MODE_PATH = "./test_faster_rcnn.onnx" DEVICE = torch.device('cpu') model = fasterrcnn_mobilenet_v3_large_320_fpn(pretrained=True) dummy_input = torch.randn(1, 3, 320, 320).to(DEVICE) model.eval() model.to(DEVICE) model(dummy_input) im = torch.zeros(1, 3, 320, 320).to(DEVICE) torch.onnx.export(model, im, ONNX_MODE_PATH, verbose=False,opset_version=11, training=torch.onnx.TrainingMode.EVAL, do_constant_folding=True, input_names=['input'], output_names=['output'], dynamic_axes={'input': {0: 'batch', 2: 'height', 3: 'width'}, "boxes": {0: "num_detections"}, "scores": {0: "num_detections"}, "labels": {0: "num_detections"}, } ) ort_session = ort.InferenceSession(ONNX_MODE_PATH) input_name = ort_session.get_inputs()[0].name img = cv2.imread(".\IMG_20230629_115933.jpg") img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (320, 320)) img_tensor = img.astype(np.float32) / 255.0 img_tensor = np.transpose(img_tensor, (2, 0, 1))[np.newaxis, ...] # print("img_tensor :\n",img_tensor) output_names = [output.name for output in ort_session.get_outputs()] outputs = ort_session.run(output_names, {input_name: img_tensor}) boxes, scores, labels = outputs print("scores:", scores) ``` Error message after running: ```pytb Traceback (most recent call last): File "D:\workspace\gesture_test\jxrobot_models\pytorch\github_test.py", line 57, in <module> outputs = ort_session.run(output_names, {input_name: img_tensor}) File "D:\workspace\gesture_test\python_gesture\lib\site-packages\onnxruntime\capi\onnxruntime_inference_collection.py", line 220, in run return self._sess.run(output_names, input_feed, run_options) onnxruntime.capi.onnxruntime_pybind11_state.RuntimeException: [ONNXRuntimeError] : 6 : RUNTIME_EXCEPTION : Non-zero status code returned while running Reshape node. Name:'/roi_heads/Reshape_2' Status Message: D:\a\_work\1\s\onnxruntime\core\providers\cpu\tensor\reshape_helper.h:41 onnxruntime::ReshapeHelper::ReshapeHelper size != 0 && (input_shape_size % size) == 0 was false. The input tensor cannot be reshaped to the requested shape. Input shape:{150,363}, requested shape:{-1,4} ``` It's amazing that I've tried using other models without encountering the same error, such as the ssdlite320_mobilenet-v3_1arge model. I've also tried modifying the dynamic_axes parameter, but it didn't work. I noticed that someone else had the same problem and fixed it by modifying functionalist.py, but I modified the same code and found that it didn't call the modified code ### Versions Collecting environment information... PyTorch version: 2.3.1+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Microsoft Windows 11 专业版 GCC version: (GCC) 14.2.0 Clang version: Could not collect CMake version: Could not collect Libc version: N/A Python version: 3.9.13 (tags/v3.9.13:6de2ca5, May 17 2022, 16:36:42) [MSC v.1929 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.22631-SP0 Is CUDA available: True CUDA runtime version: 12.8.93 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4080 Nvidia driver version: 572.61 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture=9 CurrentClockSpeed=3601 DeviceID=CPU0 Family=198 L2CacheSize=12288 L2CacheSpeed= Manufacturer=GenuineIntel MaxClockSpeed=3601 Name=12th Gen Intel(R) Core(TM) i7-12700K ProcessorType=3 Revision= Versions of relevant libraries: [pip3] numpy==1.23.5 [pip3] onnx==1.17.0 [pip3] onnx-simplifier==0.4.36 [pip3] onnx-tf==1.10.0 [pip3] onnxruntime==1.19.2 [pip3] onnxruntime-gpu==1.19.2 [pip3] optree==0.15.0 [pip3] tf2onnx==1.16.1 [pip3] torch==2.3.1+cu118 [pip3] torchaudio==2.3.1+cu118 [pip3] torchvision==0.18.1+cu118 [conda] Could not collect
true
3,016,669,515
[Accelerator] Add `torch.acc.set_default_device()` and `torch.acc.device_module()`
shink
closed
[ "triaged", "open source", "topic: not user facing" ]
15
CONTRIBUTOR
### Changes Users may want to allocate tensors to the current accelerator, but `torch.set_default_device(torch.accelerator.current_accelerator())` is too long, so `torch.accelerator.set_default_device` (or `enable_default_device`?) may be a good choice. ### Test ```python python test/test_accelerator.py ``` If you have any ideas, please let me know. Thanks! cc: @albanD @guangyey @FFFrog
true
3,016,589,024
To fix inconsistency between signature and doc on `torch.bernoulli()`
ILCSFNO
open
[ "module: distributions", "module: docs", "triaged", "actionable" ]
3
CONTRIBUTOR
### 📚 The doc issue The doc of [torch.bernoulli()](https://pytorch.org/docs/stable/generated/torch.bernoulli.html#torch-bernoulli) shows its description as below: ```text torch.bernoulli(input: Tensor, *, generator: Optional[Generator], out: Optional[Tensor]) → Tensor Draws binary random numbers (0 or 1) from a Bernoulli distribution. ... ``` For its signatures in codes, it showed like this: ```text @overload def bernoulli(input: Tensor, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: @overload def bernoulli(input: Tensor, p: _float, *, generator: Optional[Generator] = None) -> Tensor: ``` They diff on the param `p`, for validate, repro below shows that `torch.bernoulli()` can have this param: ### Repro ```python import torch import numpy as np input_data = torch.empty(10, 2).uniform_(0, 1) output_data = torch.bernoulli(input_data, 0.3) print(output_data) ``` ### Output ```text tensor([[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 1.], [1., 0.], [0., 0.], [1., 0.], [0., 0.], [0., 1.]]) ``` Suggest to fix the doc to meet the signatures in codes. Thanks for noting. ### Suggest a potential alternative/fix * Suggest to fix the doc to meet the signature in codes. cc @fritzo @neerajprad @alicanb @nikitaved @svekars @sekyondaMeta @AlannaBurke
true
3,016,539,613
Work around MPSGraph issue in backward pass of nn.ReplicationPad1d/2d
xwu-498
open
[ "triaged", "open source", "release notes: mps" ]
2
NONE
Fixes https://github.com/pytorch/pytorch/issues/135447. When the 3rd from last dimension is 2^16 or greater, MPSGraph returns 0 for padgradient. To work around this, we break the problematic dimension into chunks with chunk size being no greater than 2^16 - 1. Test case for nn.ReplicationPad1d: ``` shape = [65739, 2, 4] x_cpu = torch.randn(shape, device='cpu', requires_grad=True) x_mps = x_cpu.clone().detach().to('mps').requires_grad_(True) model = torch.nn.ReplicationPad1d((1, 1)) out_cpu = model(x_cpu) out_mps = model(x_mps) # backward g_cpu = torch.randn_like(out_cpu) g_mps = g_cpu.clone().detach().to('mps').requires_grad_(False) out_cpu.backward(g_cpu) out_mps.backward(g_mps) print(f"{((x_cpu.grad - x_mps.grad.cpu()).abs() > 1e-5).sum() = }") # Expected Output: # ((x_cpu.grad - x_mps.grad.cpu()).abs() > 1e-5).sum() = tensor(0) ``` Test case for nn.ReplicationPad2d, ``` shape = [2, 65739, 2, 4] x_cpu = torch.randn(shape, device='cpu', requires_grad=True) x_mps = x_cpu.clone().detach().to('mps').requires_grad_(True) model = torch.nn.ReplicationPad2d((1, 1, 1, 1)) out_cpu = model(x_cpu) out_mps = model(x_mps) # backward g_cpu = torch.randn_like(out_cpu) g_mps = g_cpu.clone().detach().to('mps').requires_grad_(False) out_cpu.backward(g_cpu) out_mps.backward(g_mps) print(f"{((x_cpu.grad - x_mps.grad.cpu()).abs() > 1e-5).sum() = }") # Expected Output: # ((x_cpu.grad - x_mps.grad.cpu()).abs() > 1e-5).sum() = tensor(0) ``` These tests produce expected output with this workaround.
true
3,016,508,665
Add optional device index to AOTIModelPackageLoader
juliusgh
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "module: inductor", "release notes: inductor (aoti)", "skip-url-lint" ]
9
CONTRIBUTOR
This is my suggestion for resolving #152087 This PR extends the constructor of `AOTIModelPackageLoader` with an (optional) device index. The device type is still determined by `metadata_["AOTI_DEVICE_KEY"]`, but the `device_index` argument can be used to move an AOTI model package to different devices like `cuda:0`, `cuda:1`, ... in a convenient way. AFAIK, this is not possible so far using `AOTIModelPackageLoader` alone. The default case (no device index specified) with `metadata_["AOTI_DEVICE_KEY"] == "cuda"` would lead to the current behavior, i.e., the model is loaded to device `cuda`. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,016,491,867
[AOTInductor] Inherit Buffer if not being updated
muchulee8
closed
[ "fb-exported", "Merged", "ciflow/trunk", "ciflow/inductor", "release notes: inductor (aoti)" ]
8
CONTRIBUTOR
Summary: Inherit buffer from original constants buffer if it's not being updated. Test Plan: TBD Differential Revision: D73571260
true
3,016,486,952
[Intel GPU] Support f32 intermediate dtype, headdim size <=576 and f32 causal mask for SDPA
LuFinch
open
[ "module: cpu", "triaged", "module: mkldnn", "open source", "release notes: xpu", "module: xpu" ]
3
CONTRIBUTOR
In OneDNN v3.7, SDPA has below defects: 1. The dtype of intermediate value is the same as QKV, while Pytorch uses FP32 dtype for intermediate value to make sure better accuracy. 2. Only support headdim size <= 256. 3. Don't support implict causal mask when QKV is FP32. We need to build an attention mask explicitly with aten ops. In OneDNN v3.8, they have update for these defects. Since these are tiny changes, I decided to put them in single PR. cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @jerryzh168 @gujinghui @PenghuiCheng @jianyuh @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @snadampal @EikanWang @fengyuan14 @guangyey
true
3,016,388,012
[XPU] test_tensordot_out_kernel_errors_with_autograd_xpu_float32 UT failure
CuiYifeng
closed
[ "triaged", "module: xpu" ]
0
CONTRIBUTOR
### 🐛 Describe the bug New UT `test_linalg_xpu.py::TestLinalgXPU::test_tensordot_out_kernel_errors_with_autograd_xpu_float32` failed with the following error: ``` AssertionError: "the 'out' tensor was specified and requires gradients" does not match "cannot resize variables that require grad" ``` ### Versions Collecting environment information... PyTorch version: 2.8.0a0+gitf7ddc51 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 18.1.8 (++20240731024944+3b5b5c1ec4a3-1~exp1~20240731145000.144) CMake version: version 3.31.4 Libc version: glibc-2.35 Python version: 3.10.16 | packaged by conda-forge | (main, Dec 5 2024, 14:16:10) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-5.15.47+prerelease24.8.6-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 224 On-line CPU(s) list: 0-223 Vendor ID: GenuineIntel Model name: Genuine Intel(R) CPU 0000%@ CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 56 Socket(s): 2 Stepping: 5 CPU max MHz: 4000.0000 CPU min MHz: 800.0000 BogoMIPS: 3600.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr avx512_fp16 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 5.3 MiB (112 instances) L1i cache: 3.5 MiB (112 instances) L2 cache: 224 MiB (112 instances) L3 cache: 210 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-55,112-167 NUMA node1 CPU(s): 56-111,168-223 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.3 [pip3] optree==0.14.0 [pip3] torch==2.8.0a0+gitf7ddc51 [conda] mkl-include 2025.0.1 pypi_0 pypi [conda] mkl-static 2025.0.1 pypi_0 pypi [conda] numpy 2.2.3 pypi_0 pypi [conda] optree 0.14.0 pypi_0 pypi [conda] torch 2.8.0a0+gitf7ddc51 pypi_0 pypi cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
3,016,385,956
dynamically set tags
jijiew
open
[]
2
CONTRIBUTOR
Fixes ##150972 This pull request allows for dynamically set tags
true
3,016,379,634
Incorrect Gradient Computation in `torch.log1p`
vwrewsge
closed
[ "triage review", "module: autograd", "module: NaNs and Infs" ]
2
NONE
### 🐛 Describe the bug # To Reproduce ```python import torch def test_bug(): a = torch.tensor([-1.0, 0.5, 1.0], requires_grad=True) l = torch.log1p(a)[a > -1].sum() # This will include only a[1] and a[2] l.backward() print(a.grad) if __name__ == "__main__": test_bug() ``` # Output ``` tensor([ nan, 0.6667, 0.5000]) ``` # Expected Behaviour Since `a[0] = -1.0` is excluded by the `mask (a > -1)`, it should not contribute to the output `l`. Therefore, its gradient (`a.grad[0]`) should be `0` instead of `nan`. ### Versions PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A cc @ezyang @albanD @gqchen @nikitaved @soulitzer @Varal7 @xmfan
true
3,016,373,776
AOTInductor package can only be loaded on the first GPU (cuda:0) in C++ via AOTIModelPackageLoader
juliusgh
closed
[ "triaged", "oncall: r2p", "oncall: pt2", "oncall: export", "module: aotinductor" ]
2
CONTRIBUTOR
### 🐛 Describe the bug Thanks for implementing the very helpful AOTInductor features in C++! In my scenario I have to load a compiled `*.pt2` package on multiple GPUs (e.g. `cuda:{0..7}`) and then run inference on all of them. AFAIK `torch::inductor::AOTIModelPackageLoader` only supports loading the package on device `cuda` and I think this is not intended. The signature of the constructor of `AOTIModelPackageLoader` does not have the option to pass the specific device: ```cpp AOTIModelPackageLoader( const std::string& model_package_path, const std::string& model_name = "model", const bool run_single_threaded = false, const size_t num_runners = 1) ``` From the `*.pt2` file, the package loader reads the following information: ```cpp // Construct the runner depending on the device information std::string device = metadata_["AOTI_DEVICE_KEY"]; ``` and then uses this string as device identifier to instantiate the runner ```cpp runner_ = registered_aoti_runner[device]( so_path, num_runners, device, cubin_dir, run_single_threaded); } ``` However, this is only the device type (e.g. `cuda` not `cuda:1`) and the model will only be loaded to `cuda:0`. Changing the meta data `AOTI_DEVICE_KEY` to the specific device would not be a good solution in my opinion and so far the AOTI exporter in Python only stores the device type, e.g., `cuda`. I think it would be very helpful if the constructor of `AOTIModelPackageLoader` can be extended with an (optional) device specification. At the moment, I use the following workaround that works: 1. Unpack the `*.pt2` file manually and retrieve `so_path` and `cubin_dir` 2. Create PyTorch AOTI runner on specified device using ```cpp auto runner = torch::inductor::AOTIModelContainerRunnerCuda(so_path, 1, device_string, cubin_dir, false); ``` ### Versions Collecting environment information... PyTorch version: 2.7.0+cu128 Is debug build: False CUDA used to build PyTorch: 12.8 ROCM used to build PyTorch: N/A OS: Ubuntu 24.04.2 LTS (x86_64) GCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 Clang version: Could not collect CMake version: version 3.28.3 Libc version: glibc-2.39 Python version: 3.12.3 (main, Feb 4 2025, 14:48:35) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-6.11.0-24-generic-x86_64-with-glibc2.39 Is CUDA available: True CUDA runtime version: 12.8.93 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H100 NVL GPU 1: NVIDIA H100 NVL Nvidia driver version: 570.133.20 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 96 On-line CPU(s) list: 0-95 Vendor ID: AuthenticAMD Model name: AMD EPYC 9654 96-Core Processor CPU family: 25 Model: 17 Thread(s) per core: 1 Core(s) per socket: 96 Socket(s): 1 Stepping: 1 Frequency boost: enabled CPU(s) scaling MHz: 51% CPU max MHz: 3707.8120 CPU min MHz: 1500.0000 BogoMIPS: 4800.20 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid overflow_recov succor smca fsrm flush_l1d debug_swap Virtualization: AMD-V L1d cache: 3 MiB (96 instances) L1i cache: 3 MiB (96 instances) L2 cache: 96 MiB (96 instances) L3 cache: 384 MiB (12 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-95 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.1.2 [pip3] nvidia-cublas-cu12==12.8.3.14 [pip3] nvidia-cuda-cupti-cu12==12.8.57 [pip3] nvidia-cuda-nvrtc-cu12==12.8.61 [pip3] nvidia-cuda-runtime-cu12==12.8.57 [pip3] nvidia-cudnn-cu12==9.7.1.26 [pip3] nvidia-cufft-cu12==11.3.3.41 [pip3] nvidia-curand-cu12==10.3.9.55 [pip3] nvidia-cusolver-cu12==11.7.2.55 [pip3] nvidia-cusparse-cu12==12.5.7.53 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.26.2 [pip3] nvidia-nvjitlink-cu12==12.8.61 [pip3] nvidia-nvtx-cu12==12.8.55 [pip3] torch==2.7.0+cu128 [pip3] torchaudio==2.7.0+cu128 [pip3] torchvision==0.22.0+cu128 [pip3] triton==3.3.0 cc @dzhulgakov @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4 @desertfire @chenyang78 @yushangdi @benjaminglass1
true
3,016,198,895
Update CPU Inductor merge rules by adding more CPP Template
leslie-fang-intel
open
[ "open source", "topic: not user facing" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152086 **Summary** Add more CPP Template into the CPU Inductor merge rules.
true
3,016,193,153
Aborted (core dumped) in torch.fliplr
cx104906
closed
[ "needs reproduction", "module: crash", "triaged", "security", "topic: fuzzer" ]
2
NONE
### 🐛 Describe the bug ### Summary When using torch.fliplr with invalid data, the program crashes with Aborted (core dumped). ### Reproduce curl -L -o 001-args.pkl "https://github.com/cx104906/poc/raw/main/pytorch/id%3A000001-args.pkl" curl -L -o 001-kwargs.pkl "https://github.com/cx104906/poc/raw/main/pytorch/id%3A000001-kwargs.pkl" python testcrash/run.py run.py: ``` import torch import pickle device = torch.device('cpu') print(torch.__version__) mylistfile = "xxx/testcrash/001-args.pkl" mydictfile = "xxx/testcrash/001-kwargs.pkl" with open(mylistfile,"rb") as f: mylist = pickle.load(f) with open(mydictfile,"rb") as f: mydict = pickle.load(f) print("test......") torch.fliplr(*mylist,**mydict) ``` output: 2.6.0+cpu /home/cas/anaconda3/envs/py310/lib/python3.10/site-packages/torch/_utils.py:410: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() device=storage.device, test...... corrupted size vs. prev_size 已放弃 (核心已转储) ### Environment python:3.10.0 pytorch:2.6.0+cpu os:ubuntu-18.04 ### Versions python testcrash/collect_env.py Collecting environment information... PyTorch version: 2.6.0+cpu Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 18.04.6 LTS (x86_64) GCC version: (GCC) 11.2.0 Clang version: 12.0.1 CMake version: version 3.22.2 Libc version: glibc-2.27 Python version: 3.10.0 (default, Mar 3 2022, 09:58:08) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-5.4.0-144-generic-x86_64-with-glibc2.27 Is CUDA available: False CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: Tesla T4 Nvidia driver version: 520.61.05 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: 架构: x86_64 CPU 运行模式: 32-bit, 64-bit 字节序: Little Endian CPU: 32 在线 CPU 列表: 0-31 每个核的线程数: 1 每个座的核数: 32 座: 1 NUMA 节点: 1 厂商 ID: GenuineIntel CPU 系列: 6 型号: 85 型号名称: Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz 步进: 7 CPU MHz: 2095.076 BogoMIPS: 4190.15 虚拟化: VT-x 超管理器厂商: KVM 虚拟化类型: 完全 L1d 缓存: 32K L1i 缓存: 32K L2 缓存: 4096K L3 缓存: 16384K NUMA 节点0 CPU: 0-31 标记: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat umip pku ospke avx512_vnni md_clear arch_capabilities Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu11==11.10.3.66 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu11==11.7.101 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu11==11.7.99 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu11==11.7.99 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu11==8.5.0.96 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu11==10.9.0.58 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu11==10.2.10.91 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu11==11.4.0.1 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu11==11.7.4.91 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu11==2.14.3 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu11==11.7.91 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] optree==0.14.1 [pip3] torch==2.6.0+cpu [pip3] torchaudio==2.6.0+cpu [pip3] torchvision==0.21.0+cpu [pip3] triton==3.2.0 [conda] torch 2.6.0+cpu pypi_0 pypi [conda] torchaudio 2.6.0+cpu pypi_0 pypi [conda] torchvision 0.21.0+cpu pypi_0 pypi
true
3,015,903,788
Revert "Add a warning when a tensor with requires_grad=True is converted to a scalar (#143261)"
PaulZhang12
closed
[ "ci-no-td" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * (to be filled) This reverts commit 515b45e5693dbf9dd58d8472806cbe5f49e43074. Reverted https://github.com/pytorch/pytorch/pull/143261 on behalf of https://github.com/clee2000 due to failing internal tests D72135661 ([comment](https://github.com/pytorch/pytorch/pull/143261#issuecomment-2767531682))
true
3,015,860,789
DISABLED test_captured_scale_float16_cuda_float16 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
3
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_captured_scale_float16_cuda_float16&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41048885024). Over the past 3 hours, it has been determined flaky in 4 workflow(s) with 8 failures and 4 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_captured_scale_float16_cuda_float16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 1748, in test_captured_scale self.run_test(score_mod_scale, dtype, device=device) File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 509, in run_test golden_out.backward(backward_grad.to(torch.float64)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_tensor.py", line 648, in backward torch.autograd.backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 354, in backward _engine_run_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 679, in backward ) = flex_attention_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 320, in maybe_run_autograd return self(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 847, in sdpa_dense_backward grad_softmax_scores - sum_scores + grad_logsumexp.unsqueeze(-1) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU 0 has a total capacity of 22.05 GiB of which 550.12 MiB is free. Including non-PyTorch memory, this process has 21.50 GiB memory in use. Of the allocated memory 4.81 GiB is allocated by PyTorch, and 16.42 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) To execute this test, run the following from the base repo dir: python test/inductor/test_flex_attention.py TestFlexAttentionCUDA.test_captured_scale_float16_cuda_float16 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,015,860,785
DISABLED test_builtin_score_mods_float32_score_mod4_cuda_float32 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
3
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_builtin_score_mods_float32_score_mod4_cuda_float32&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41051796108). Over the past 3 hours, it has been determined flaky in 4 workflow(s) with 8 failures and 4 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_builtin_score_mods_float32_score_mod4_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,015,740,899
Wrong formula for CosineAnnealingLR
bbbbbbbbba
open
[ "module: docs", "module: optimizer", "triaged", "actionable" ]
3
NONE
### 📚 The doc issue https://github.com/pytorch/pytorch/blob/1eba9b3aa3c43f86f4a2c807ac8e12c4a7767340/torch/optim/lr_scheduler.py#L1054-L1056 This formula does not incorporate the learning rate of the last step, is the same as the "If the learning rate is set solely by this scheduler" formula below, and does not seem to agree with the actual calculation for this case: https://github.com/pytorch/pytorch/blob/1eba9b3aa3c43f86f4a2c807ac8e12c4a7767340/torch/optim/lr_scheduler.py#L1123-L1129 ### Suggest a potential alternative/fix I think the correct formula should be something like: ``` \eta_{t+1} & = \eta_{min} + (\eta_t - \eta_{min})\left.\left(1 + \cos\left(\frac{T_{cur}+1}{T_{max}}\pi\right)\right)\middle/\left(1 + \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right)\right., & T_{cur} \neq (2k+1)T_{max}; \\ ``` cc @svekars @sekyondaMeta @AlannaBurke @vincentqb @jbschlosser @albanD @janeyx99 @crcrpar
true
3,015,732,432
[BE] Replace `std::runtime_error` with `TORCH_CHECK` [2/N]
shink
open
[ "open source", "release notes: quantization" ]
2
CONTRIBUTOR
Part of: #148114 Related commits: - #151880 cc: @albanD
true
3,015,711,694
Adding fbgemm to allowlist
jimone1
closed
[ "Merged", "ciflow/trunk", "release notes: fx", "fx" ]
8
CONTRIBUTOR
Adding `torch.ops.fbgemm` to GraphPickler's allowlist. Otherwise, the fx graph module containing `fbgemm` node will return "Unable to pickle non-standard op" error. The validation is done on the model and the difference appears only on the graph name not the node. cc @aorenste @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
3,015,677,260
Adding torch.ops.fbgemm to whitelist in GraphPickler
jimone1
closed
[ "release notes: fx", "fx" ]
2
CONTRIBUTOR
As title, this is tested by running on the model see D73553912 as an example. The only difference is the module name. cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
3,015,657,302
NCCL Error 1: unhandled CUDA error during DistributedDataParallel (DDP) training with NVIDIA GeForce RTX 5090
kingchou007
closed
[ "module: build" ]
3
NONE
### 🐛 Describe the bug I'm encountering an error while running a distributed training job using DistributedDataParallel (DDP) on a system with an NVIDIA GeForce RTX 5090 GPU. The job fails with the following error: ``` RuntimeError: NCCL Error 1: unhandled cuda error The issue seems to be related to NCCL (NVIDIA Collective Communications Library) and CUDA compatibility. The error message mentions "named symbol not found", and NCCL is falling back to an internal implementation because it can't find the required CUDA symbols. ``` ## Error Log ``` 4d1a2ae696c8:50555:50555 [0] NCCL WARN Cuda failure 'named symbol not found' 4d1a2ae696c8:50555:50555 [0] NCCL INFO Bootstrap : Using eth0:172.17.0.2<0> 4d1a2ae696c8:50555:50555 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation 4d1a2ae696c8:50555:50555 [0] NCCL INFO cudaDriverVersion 12080 NCCL version 2.14.3+cuda11.8 ... 4d1a2ae696c8:50555:50719 [0] NCCL INFO Using network Socket 4d1a2ae696c8:50555:50719 [0] NCCL INFO NCCL_P2P_LEVEL set by environment to LOC ... ### Versions /root/miniforge3/envs/rise/lib/python3.8/site-packages/torch/cuda/__init__.py:173: UserWarning: NVIDIA GeForce RTX 5090 with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70 sm_75 sm_80 sm_86 sm_90. If you want to use the NVIDIA GeForce RTX 5090 GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/ warnings.warn(incompatible_device_warn.format(device_name, capability, " ".join(arch_list), device_name)) PyTorch version: 2.0.0+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.25.0 Libc version: glibc-2.35 Python version: 3.8.20 | packaged by conda-forge | (default, Sep 30 2024, 17:52:49) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-6.8.0-52-generic-x86_64-with-glibc2.17 Is CUDA available: True CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 5090 GPU 1: NVIDIA GeForce RTX 5090 GPU 2: NVIDIA GeForce RTX 5090 GPU 3: NVIDIA GeForce RTX 5090 Nvidia driver version: 570.86.16 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.6 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.6 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.6 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.6 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.6 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.6 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.6 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Vendor ID: AuthenticAMD Model name: AMD EPYC 7542 32-Core Processor CPU family: 23 Model: 49 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 1 Stepping: 0 Frequency boost: enabled CPU max MHz: 2900.0000 CPU min MHz: 1500.0000 BogoMIPS: 5800.20 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sev sev_es Virtualization: AMD-V L1d cache: 1 MiB (32 instances) L1i cache: 1 MiB (32 instances) L2 cache: 16 MiB (32 instances) L3 cache: 128 MiB (8 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-63 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.24.4 [pip3] nvidia-cublas-cu11==11.10.3.66 [pip3] nvidia-cuda-nvrtc-cu11==11.7.99 [pip3] nvidia-cuda-runtime-cu11==11.7.99 [pip3] nvidia-cudnn-cu11==8.5.0.96 [pip3] nvidia-nccl-cu12==2.26.2.post1 [pip3] pytorch3d==0.7.8 [pip3] torch==2.0.0+cu118 [pip3] torch-geometric==2.6.1 [pip3] torchaudio==2.0.1+cu118 [pip3] torchvision==0.15.1+cu118 [pip3] triton==2.0.0 [conda] cudatoolkit 11.8.0 h4ba93d1_13 conda-forge [conda] nomkl 3.0 0 anaconda [conda] numpy 1.24.4 pypi_0 pypi [conda] nvidia-cublas-cu11 11.10.3.66 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu11 11.7.99 pypi_0 pypi [conda] nvidia-cuda-runtime-cu11 11.7.99 pypi_0 pypi [conda] nvidia-cudnn-cu11 8.5.0.96 pypi_0 pypi [conda] nvidia-nccl-cu12 2.26.2.post1 pypi_0 pypi [conda] pytorch3d 0.7.8 dev_0 <develop> [conda] torch 2.0.0+cu118 pypi_0 pypi [conda] torch-geometric 2.6.1 pypi_0 pypi [conda] torchaudio 2.0.1+cu118 pypi_0 pypi [conda] torchvision 0.15.1+cu118 pypi_0 pypi [conda] triton 2.0.0 pypi_0 pypi cc @malfet @seemethere @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
3,015,585,361
[cuDNN][SDPA] Fix head-dim 256 condition for SM 10.0
eqy
closed
[ "module: cudnn", "module: cuda", "triaged", "open source", "Merged", "ciflow/trunk", "topic: bug fixes", "topic: not user facing", "module: sdpa" ]
9
COLLABORATOR
turns out the backward is not supported yet, whoops cc @csarofeen @ptrblck @xwang233 @msaroufim @jerryzh168
true
3,015,573,050
[vec128] Fix fmsub NEON defintion
malfet
closed
[ "module: cpu", "Merged", "ciflow/trunk", "topic: bug fixes", "release notes: cpu (aarch64)" ]
5
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152075 As reported in https://github.com/pytorch/pytorch/issues/149292, according to manual, `vfmsq_f32` implements `c - a * b` rather than `a * b - c`, so it's call must be prefixed with `vnegq_f32` Also, adjust the tests to use OpMath for FMA computation to avoid accuracy error accumulation due to non-fused multiply-and-add over lower precision dtypes Note that `Vectorized::fmsub` is not currently instantiated anywhere, so it could safely remain broken TODO: - Enable C++ testing on MacOS and/or aarch64 platforms (right now Mac tests are build without C++ tests) Fixes https://github.com/pytorch/pytorch/issues/149292 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @jerryzh168
true
3,015,553,258
Cause `ceil_div` to accept values of differing types an upcast to the larger type
r-barnes
open
[ "fb-exported" ]
3
CONTRIBUTOR
Test Plan: Sandcastle Reviewed By: swolchok Differential Revision: D73550062
true
3,015,545,729
[export][function schema] support exporting hop with function schema argument
ydwu4
closed
[ "Merged", "fx", "ciflow/inductor", "release notes: export" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151067 * #152248 * #152247 * #152246 * #152245 * #152244 * __->__ #152073 * #152072 We need to make function schema proxyable to trace a the auto_functionalized hop that takes function schema as inputs. The implementation basically follows how we support torchbind object: 1. upon seeing an untracked function schema arg, we creates a constant get_attr node 2. we track the function schema argument in export to support lift/unlift. 3. we need to support serde for functional schema. We'll add support for this in follow-up PRs. However, compared with torchbind object: 1. we don't need a dynamo implementation, because the function schema is added when we auto_functionalize a hop to the argument of auto_functionalized. One potential use case is users re-traces an exported program with strict mode. Since non-strict is the default now, we don't see a use case yet. 2. we don't need an inductor implementation, because the function schema will go away after auto_functionalized re-inplacing pass. edit: we greatly simplifies (and generalizes) the implementation following @zou3519 's suggestion of using pytree.register_constant cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
3,015,545,632
[export][be] better type annotation for lift_constants_pass
ydwu4
closed
[ "Merged", "ciflow/inductor", "release notes: export" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151067 * #152248 * #152247 * #152246 * #152245 * #152244 * #152073 * __->__ #152072
true
3,015,508,051
[inductor][BE] Clean up use_mixed_mm and mixed_mm_choice usage inside pytorch
henrylhtsang
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152071 Differential Revision: [D73551912](https://our.internmc.facebook.com/intern/diff/D73551912/) Decided to leave the mixed_mm tests alive. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,015,481,487
failing to read rames even toughh the cam is connected
zouaoui21
closed
[]
3
NONE
### 🐛 Describe the bug when i run the code , the url is correct , and it connects to the camera but never reads the frames for this code : import cv2 rtsp_url = "..................................." video = cv2.VideoCapture(rtsp_url) video.set(cv2.CAP_PROP_BUFFERSIZE, 3) # Increase buffer to prevent frame drops if not video.isOpened(): print("❌ Failed to open RTSP stream.") else: print("✅ Connected! Attempting to read frames...") frame_count = 0 while video.isOpened(): ret, frame = video.read() if not ret or frame is None: print(f"❌ Failed to read frame {frame_count}. Stream may be disconnected.") break frame_count += 1 print(f"📸 Frame {frame_count} captured.") cv2.imshow("RTSP", frame) if cv2.waitKey(1) & 0xFF == ord('q'): break video.release() cv2.destroyAllWindows() print("✅ Stream closed.") this is the result : ✅ Connected! Attempting to read frames... ❌ Failed to read frame 0. Stream may be disconnected. ✅ Stream closed. ### Versions PyTorch version: 2.6.0+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Microsoft Windows 11 Famille Unilingue (10.0.26100 64 bits) GCC version: Could not collect Clang version: Could not collect CMake version: Could not collect Libc version: N/A Python version: 3.12.3 | packaged by conda-forge | (main, Apr 15 2024, 18:20:11) [MSC v.1938 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-11-10.0.26100-SP0 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Name: 12th Gen Intel(R) Core(TM) i7-1255U Manufacturer: GenuineIntel Family: 198 Architecture: 9 ProcessorType: 3 DeviceID: CPU0 CurrentClockSpeed: 1700 MaxClockSpeed: 1700 L2CacheSize: 6656 L2CacheSpeed: None Revision: None Versions of relevant libraries: [pip3] flake8==7.0.0 [pip3] mypy==1.11.2 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] numpydoc==1.7.0 [pip3] torch==2.6.0 [pip3] torchaudio==2.6.0+cpu [pip3] torchvision==0.21.0 [conda] _anaconda_depends 2024.10 py312_mkl_0 [conda] blas 1.0 mkl [conda] mkl 2023.1.0 h6b88ed4_46358 [conda] mkl-service 2.4.0 py312h2bbff1b_1 [conda] mkl_fft 1.3.10 py312h827c3e9_0 [conda] mkl_random 1.2.7 py312h0158946_0 [conda] numpy 1.26.4 py312hfd52020_0 [conda] numpy-base 1.26.4 py312h4dde369_0 [conda] numpydoc 1.7.0 py312haa95532_0 [conda] torch 2.6.0 pypi_0 pypi [conda] torchaudio 2.6.0+cpu pypi_0 pypi [conda] torchvision 0.21.0 pypi_0 pypi
true
3,015,472,592
[Proposal] Drop legacy CUDA support to slim down the wheels
NevermindNilas
closed
[ "open source", "Merged", "ciflow/trunk", "release notes: cuda", "release notes: build" ]
24
CONTRIBUTOR
Proposal of dropping legacy CUDA support to slim down the Windows wheels. With the latest release of 2.7.0 and the new Blackwell support we've seen yet another rise in size to the wheel, going from ~2.5GB with Pytorch 2.6.0 all the way to ~3.1GB with pytorch 2.7.0 CUDA 12.8 on Python 3.12 and ~3.3GB with Python 3.13. Python 3.12, Pytorch 2.7.0 Cuda 12.8 ![image](https://github.com/user-attachments/assets/78a5bbcb-027e-4139-84f0-57bfae9f594e) Python 3.13, Pytorch 2.7.0, Cuda 12.8 ![image](https://github.com/user-attachments/assets/7f256860-46e3-41f6-81b3-65bd3ee5aa77) These .CI changes should imply the removal of support for many GPUs which are now about 8 years old if not older, including GPUs like the GTX960M, 950M, 940M, 930M and some other Quadro GPUs all the way from april 2016 like Quadro M500M as per [Nvidia's Documentation](https://developer.nvidia.com/cuda-gpus). This change would also save on our bandwidth 😅 @seemethere
true
3,015,451,478
Compiling attention (SDPA) with nested tensors fails when using DDP
mahyarkoy
open
[ "oncall: distributed", "triaged", "module: nestedtensor", "oncall: pt2", "module: sdpa" ]
2
NONE
### 🐛 Describe the bug When running the script below: 1. Compiling on single gpu no DDP works 2. No compiling using DDP works 3. But compiling using DDP breaks! Using dense tensors as input (n) works fine in all cases. To reproduce, run the script below with: ``` torchrun --standalone --nnodes=1 --nproc_per_node=2 compile_bug.py ``` compile_bug.py ```python import torch import torch.nn as nn import torch.nn.functional as F import torch.nested as nested import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP import os torch.manual_seed(0) torch.set_float32_matmul_precision('high') @torch.compile ### BREAKS WHEN USING DDP, WORKS FINE WITHOUT DDP class MultiheadAttention(nn.Module): def __init__(self, embed_dim, nheads, dropout=0., k_dim=None, v_dim=None): super().__init__() self.nheads = nheads self.dropout = dropout self.embed_dim = embed_dim self.k_dim = embed_dim if k_dim is None else k_dim self.v_dim = embed_dim if v_dim is None else v_dim self.query_proj = nn.Linear(self.embed_dim, self.k_dim * self.nheads) self.key_proj = nn.Linear(self.embed_dim, self.k_dim * self.nheads) self.value_proj = nn.Linear(self.embed_dim, self.v_dim * self.nheads) self.out_proj = nn.Linear(self.v_dim * self.nheads, self.embed_dim) def forward(self, query, key, value, is_causal=False): ### (..., embed_dim) -> (..., k_dim or v_dim) query = self.query_proj(query) key = self.key_proj(key) value = self.value_proj(value) ### (N, L_t, k_dim*nheads) -> (N, L_t, nheads, k_dim) -> (N, nheads, L_t, k_dim) query = query.reshape(query.size(0), -1, self.nheads, self.k_dim).transpose(1, 2) ### (N, L_s, k_dim*nheads) -> (N, L_s, nheads, k_dim) -> (N, nheads, L_s, k_dim) key = key.reshape(key.size(0), -1, self.nheads, self.k_dim).transpose(1, 2) ### (N, L_s, v_dim*nheads) -> (N, L_s, nheads, v_dim) -> (N, nheads, L_s, v_dim) value = value.reshape(value.size(0), -1, self.nheads, self.v_dim).transpose(1, 2) ### (N, nheads, L_t, v_dim) attn_output = F.scaled_dot_product_attention(query, key, value, dropout_p=self.dropout if self.training else 0.0, is_causal=is_causal) ### (N, nheads, L_t, v_dim) -> (N, L_t, nheads, v_dim) -> (N, L_t, nheads*v_dim) attn_output = attn_output.transpose(1, 2).reshape(query.size(0), -1, self.nheads*self.v_dim) ### (N, L_t, nheads * v_dim) -> (N, L_t, embed_dim) attn_output = self.out_proj(attn_output) return (attn_output,) ## DIST setup if 'WORLD_SIZE' in os.environ: backend = 'nccl' if torch.cuda.is_available() else 'gloo' dist.init_process_group(backend) ### Model setup embed_dim = 512 num_heads = 8 k_dim = 64 v_dim = 64 dropout = 0. att_layer = MultiheadAttention(embed_dim, num_heads, k_dim=k_dim, v_dim=v_dim, dropout=dropout) if dist.is_initialized(): rank = dist.get_rank() device = f'cuda:{rank}' att_layer.to(device) att_layer = DDP(att_layer, device_ids=[rank], find_unused_parameters=False) else: device = 'cuda:0' att_layer.to(device) ### Run on some data t = torch.ones(4*512).reshape(4, 512).float() n = nested.as_nested_tensor([t, t[:1]], layout=torch.jagged).to(device) na = att_layer(query=n, key=n, value=n) ### Loss and backward loss = na[0].values().sum() loss.backward() print(loss) ``` Error: ``` W0423 23:11:13.139000 916284 /nas/eclairnas01/users/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/distributed/run.py:766] W0423 23:11:13.139000 916284 /nas/eclairnas01/users/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/distributed/run.py:766] ***************************************** W0423 23:11:13.139000 916284 /nas/eclairnas01/users/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0423 23:11:13.139000 916284 /nas/eclairnas01/users/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/distributed/run.py:766] ***************************************** [rank0]: Traceback (most recent call last): [rank0]: File "/nas/home/mkhayat/projects/sparse_gs/bug_compile2.py", line 89, in <module> [rank0]: na = att_layer(query=n, key=n, value=n) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl [rank0]: return self._call_impl(*args, **kwargs) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl [rank0]: return forward_call(*args, **kwargs) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/nn/parallel/distributed.py", line 1637, in forward [rank0]: else self._run_ddp_forward(*inputs, **kwargs) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/nn/parallel/distributed.py", line 1464, in _run_ddp_forward [rank0]: return self.module(*inputs, **kwargs) # type: ignore[index] [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 671, in _fn [rank0]: raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 658, in _fn [rank0]: return fn(*args, **kwargs) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl [rank0]: return self._call_impl(*args, **kwargs) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 671, in _fn [rank0]: raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 658, in _fn [rank0]: return fn(*args, **kwargs) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl [rank0]: return forward_call(*args, **kwargs) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 1446, in __call__ [rank0]: return hijacked_callback( [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 1233, in __call__ [rank0]: result = self._inner_convert( [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 619, in __call__ [rank0]: return _compile( [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 1079, in _compile [rank0]: guarded_code = compile_inner(code, one_graph, hooks, transform) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_utils_internal.py", line 97, in wrapper_function [rank0]: return function(*args, **kwargs) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 779, in compile_inner [rank0]: return _compile_inner(code, one_graph, hooks, transform) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 815, in _compile_inner [rank0]: out_code = transform_code_object(code, transform) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1422, in transform_code_object [rank0]: transformations(instructions, code_options) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 264, in _fn [rank0]: return fn(*args, **kwargs) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 736, in transform [rank0]: tracer.run() [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3491, in run [rank0]: super().run() [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1345, in run [rank0]: while self.step(): [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1254, in step [rank0]: self.dispatch_table[inst.opcode](self, inst) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3692, in RETURN_VALUE [rank0]: self._return(inst) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3677, in _return [rank0]: self.output.compile_subgraph( [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1199, in compile_subgraph [rank0]: self.compile_and_call_fx_graph(tx, pass2.graph_output_vars(), root) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1460, in compile_and_call_fx_graph [rank0]: compiled_fn = self.call_user_compiler(gm) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1512, in call_user_compiler [rank0]: return self._call_user_compiler(gm) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1569, in _call_user_compiler [rank0]: raise BackendCompilerFailed( [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1544, in _call_user_compiler [rank0]: compiled_fn = compiler_fn(gm, self.example_inputs()) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/backends/distributed.py", line 548, in compile_fn [rank0]: submod_compiler.run(*example_inputs) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/fx/interpreter.py", line 171, in run [rank0]: self.env[node] = self.run_node(node) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/backends/distributed.py", line 283, in run_node [rank0]: compiled_submod_real = self.compile_submod(real_mod, new_args, kwargs) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/backends/distributed.py", line 198, in compile_submod [rank0]: self.compiler(input_mod, args), [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/repro/after_dynamo.py", line 150, in __call__ [rank0]: compiled_gm = compiler_fn(gm, example_inputs) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/__init__.py", line 2355, in __call__ [rank0]: return compile_fx(model_, inputs_, config_patches=self.config) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 2169, in compile_fx [rank0]: return aot_autograd( [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/backends/common.py", line 106, in __call__ [rank0]: cg = aot_module_simplified(gm, example_inputs, **self.kwargs) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1165, in aot_module_simplified [rank0]: compiled_fn = AOTAutogradCache.load( [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/autograd_cache.py", line 842, in load [rank0]: compiled_fn = dispatch_and_compile() [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1150, in dispatch_and_compile [rank0]: compiled_fn, _ = create_aot_dispatcher_function( [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 574, in create_aot_dispatcher_function [rank0]: return _create_aot_dispatcher_function( [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 824, in _create_aot_dispatcher_function [rank0]: compiled_fn, fw_metadata = compiler_fn( [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/jit_compile_runtime_wrappers.py", line 1107, in aot_dispatch_autograd [rank0]: compiled_fw_func = aot_config.fw_compiler(fw_module, adjusted_flat_args) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 483, in __call__ [rank0]: return self.compiler_fn(gm, example_inputs) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 2016, in fw_compiler_base [rank0]: return inner_compile( [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 633, in compile_fx_inner [rank0]: return wrap_compiler_debug(_compile_fx_inner, compiler_name="inductor")( [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/repro/after_aot.py", line 124, in debug_wrapper [rank0]: inner_compiled_fn = compiler_fn(gm, example_inputs) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 840, in _compile_fx_inner [rank0]: compiled_graph.post_compile(example_inputs, constants, graph_kwargs) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_inductor/output_code.py", line 578, in post_compile [rank0]: set_tracing_context_output_strides(example_inputs, self) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_inductor/utils.py", line 2526, in set_tracing_context_output_strides [rank0]: tuple(map_expr(e) for e in exprs) # type: ignore[misc] [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_inductor/utils.py", line 2526, in <genexpr> [rank0]: tuple(map_expr(e) for e in exprs) # type: ignore[misc] [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_inductor/utils.py", line 2522, in map_expr [rank0]: return shape_env.deserialize_symexpr(e) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py", line 5569, in deserialize_symexpr [rank0]: args = { [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py", line 5570, in <dictcomp> [rank0]: str(e): SymInt(SymNode(e, self, int, int(val), fx_node=None)) [rank0]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/sympy/core/expr.py", line 307, in __int__ [rank0]: raise TypeError("Cannot convert symbols to int") [rank0]: torch._dynamo.exc.BackendCompilerFailed: backend='compile_fn' raised: [rank0]: TypeError: Cannot convert symbols to int [rank0]: While executing %submod_0 : [num_users=1] = call_module[target=submod_0](args = (%l_query_, %s83, %l_self_modules_query_proj_parameters_weight_, %l_self_modules_query_proj_parameters_bias_, %l_self_modules_key_proj_parameters_weight_, %l_self_modules_key_proj_parameters_bias_, %l_self_modules_value_proj_parameters_weight_, %l_self_modules_value_proj_parameters_bias_), kwargs = {}) [rank0]: GraphModule: class GraphModule(torch.nn.Module): [rank0]: def forward(self, L_self_modules_query_proj_parameters_weight_: "f32[512, 512][512, 1]", L_self_modules_query_proj_parameters_bias_: "f32[512][1]", s83: "Sym(s83)", L_query_: "f32[2, s83, 512][512*s83, 512, 1]", L_self_modules_key_proj_parameters_weight_: "f32[512, 512][512, 1]", L_self_modules_key_proj_parameters_bias_: "f32[512][1]", L_self_modules_value_proj_parameters_weight_: "f32[512, 512][512, 1]", L_self_modules_value_proj_parameters_bias_: "f32[512][1]", L_self_modules_out_proj_parameters_weight_: "f32[512, 512][512, 1]", L_self_modules_out_proj_parameters_bias_: "f32[512][1]"): [rank0]: l_self_modules_query_proj_parameters_weight_ = L_self_modules_query_proj_parameters_weight_ [rank0]: l_self_modules_query_proj_parameters_bias_ = L_self_modules_query_proj_parameters_bias_ [rank0]: l_query_ = L_query_ [rank0]: l_self_modules_key_proj_parameters_weight_ = L_self_modules_key_proj_parameters_weight_ [rank0]: l_self_modules_key_proj_parameters_bias_ = L_self_modules_key_proj_parameters_bias_ [rank0]: l_self_modules_value_proj_parameters_weight_ = L_self_modules_value_proj_parameters_weight_ [rank0]: l_self_modules_value_proj_parameters_bias_ = L_self_modules_value_proj_parameters_bias_ [rank0]: l_self_modules_out_proj_parameters_weight_ = L_self_modules_out_proj_parameters_weight_ [rank0]: l_self_modules_out_proj_parameters_bias_ = L_self_modules_out_proj_parameters_bias_ [rank0]: [rank0]: # No stacktrace found for following nodes [rank0]: submod_0 = self.submod_0(l_query_, s83, l_self_modules_query_proj_parameters_weight_, l_self_modules_query_proj_parameters_bias_, l_self_modules_key_proj_parameters_weight_, l_self_modules_key_proj_parameters_bias_, l_self_modules_value_proj_parameters_weight_, l_self_modules_value_proj_parameters_bias_); l_query_ = l_self_modules_query_proj_parameters_weight_ = l_self_modules_query_proj_parameters_bias_ = l_self_modules_key_proj_parameters_weight_ = l_self_modules_key_proj_parameters_bias_ = l_self_modules_value_proj_parameters_weight_ = l_self_modules_value_proj_parameters_bias_ = None [rank0]: submod_1 = self.submod_1(submod_0, s83, l_self_modules_out_proj_parameters_weight_, l_self_modules_out_proj_parameters_bias_); submod_0 = s83 = l_self_modules_out_proj_parameters_weight_ = l_self_modules_out_proj_parameters_bias_ = None [rank0]: return (submod_1,) [rank0]: [rank0]: class submod_0(torch.nn.Module): [rank0]: def forward(self, l_query_: "f32[2, s83, 512][512*s83, 512, 1]", s83: "Sym(s83)", l_self_modules_query_proj_parameters_weight_: "f32[512, 512][512, 1]", l_self_modules_query_proj_parameters_bias_: "f32[512][1]", l_self_modules_key_proj_parameters_weight_: "f32[512, 512][512, 1]", l_self_modules_key_proj_parameters_bias_: "f32[512][1]", l_self_modules_value_proj_parameters_weight_: "f32[512, 512][512, 1]", l_self_modules_value_proj_parameters_bias_: "f32[512][1]"): [rank0]: # File: /nas/home/mkhayat/projects/sparse_gs/bug_compile2.py:39 in forward, code: query = self.query_proj(query) [rank0]: linear: "f32[2, s83, 512][512*s83, 512, 1]" = torch._C._nn.linear(l_query_, l_self_modules_query_proj_parameters_weight_, l_self_modules_query_proj_parameters_bias_); l_self_modules_query_proj_parameters_weight_ = l_self_modules_query_proj_parameters_bias_ = None [rank0]: [rank0]: # File: /nas/home/mkhayat/projects/sparse_gs/bug_compile2.py:40 in forward, code: key = self.key_proj(key) [rank0]: linear_1: "f32[2, s83, 512][512*s83, 512, 1]" = torch._C._nn.linear(l_query_, l_self_modules_key_proj_parameters_weight_, l_self_modules_key_proj_parameters_bias_); l_self_modules_key_proj_parameters_weight_ = l_self_modules_key_proj_parameters_bias_ = None [rank0]: [rank0]: # File: /nas/home/mkhayat/projects/sparse_gs/bug_compile2.py:41 in forward, code: value = self.value_proj(value) [rank0]: linear_2: "f32[2, s83, 512][512*s83, 512, 1]" = torch._C._nn.linear(l_query_, l_self_modules_value_proj_parameters_weight_, l_self_modules_value_proj_parameters_bias_); l_query_ = l_self_modules_value_proj_parameters_weight_ = l_self_modules_value_proj_parameters_bias_ = None [rank0]: [rank0]: # File: /nas/home/mkhayat/projects/sparse_gs/bug_compile2.py:44 in forward, code: query = query.reshape(query.size(0), -1, self.nheads, self.k_dim).transpose(1, 2) [rank0]: reshape: "f32[2, s83, 8, 64][512*s83, 512, 64, 1]" = linear.reshape(2, -1, 8, 64); linear = None [rank0]: transpose: "f32[2, 8, s83, 64][512*s83, 64, 512, 1]" = reshape.transpose(1, 2); reshape = None [rank0]: [rank0]: # File: /nas/home/mkhayat/projects/sparse_gs/bug_compile2.py:47 in forward, code: key = key.reshape(key.size(0), -1, self.nheads, self.k_dim).transpose(1, 2) [rank0]: reshape_1: "f32[2, s83, 8, 64][512*s83, 512, 64, 1]" = linear_1.reshape(2, -1, 8, 64); linear_1 = None [rank0]: transpose_1: "f32[2, 8, s83, 64][512*s83, 64, 512, 1]" = reshape_1.transpose(1, 2); reshape_1 = None [rank0]: [rank0]: # File: /nas/home/mkhayat/projects/sparse_gs/bug_compile2.py:50 in forward, code: value = value.reshape(value.size(0), -1, self.nheads, self.v_dim).transpose(1, 2) [rank0]: reshape_2: "f32[2, s83, 8, 64][512*s83, 512, 64, 1]" = linear_2.reshape(2, -1, 8, 64); linear_2 = None [rank0]: transpose_2: "f32[2, 8, s83, 64][512*s83, 64, 512, 1]" = reshape_2.transpose(1, 2); reshape_2 = None [rank0]: [rank0]: # File: /nas/home/mkhayat/projects/sparse_gs/bug_compile2.py:53 in forward, code: attn_output = F.scaled_dot_product_attention(query, key, value, [rank0]: scaled_dot_product_attention: "f32[2, 8, s83, 64][512*s83, 64, 512, 1]" = torch._C._nn.scaled_dot_product_attention(transpose, transpose_1, transpose_2, dropout_p = 0.0, is_causal = False); transpose = transpose_1 = transpose_2 = None [rank0]: [rank0]: # File: /nas/home/mkhayat/projects/sparse_gs/bug_compile2.py:56 in forward, code: attn_output = attn_output.transpose(1, 2).reshape(query.size(0), -1, self.nheads*self.v_dim) [rank0]: transpose_3: "f32[2, s83, 8, 64][512*s83, 512, 64, 1]" = scaled_dot_product_attention.transpose(1, 2); scaled_dot_product_attention = None [rank0]: reshape_3: "f32[2, s83, 512][512*s83, 512, 1]" = transpose_3.reshape(2, -1, 512); transpose_3 = None [rank0]: return (reshape_3,) [rank0]: [rank0]: class submod_1(torch.nn.Module): [rank0]: def forward(self, attn_output_1: "f32[2, s83, 512][512*s83, 512, 1]", s83: "Sym(s83)", l_self_modules_out_proj_parameters_weight_: "f32[512, 512][512, 1]", l_self_modules_out_proj_parameters_bias_: "f32[512][1]"): [rank0]: # File: /nas/home/mkhayat/projects/sparse_gs/bug_compile2.py:59 in forward, code: attn_output = self.out_proj(attn_output) [rank0]: linear: "f32[2, s83, 512][512*s83, 512, 1]" = torch._C._nn.linear(attn_output_1, l_self_modules_out_proj_parameters_weight_, l_self_modules_out_proj_parameters_bias_); attn_output_1 = l_self_modules_out_proj_parameters_weight_ = l_self_modules_out_proj_parameters_bias_ = None [rank0]: return linear [rank0]: [rank0]: Original traceback: [rank0]: None [rank1]: Traceback (most recent call last): [rank1]: File "/nas/home/mkhayat/projects/sparse_gs/bug_compile2.py", line 89, in <module> [rank1]: na = att_layer(query=n, key=n, value=n) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl [rank1]: return self._call_impl(*args, **kwargs) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl [rank1]: return forward_call(*args, **kwargs) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/nn/parallel/distributed.py", line 1637, in forward [rank1]: else self._run_ddp_forward(*inputs, **kwargs) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/nn/parallel/distributed.py", line 1464, in _run_ddp_forward [rank1]: return self.module(*inputs, **kwargs) # type: ignore[index] [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 671, in _fn [rank1]: raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 658, in _fn [rank1]: return fn(*args, **kwargs) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl [rank1]: return self._call_impl(*args, **kwargs) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 671, in _fn [rank1]: raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 658, in _fn [rank1]: return fn(*args, **kwargs) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl [rank1]: return forward_call(*args, **kwargs) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 1446, in __call__ [rank1]: return hijacked_callback( [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 1233, in __call__ [rank1]: result = self._inner_convert( [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 619, in __call__ [rank1]: return _compile( [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 1079, in _compile [rank1]: guarded_code = compile_inner(code, one_graph, hooks, transform) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_utils_internal.py", line 97, in wrapper_function [rank1]: return function(*args, **kwargs) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 779, in compile_inner [rank1]: return _compile_inner(code, one_graph, hooks, transform) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 815, in _compile_inner [rank1]: out_code = transform_code_object(code, transform) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1422, in transform_code_object [rank1]: transformations(instructions, code_options) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 264, in _fn [rank1]: return fn(*args, **kwargs) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 736, in transform [rank1]: tracer.run() [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3491, in run [rank1]: super().run() [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1345, in run [rank1]: while self.step(): [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1254, in step [rank1]: self.dispatch_table[inst.opcode](self, inst) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3692, in RETURN_VALUE [rank1]: self._return(inst) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3677, in _return [rank1]: self.output.compile_subgraph( [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1199, in compile_subgraph [rank1]: self.compile_and_call_fx_graph(tx, pass2.graph_output_vars(), root) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1460, in compile_and_call_fx_graph [rank1]: compiled_fn = self.call_user_compiler(gm) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1512, in call_user_compiler [rank1]: return self._call_user_compiler(gm) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1569, in _call_user_compiler [rank1]: raise BackendCompilerFailed( [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1544, in _call_user_compiler [rank1]: compiled_fn = compiler_fn(gm, self.example_inputs()) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/backends/distributed.py", line 548, in compile_fn [rank1]: submod_compiler.run(*example_inputs) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/fx/interpreter.py", line 171, in run [rank1]: self.env[node] = self.run_node(node) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/backends/distributed.py", line 283, in run_node [rank1]: compiled_submod_real = self.compile_submod(real_mod, new_args, kwargs) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/backends/distributed.py", line 198, in compile_submod [rank1]: self.compiler(input_mod, args), [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/repro/after_dynamo.py", line 150, in __call__ [rank1]: compiled_gm = compiler_fn(gm, example_inputs) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/__init__.py", line 2355, in __call__ [rank1]: return compile_fx(model_, inputs_, config_patches=self.config) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 2169, in compile_fx [rank1]: return aot_autograd( [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/backends/common.py", line 106, in __call__ [rank1]: cg = aot_module_simplified(gm, example_inputs, **self.kwargs) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1165, in aot_module_simplified [rank1]: compiled_fn = AOTAutogradCache.load( [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/autograd_cache.py", line 842, in load [rank1]: compiled_fn = dispatch_and_compile() [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1150, in dispatch_and_compile [rank1]: compiled_fn, _ = create_aot_dispatcher_function( [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 574, in create_aot_dispatcher_function [rank1]: return _create_aot_dispatcher_function( [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 824, in _create_aot_dispatcher_function [rank1]: compiled_fn, fw_metadata = compiler_fn( [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/jit_compile_runtime_wrappers.py", line 1107, in aot_dispatch_autograd [rank1]: compiled_fw_func = aot_config.fw_compiler(fw_module, adjusted_flat_args) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 483, in __call__ [rank1]: return self.compiler_fn(gm, example_inputs) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 2016, in fw_compiler_base [rank1]: return inner_compile( [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 633, in compile_fx_inner [rank1]: return wrap_compiler_debug(_compile_fx_inner, compiler_name="inductor")( [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_dynamo/repro/after_aot.py", line 124, in debug_wrapper [rank1]: inner_compiled_fn = compiler_fn(gm, example_inputs) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 840, in _compile_fx_inner [rank1]: compiled_graph.post_compile(example_inputs, constants, graph_kwargs) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_inductor/output_code.py", line 578, in post_compile [rank1]: set_tracing_context_output_strides(example_inputs, self) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_inductor/utils.py", line 2526, in set_tracing_context_output_strides [rank1]: tuple(map_expr(e) for e in exprs) # type: ignore[misc] [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_inductor/utils.py", line 2526, in <genexpr> [rank1]: tuple(map_expr(e) for e in exprs) # type: ignore[misc] [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/_inductor/utils.py", line 2522, in map_expr [rank1]: return shape_env.deserialize_symexpr(e) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py", line 5569, in deserialize_symexpr [rank1]: args = { [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py", line 5570, in <dictcomp> [rank1]: str(e): SymInt(SymNode(e, self, int, int(val), fx_node=None)) [rank1]: File "/nas/home/mkhayat/miniconda3/envs/gspy310new/lib/python3.10/site-packages/sympy/core/expr.py", line 307, in __int__ [rank1]: raise TypeError("Cannot convert symbols to int") [rank1]: torch._dynamo.exc.BackendCompilerFailed: backend='compile_fn' raised: [rank1]: TypeError: Cannot convert symbols to int [rank1]: While executing %submod_0 : [num_users=1] = call_module[target=submod_0](args = (%l_query_, %s83, %l_self_modules_query_proj_parameters_weight_, %l_self_modules_query_proj_parameters_bias_, %l_self_modules_key_proj_parameters_weight_, %l_self_modules_key_proj_parameters_bias_, %l_self_modules_value_proj_parameters_weight_, %l_self_modules_value_proj_parameters_bias_), kwargs = {}) [rank1]: GraphModule: class GraphModule(torch.nn.Module): [rank1]: def forward(self, L_self_modules_query_proj_parameters_weight_: "f32[512, 512][512, 1]", L_self_modules_query_proj_parameters_bias_: "f32[512][1]", s83: "Sym(s83)", L_query_: "f32[2, s83, 512][512*s83, 512, 1]", L_self_modules_key_proj_parameters_weight_: "f32[512, 512][512, 1]", L_self_modules_key_proj_parameters_bias_: "f32[512][1]", L_self_modules_value_proj_parameters_weight_: "f32[512, 512][512, 1]", L_self_modules_value_proj_parameters_bias_: "f32[512][1]", L_self_modules_out_proj_parameters_weight_: "f32[512, 512][512, 1]", L_self_modules_out_proj_parameters_bias_: "f32[512][1]"): [rank1]: l_self_modules_query_proj_parameters_weight_ = L_self_modules_query_proj_parameters_weight_ [rank1]: l_self_modules_query_proj_parameters_bias_ = L_self_modules_query_proj_parameters_bias_ [rank1]: l_query_ = L_query_ [rank1]: l_self_modules_key_proj_parameters_weight_ = L_self_modules_key_proj_parameters_weight_ [rank1]: l_self_modules_key_proj_parameters_bias_ = L_self_modules_key_proj_parameters_bias_ [rank1]: l_self_modules_value_proj_parameters_weight_ = L_self_modules_value_proj_parameters_weight_ [rank1]: l_self_modules_value_proj_parameters_bias_ = L_self_modules_value_proj_parameters_bias_ [rank1]: l_self_modules_out_proj_parameters_weight_ = L_self_modules_out_proj_parameters_weight_ [rank1]: l_self_modules_out_proj_parameters_bias_ = L_self_modules_out_proj_parameters_bias_ [rank1]: [rank1]: # No stacktrace found for following nodes [rank1]: submod_0 = self.submod_0(l_query_, s83, l_self_modules_query_proj_parameters_weight_, l_self_modules_query_proj_parameters_bias_, l_self_modules_key_proj_parameters_weight_, l_self_modules_key_proj_parameters_bias_, l_self_modules_value_proj_parameters_weight_, l_self_modules_value_proj_parameters_bias_); l_query_ = l_self_modules_query_proj_parameters_weight_ = l_self_modules_query_proj_parameters_bias_ = l_self_modules_key_proj_parameters_weight_ = l_self_modules_key_proj_parameters_bias_ = l_self_modules_value_proj_parameters_weight_ = l_self_modules_value_proj_parameters_bias_ = None [rank1]: submod_1 = self.submod_1(submod_0, s83, l_self_modules_out_proj_parameters_weight_, l_self_modules_out_proj_parameters_bias_); submod_0 = s83 = l_self_modules_out_proj_parameters_weight_ = l_self_modules_out_proj_parameters_bias_ = None [rank1]: return (submod_1,) [rank1]: [rank1]: class submod_0(torch.nn.Module): [rank1]: def forward(self, l_query_: "f32[2, s83, 512][512*s83, 512, 1]", s83: "Sym(s83)", l_self_modules_query_proj_parameters_weight_: "f32[512, 512][512, 1]", l_self_modules_query_proj_parameters_bias_: "f32[512][1]", l_self_modules_key_proj_parameters_weight_: "f32[512, 512][512, 1]", l_self_modules_key_proj_parameters_bias_: "f32[512][1]", l_self_modules_value_proj_parameters_weight_: "f32[512, 512][512, 1]", l_self_modules_value_proj_parameters_bias_: "f32[512][1]"): [rank1]: # File: /nas/home/mkhayat/projects/sparse_gs/bug_compile2.py:39 in forward, code: query = self.query_proj(query) [rank1]: linear: "f32[2, s83, 512][512*s83, 512, 1]" = torch._C._nn.linear(l_query_, l_self_modules_query_proj_parameters_weight_, l_self_modules_query_proj_parameters_bias_); l_self_modules_query_proj_parameters_weight_ = l_self_modules_query_proj_parameters_bias_ = None [rank1]: [rank1]: # File: /nas/home/mkhayat/projects/sparse_gs/bug_compile2.py:40 in forward, code: key = self.key_proj(key) [rank1]: linear_1: "f32[2, s83, 512][512*s83, 512, 1]" = torch._C._nn.linear(l_query_, l_self_modules_key_proj_parameters_weight_, l_self_modules_key_proj_parameters_bias_); l_self_modules_key_proj_parameters_weight_ = l_self_modules_key_proj_parameters_bias_ = None [rank1]: [rank1]: # File: /nas/home/mkhayat/projects/sparse_gs/bug_compile2.py:41 in forward, code: value = self.value_proj(value) [rank1]: linear_2: "f32[2, s83, 512][512*s83, 512, 1]" = torch._C._nn.linear(l_query_, l_self_modules_value_proj_parameters_weight_, l_self_modules_value_proj_parameters_bias_); l_query_ = l_self_modules_value_proj_parameters_weight_ = l_self_modules_value_proj_parameters_bias_ = None [rank1]: [rank1]: # File: /nas/home/mkhayat/projects/sparse_gs/bug_compile2.py:44 in forward, code: query = query.reshape(query.size(0), -1, self.nheads, self.k_dim).transpose(1, 2) [rank1]: reshape: "f32[2, s83, 8, 64][512*s83, 512, 64, 1]" = linear.reshape(2, -1, 8, 64); linear = None [rank1]: transpose: "f32[2, 8, s83, 64][512*s83, 64, 512, 1]" = reshape.transpose(1, 2); reshape = None [rank1]: [rank1]: # File: /nas/home/mkhayat/projects/sparse_gs/bug_compile2.py:47 in forward, code: key = key.reshape(key.size(0), -1, self.nheads, self.k_dim).transpose(1, 2) [rank1]: reshape_1: "f32[2, s83, 8, 64][512*s83, 512, 64, 1]" = linear_1.reshape(2, -1, 8, 64); linear_1 = None [rank1]: transpose_1: "f32[2, 8, s83, 64][512*s83, 64, 512, 1]" = reshape_1.transpose(1, 2); reshape_1 = None [rank1]: [rank1]: # File: /nas/home/mkhayat/projects/sparse_gs/bug_compile2.py:50 in forward, code: value = value.reshape(value.size(0), -1, self.nheads, self.v_dim).transpose(1, 2) [rank1]: reshape_2: "f32[2, s83, 8, 64][512*s83, 512, 64, 1]" = linear_2.reshape(2, -1, 8, 64); linear_2 = None [rank1]: transpose_2: "f32[2, 8, s83, 64][512*s83, 64, 512, 1]" = reshape_2.transpose(1, 2); reshape_2 = None [rank1]: [rank1]: # File: /nas/home/mkhayat/projects/sparse_gs/bug_compile2.py:53 in forward, code: attn_output = F.scaled_dot_product_attention(query, key, value, [rank1]: scaled_dot_product_attention: "f32[2, 8, s83, 64][512*s83, 64, 512, 1]" = torch._C._nn.scaled_dot_product_attention(transpose, transpose_1, transpose_2, dropout_p = 0.0, is_causal = False); transpose = transpose_1 = transpose_2 = None [rank1]: [rank1]: # File: /nas/home/mkhayat/projects/sparse_gs/bug_compile2.py:56 in forward, code: attn_output = attn_output.transpose(1, 2).reshape(query.size(0), -1, self.nheads*self.v_dim) [rank1]: transpose_3: "f32[2, s83, 8, 64][512*s83, 512, 64, 1]" = scaled_dot_product_attention.transpose(1, 2); scaled_dot_product_attention = None [rank1]: reshape_3: "f32[2, s83, 512][512*s83, 512, 1]" = transpose_3.reshape(2, -1, 512); transpose_3 = None [rank1]: return (reshape_3,) [rank1]: [rank1]: class submod_1(torch.nn.Module): [rank1]: def forward(self, attn_output_1: "f32[2, s83, 512][512*s83, 512, 1]", s83: "Sym(s83)", l_self_modules_out_proj_parameters_weight_: "f32[512, 512][512, 1]", l_self_modules_out_proj_parameters_bias_: "f32[512][1]"): [rank1]: # File: /nas/home/mkhayat/projects/sparse_gs/bug_compile2.py:59 in forward, code: attn_output = self.out_proj(attn_output) [rank1]: linear: "f32[2, s83, 512][512*s83, 512, 1]" = torch._C._nn.linear(attn_output_1, l_self_modules_out_proj_parameters_weight_, l_self_modules_out_proj_parameters_bias_); attn_output_1 = l_self_modules_out_proj_parameters_weight_ = l_self_modules_out_proj_parameters_bias_ = None [rank1]: return linear [rank1]: [rank1]: Original traceback: [rank1]: None ``` ### Versions Nightly version of torch 2.8.0.dev20250410+cu128 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @cpuhrsch @jbschlosser @bhosmer @drisspg @soulitzer @davidberard98 @YuqingJ @chauhang @penguinwu
true
3,015,447,159
[AOTI] aoti_compile_and_package + use_runtime_constant_folding gives "Error: CUDA driver error: file not found"
henrylhtsang
closed
[ "oncall: pt2", "oncall: export", "module: aotinductor" ]
2
CONTRIBUTOR
### 🐛 Describe the bug Hi, noticed a problem when using runtime constant folding with the aoti_compile_and_package API. Old API doesn't seem to have this problem, see the commented lines. repro: ``` import torch import torch._inductor.config import torch.nn as nn torch._inductor.config.aot_inductor.use_runtime_constant_folding = True class Model(torch.nn.Module): def __init__(self, device): super().__init__() self.w_pre = nn.Buffer(torch.randn(128, 128, device=device)) self.b = nn.Buffer(torch.randn(128, device=device)) def forward(self, x): w_transpose = torch.transpose(self.w_pre, 0, 1) w_relu = torch.nn.functional.relu(w_transpose) w = w_relu + self.b return torch.matmul(x, w) def main(): input = (torch.randn(128, 128, device="cuda"),) model = Model("cuda").cuda() ep = torch.export.export(model, input, strict=False) # path = torch._inductor.aot_compile(ep.module(), input) # aot_model = torch._export.aot_load(path, "cuda") path = torch._inductor.aoti_compile_and_package(ep) aot_model = torch._inductor.aoti_load_package(path) output = aot_model(*input) print("done") if __name__ == "__main__": main() ``` ### Error logs ``` I0423 16:04:55.421340 379199 model_package_loader.cpp:412] Extract file: data/aotinductor/model/cb7mj25cpi6eu3hpd5luh2t3a3uswzgysapcgfjvtihvplbain5y.wrapper.so to /tmp/s0otEP/data/aotinductor/model/cb7mj25cpi6eu3hpd5luh2t3a3uswzgysapcgfjvtihvplbain5y.wrapper.so **Error: CUDA driver error: file not found** Traceback (most recent call last): /henrylhtsang/repros/aot.py", line 56, in main output = aot_model(*input) torch/_inductor/package/package.py", line 251, in __call__ flat_outputs = self.loader.boxed_run(flat_inputs) # type: ignore[attr-defined] RuntimeError: run_func_( container_handle_, input_handles.data(), input_handles.size(), output_handles.data(), output_handles.size(), reinterpret_cast<AOTInductorStreamHandle>(stream_handle), proxy_executor_handle_) API call failed at /torch/csrc/inductor/aoti_runner/model_container_runner.cpp, line 152 ``` ### Versions trunk cc @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4 @desertfire @chenyang78 @yushangdi @benjaminglass1
true
3,015,442,422
[Graph Partition] fix extra reference in runner.partitions to cudagraphify functions
BoyuanFeng
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
When CompiledFxGraph is deallocated, its cudagraphifed fn (i.e., `current_callable`) is expected to also be deallocated. Without graph partition, this is true since the cudagraphified fn is only refered by compiled_fx_graph.current_callable. However, with graph partition, runner.partitions hold cudagraphified fns while compiled_fx_graph.current_callable holds the runner.call. Thus the cudagraphied fn may not be deallocated when CompiledFxGraph is deallocated. This leads to errors in several unit tests (e.g., test_unaligned_static_input_no_cudagraphs and test_unaligned_static_input_non_trees). In this PR, we also clean up runner.partitions when CompiledFxGraph is deallocated. This fixes the issue. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,015,427,295
More logs to show why fx graph cache isn't hit / created?
henrylhtsang
closed
[ "triaged", "oncall: pt2" ]
2
CONTRIBUTOR
Hi, when working on https://github.com/pytorch/pytorch/blob/main/torch/_inductor/compile_fx.py#L732-L990, it is very hard to tell why sometimes fx graph cache isn't hit, even with TORCH_LOGS="+inductor". In my case, tlparse provides a bit more info, like ![Image](https://github.com/user-attachments/assets/cbac7402-7a39-4e35-8ddd-051e1ae54844) but not enough to understand why the cache wasn't hit. I would still have to add log.debug everywhere to figure that out. cc @chauhang @penguinwu
true
3,015,377,615
[MPS] Adjust test_sum_dtypes so it can run on MPS.
dcci
closed
[ "Merged", "Reverted", "topic: not user facing", "module: mps", "ciflow/mps", "module: inductor", "ciflow/inductor", "ci-no-td" ]
8
MEMBER
cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,015,377,419
[Bug] Memory leak in autograd with custom CUDA operations
khlaifiabilel
open
[ "needs reproduction", "module: cpp-extensions", "module: autograd", "module: memory usage", "triaged" ]
1
NONE
### 🐛 Describe the bug ## 🐛 Bug <!-- A clear and concise description of the bug --> When using custom CUDA operations with PyTorch's autograd system, there appears to be a memory leak during backward passes in long training loops. The memory usage gradually increases even when no new tensors should be created or retained. ## To Reproduce Steps to reproduce the behavior: 1. Define a custom CUDA operation using the PyTorch C++ extension system 2. Create a model that uses this operation within an autograd computation graph 3. Run the model in a training loop for 100+ iterations 4. Monitor memory usage using `nvidia-smi` or other memory profiling tools ```python import torch from torch.utils.cpp_extension import load_inline import time # Define a simple custom CUDA extension cuda_source = """ __global__ void add_one_kernel(const float* input, float* output, int size) { const int index = blockIdx.x * blockDim.x + threadIdx.x; if (index < size) { output[index] = input[index] + 1.0f; } } torch::Tensor add_one_cuda(torch::Tensor input) { auto output = torch::empty_like(input); const int threads = 1024; const int blocks = (input.numel() + threads - 1) / threads; add_one_kernel<<<blocks, threads>>>( input.data_ptr<float>(), output.data_ptr<float>(), input.numel() ); return output; } """ cpp_source = """ #include <torch/extension.h> torch::Tensor add_one_cuda(torch::Tensor input); torch::Tensor add_one(torch::Tensor input) { return add_one_cuda(input); } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("add_one", &add_one, "Add one to a tensor"); } """ # Load the extension my_op = load_inline( name="my_op", cpp_sources=cpp_source, cuda_sources=cuda_source, functions=["add_one"], verbose=True ) # Create a simple model using the custom op class MyModel(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(10, 10) def forward(self, x): x = self.linear(x) # Use our custom operation x = my_op.add_one(x) return x # Training loop model = MyModel().cuda() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) criterion = torch.nn.MSELoss() # Track memory usage initial_memory = torch.cuda.memory_allocated() print(f"Initial memory: {initial_memory / 1024**2:.2f} MB") for i in range(200): x = torch.randn(100, 10, device="cuda") y = torch.randn(100, 10, device="cuda") optimizer.zero_grad() output = model(x) loss = criterion(output, y) loss.backward() optimizer.step() if i % 20 == 0: current_memory = torch.cuda.memory_allocated() print(f"Iteration {i}: {current_memory / 1024**2:.2f} MB") print(f"Diff from start: {(current_memory - initial_memory) / 1024**2:.2f} MB") ``` ### Versions Collecting environment information... PyTorch version: 2.7.0+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct 4 2024, 13:27:36) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.8.0-1026-azure-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.8.93 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H100 NVL Nvidia driver version: 550.144.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 40 On-line CPU(s) list: 0-39 Vendor ID: AuthenticAMD Model name: AMD EPYC 9V84 96-Core Processor CPU family: 25 Model: 17 Thread(s) per core: 1 Core(s) per socket: 40 Socket(s): 1 Stepping: 1 BogoMIPS: 4800.09 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves user_shstk avx512_bf16 clzero xsaveerptr rdpru arat avx512vbmi umip avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm Hypervisor vendor: Microsoft Virtualization type: full L1d cache: 1.3 MiB (40 instances) L1i cache: 1.3 MiB (40 instances) L2 cache: 40 MiB (40 instances) L3 cache: 160 MiB (5 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-39 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] flake8==7.0.0 [pip3] mypy==1.11.2 [pip3] mypy-extensions==1.0.0 [pip3] numpy==2.2.4 [pip3] numpydoc==1.7.0 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.26.2 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] onnxruntime==1.21.0 [pip3] torch==2.7.0 [pip3] triton==3.3.0 [conda] _anaconda_depends 2024.10 py312_mkl_0 [conda] blas 1.0 mkl [conda] mkl 2023.1.0 h213fc3f_46344 [conda] mkl-service 2.4.0 py312h5eee18b_1 [conda] mkl_fft 1.3.10 py312h5eee18b_0 [conda] mkl_random 1.2.7 py312h526ad5a_0 [conda] numpy 2.2.4 pypi_0 pypi [conda] numpydoc 1.7.0 py312h06a4308_0 [conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi [conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi [conda] nvidia-nccl-cu12 2.26.2 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi [conda] torch 2.7.0 pypi_0 pypi [conda] triton 3.3.0 pypi_0 pypi cc @malfet @zou3519 @xmfan @ezyang @albanD @gqchen @nikitaved @soulitzer @Varal7
true
3,015,374,952
[inductor][invoke_subgraph] Run joint graph passes for inference
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152357 * #152207 * __->__ #152062 * #151961 * #151957 * #151477 * #151633 * #151409 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,015,331,099
Add graph inputs/outputs to comm overlap pass signature
wconstab
closed
[ "module: inductor", "ciflow/inductor", "release notes: inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #146558 * #146562 * __->__ #152061 * #152060 * #146561 To support peak-memory-aware passes, we can pass graph inputs/outputs to these passes so they can compute a memory timeline. This PR should be a functional no-op for existing passes cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,015,330,984
Add 'step' counter to visualize_overlap log
wconstab
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
9
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #146558 * #146562 * #146561 * __->__ #152060 Example of log after the change: ``` [rank0]:V0227 15:07:20.704000 1594243 torch/_inductor/comms.py:621] [0/0] [__overlap] ==== Visualize overlap after reordering pass <function group_copy_collective at 0x7f41c1922050> (ran in 0.026380538940429688 sec)==== [rank0]:V0227 15:07:20.705000 1594243 torch/_inductor/comms.py:569] [0/0] [__overlap] 0: GroupedSchedulerNode(name='op6_op7') (size=[512], stride=[1]), (size=[4096], stride=[1]) () (0 ns) [rank0]:V0227 15:07:20.705000 1594243 torch/_inductor/comms.py:569] [0/0] [__overlap] 1: GroupedSchedulerNode(name='op55_op56') (size=[512], stride=[1]), (size=[4096], stride=[1]) () (0 ns) [rank0]:V0227 15:07:20.705000 1594243 torch/_inductor/comms.py:569] [0/0] [__overlap] 2: GroupedSchedulerNode(name='op75_op76') (size=[512], stride=[1]), (size=[4096], stride=[1]) () (0 ns) [rank0]:V0227 15:07:20.706000 1594243 torch/_inductor/comms.py:569] [0/0] [__overlap] 3: GroupedSchedulerNode(name='op121_op122') (size=[512], stride=[1]), (size=[4096], stride=[1]) () (0 ns) [rank0]:V0227 15:07:20.706000 1594243 torch/_inductor/comms.py:569] [0/0] [__overlap] 4: GroupedSchedulerNode(name='op141_op142') (size=[512], stride=[1]), (size=[4096], stride=[1]) () (0 ns) [rank0]:V0227 15:07:20.706000 1594243 torch/_inductor/comms.py:569] [0/0] [__overlap] 5: GroupedSchedulerNode(name='op187_op188') (size=[512], stride=[1]), (size=[4096], stride=[1]) () (0 ns) [rank0]:V0227 15:07:20.706000 1594243 torch/_inductor/comms.py:569] [0/0] [__overlap] 6: GroupedSchedulerNode(name='op207_op208') (size=[512], stride=[1]), (size=[4096], stride=[1]) () (0 ns) [rank0]:V0227 15:07:20.707000 1594243 torch/_inductor/comms.py:569] [0/0] [__overlap] 7: GroupedSchedulerNode(name='op253_op254') (size=[512], stride=[1]), (size=[4096], stride=[1]) () (0 ns) [rank0]:V0227 15:07:20.707000 1594243 torch/_inductor/comms.py:569] [0/0] [__overlap] 8: GroupedSchedulerNode(name='op273_op274') (size=[512], stride=[1]), (size=[4096], stride=[1]) () (0 ns) [rank0]:V0227 15:07:20.707000 1594243 torch/_inductor/comms.py:569] [0/0] [__overlap] 9: GroupedSchedulerNode(name='op319_op320') (size=[512], stride=[1]), (size=[4096], stride=[1]) () (0 ns) ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,015,326,104
DISABLED test_comprehensive_linalg_pinv_singular_cuda_float32 (__main__.TestInductorOpInfoCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
3
NONE
Platforms: linux, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_comprehensive_linalg_pinv_singular_cuda_float32&suite=TestInductorOpInfoCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41035465962). Over the past 3 hours, it has been determined flaky in 5 workflow(s) with 5 failures and 5 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_comprehensive_linalg_pinv_singular_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1131, in test_wrapper return test(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1430, in only_fn return fn(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 2291, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1211, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1211, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1211, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1534, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/mock.py", line 1379, in patched return func(*newargs, **newkeywargs) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 962, in inner raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 954, in inner fn(self, device, dtype, op) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1207, in test_comprehensive raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1182, in test_comprehensive self.check_model_gpu( File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 648, in check_model_gpu check_model( File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 599, in check_model actual_grad = compute_grads(example_inputs, kwargs, actual, grads) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 397, in compute_grads return torch.autograd.grad( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 503, in grad result = _engine_run_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 2153, in backward return impl_fn() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 2139, in impl_fn out = CompiledFunction._backward_impl(ctx, all_args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 2231, in _backward_impl CompiledFunction.compiled_bw = aot_config.bw_compiler( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 483, in __call__ return self.compiler_fn(gm, example_inputs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/common.py", line 73, in _wrapped_bw_compiler disable( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 856, in _fn return fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_utils_internal.py", line 97, in wrapper_function return function(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 2191, in bw_compiler return inner_compile( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 724, in compile_fx_inner return wrap_compiler_debug(_compile_fx_inner, compiler_name="inductor")( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_aot.py", line 124, in debug_wrapper inner_compiled_fn = compiler_fn(gm, example_inputs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 860, in _compile_fx_inner raise InductorError(e, currentframe()).with_traceback( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 844, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1453, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1340, in codegen_and_compile compiled_module = graph.compile_to_module() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 2209, in compile_to_module return self._compile_to_module() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 2256, in _compile_to_module mod = PyCodeCache.load_by_key_path( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 2998, in load_by_key_path mod = _reload_python_module(key, path, set_sys_modules=in_toplevel) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/compile_tasks.py", line 31, in _reload_python_module exec(code, mod.__dict__, mod.__dict__) File "/tmp/torchinductor_jenkins/7b/c7b2ziknpe63hzypobeboleo47is52h7pvplnv6rdnlnel3p5g5r.py", line 135, in <module> async_compile.wait(globals()) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/async_compile.py", line 446, in wait self._wait_futures(scope) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/async_compile.py", line 466, in _wait_futures scope[key] = result.result() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 3500, in result return self.result_fn() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/async_compile.py", line 341, in get_result kernel.precompile( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 322, in precompile self._make_launchers() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 479, in _make_launchers launchers.append(result.make_launcher()) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1276, in make_launcher self.reload_cubin_path() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1268, in reload_cubin_path raise RuntimeError( torch._inductor.exc.InductorError: RuntimeError: ('Cubin file saved by TritonBundler not found at %s', '/tmp/torchinductor_jenkins/triton/0/JMNOW52LS777ATESQEEMHD3IUZLFBHMNK5TLYYTG64OF6YC2TTFQ/triton_poi_fused_sub_0.cubin') The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 426, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1211, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1211, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 2263, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1143, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 0: SampleInput(input=Tensor[size=(3, 0), device="cuda:0", dtype=torch.float32], args=TensorList[Tensor[size=(3, 0), device="cuda:0", dtype=torch.float32]], kwargs={}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=0 PYTORCH_TEST_WITH_SLOW=1 PYTORCH_TEST_SKIP_FAST=1 python test/inductor/test_torchinductor_opinfo.py TestInductorOpInfoCUDA.test_comprehensive_linalg_pinv_singular_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_opinfo.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,015,326,018
DISABLED test_comprehensive_floor_cuda_float16 (__main__.TestInductorOpInfoCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
29
NONE
Platforms: inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_comprehensive_floor_cuda_float16&suite=TestInductorOpInfoCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41036342325). Over the past 3 hours, it has been determined flaky in 9 workflow(s) with 9 failures and 9 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_comprehensive_floor_cuda_float16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1131, in test_wrapper return test(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1430, in only_fn return fn(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 2291, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1211, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1211, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1211, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1534, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/unittest/mock.py", line 1396, in patched return func(*newargs, **newkeywargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 962, in inner raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 954, in inner fn(self, device, dtype, op) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1207, in test_comprehensive raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1182, in test_comprehensive self.check_model_gpu( File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 648, in check_model_gpu check_model( File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 489, in check_model actual = run(*example_inputs, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py", line 675, in _fn raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 860, in _compile_fx_inner raise InductorError(e, currentframe()).with_traceback( File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 844, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( ^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 1453, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 1340, in codegen_and_compile compiled_module = graph.compile_to_module() ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/graph.py", line 2209, in compile_to_module return self._compile_to_module() ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/graph.py", line 2256, in _compile_to_module mod = PyCodeCache.load_by_key_path( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/codecache.py", line 2998, in load_by_key_path mod = _reload_python_module(key, path, set_sys_modules=in_toplevel) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/compile_tasks.py", line 31, in _reload_python_module exec(code, mod.__dict__, mod.__dict__) File "/tmp/tmpt2gwy4g0/kj/ckjbb6qco3zkul3zd5k3tfyqnawa2agepqom6ahagazbr5m3wqaf.py", line 75, in <module> async_compile.wait(globals()) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 446, in wait self._wait_futures(scope) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 466, in _wait_futures scope[key] = result.result() ^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/codecache.py", line 3500, in result return self.result_fn() ^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 341, in get_result kernel.precompile( File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 322, in precompile self._make_launchers() File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 479, in _make_launchers launchers.append(result.make_launcher()) ^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1276, in make_launcher self.reload_cubin_path() File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1268, in reload_cubin_path raise RuntimeError( torch._inductor.exc.InductorError: RuntimeError: ('Cubin file saved by TritonBundler not found at %s', '/tmp/tmpkeqbnqhx/triton/5QNBQ545MCQXWLPGRRH2F67OXJUR5TZCGDSGGRQET555GILLR24Q/triton_poi_fused_floor_0.cubin') Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo" The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 426, in instantiated_test result = test(self, **param_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1143, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 0: SampleInput(input=Tensor[size=(20, 20), device="cuda:0", dtype=torch.float16], args=(), kwargs={}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=0 python test/inductor/test_torchinductor_opinfo.py TestInductorOpInfoCUDA.test_comprehensive_floor_cuda_float16 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_opinfo.py` cc @clee2000 @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
3,015,325,956
DISABLED test_comprehensive_bitwise_right_shift_cuda_int32 (__main__.TestInductorOpInfoCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
27
NONE
Platforms: inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_comprehensive_bitwise_right_shift_cuda_int32&suite=TestInductorOpInfoCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41036342342). Over the past 3 hours, it has been determined flaky in 9 workflow(s) with 9 failures and 9 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_comprehensive_bitwise_right_shift_cuda_int32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1131, in test_wrapper return test(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1430, in only_fn return fn(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 2291, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1211, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1211, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1211, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1534, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/unittest/mock.py", line 1396, in patched return func(*newargs, **newkeywargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 962, in inner raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 954, in inner fn(self, device, dtype, op) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1207, in test_comprehensive raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1182, in test_comprehensive self.check_model_gpu( File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 648, in check_model_gpu check_model( File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 489, in check_model actual = run(*example_inputs, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py", line 675, in _fn raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 860, in _compile_fx_inner raise InductorError(e, currentframe()).with_traceback( File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 844, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( ^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 1453, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 1340, in codegen_and_compile compiled_module = graph.compile_to_module() ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/graph.py", line 2209, in compile_to_module return self._compile_to_module() ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/graph.py", line 2256, in _compile_to_module mod = PyCodeCache.load_by_key_path( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/codecache.py", line 2998, in load_by_key_path mod = _reload_python_module(key, path, set_sys_modules=in_toplevel) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/compile_tasks.py", line 31, in _reload_python_module exec(code, mod.__dict__, mod.__dict__) File "/tmp/tmpf1sh4de1/lb/clb7fv6voav27zm4jfnlkgpjp33xdspaz5lpiisne24n6me2scl6.py", line 80, in <module> async_compile.wait(globals()) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 446, in wait self._wait_futures(scope) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 466, in _wait_futures scope[key] = result.result() ^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/codecache.py", line 3500, in result return self.result_fn() ^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 341, in get_result kernel.precompile( File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 322, in precompile self._make_launchers() File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 479, in _make_launchers launchers.append(result.make_launcher()) ^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1276, in make_launcher self.reload_cubin_path() File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1268, in reload_cubin_path raise RuntimeError( torch._inductor.exc.InductorError: RuntimeError: ('Cubin file saved by TritonBundler not found at %s', '/tmp/tmpd3de94rl/triton/RJ76XZAHTJZ3ZFKHFK2VI7TIUO4BO6LZOILFVZBUY4QQ7DQRPC3Q/triton_poi_fused_bitwise_right_shift_0.cubin') Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo" The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 426, in instantiated_test result = test(self, **param_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1143, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 0: SampleInput(input=Tensor[size=(), device="cuda:0", dtype=torch.int32], args=TensorList[Tensor[size=(), device="cuda:0", dtype=torch.int32]], kwargs={}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=0 python test/inductor/test_torchinductor_opinfo.py TestInductorOpInfoCUDA.test_comprehensive_bitwise_right_shift_cuda_int32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_opinfo.py` cc @clee2000 @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
3,015,325,955
DISABLED test_comprehensive_native_layer_norm_cuda_float32 (__main__.TestInductorOpInfoCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
3
NONE
Platforms: inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_comprehensive_native_layer_norm_cuda_float32&suite=TestInductorOpInfoCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41036342342). Over the past 3 hours, it has been determined flaky in 7 workflow(s) with 7 failures and 7 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_comprehensive_native_layer_norm_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1131, in test_wrapper return test(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1430, in only_fn return fn(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 2291, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1211, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1211, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1211, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1534, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/unittest/mock.py", line 1396, in patched return func(*newargs, **newkeywargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 962, in inner raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 954, in inner fn(self, device, dtype, op) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1207, in test_comprehensive raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1182, in test_comprehensive self.check_model_gpu( File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 648, in check_model_gpu check_model( File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 489, in check_model actual = run(*example_inputs, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py", line 675, in _fn raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 860, in _compile_fx_inner raise InductorError(e, currentframe()).with_traceback( File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 844, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( ^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 1453, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 1340, in codegen_and_compile compiled_module = graph.compile_to_module() ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/graph.py", line 2209, in compile_to_module return self._compile_to_module() ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/graph.py", line 2256, in _compile_to_module mod = PyCodeCache.load_by_key_path( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/codecache.py", line 2998, in load_by_key_path mod = _reload_python_module(key, path, set_sys_modules=in_toplevel) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/compile_tasks.py", line 31, in _reload_python_module exec(code, mod.__dict__, mod.__dict__) File "/tmp/tmp7n0zla6k/lm/clmwwvttkuj5pvrjxbxsd5oafuvueqkkg7ww2uf4dto47bu2io27.py", line 236, in <module> async_compile.wait(globals()) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 446, in wait self._wait_futures(scope) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 466, in _wait_futures scope[key] = result.result() ^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/codecache.py", line 3500, in result return self.result_fn() ^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 341, in get_result kernel.precompile( File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 322, in precompile self._make_launchers() File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 479, in _make_launchers launchers.append(result.make_launcher()) ^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1276, in make_launcher self.reload_cubin_path() File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1268, in reload_cubin_path raise RuntimeError( torch._inductor.exc.InductorError: RuntimeError: ('Cubin file saved by TritonBundler not found at %s', '/tmp/tmpln2kf1fx/triton/ITD4R6QVD67WVUWAQV6YQQDYGMIU4NIUZA3JTYOLAAH5R3ZL3U7Q/triton_poi_fused_native_layer_norm_0.cubin') Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo" The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 426, in instantiated_test result = test(self, **param_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1143, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 4: SampleInput(input=Tensor[size=(2, 2, 3), device="cuda:0", dtype=torch.float32], args=((2,3),Tensor[size=(2, 3), device="cuda:0", dtype=torch.float32],Tensor[size=(2, 3), device="cuda:0", dtype=torch.float32],-0.5), kwargs={}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=4 python test/inductor/test_torchinductor_opinfo.py TestInductorOpInfoCUDA.test_comprehensive_native_layer_norm_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_opinfo.py` cc @clee2000 @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
3,015,325,421
Test
svekars
open
[ "topic: not user facing" ]
2
CONTRIBUTOR
Fixes #ISSUE_NUMBER
true
3,015,324,600
DISABLED test_comprehensive_sort_cuda_float32 (__main__.TestInductorOpInfoCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
1
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_comprehensive_sort_cuda_float32&suite=TestInductorOpInfoCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41036519831). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_comprehensive_sort_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1131, in test_wrapper return test(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1430, in only_fn return fn(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 2291, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1211, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1211, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1211, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1534, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/mock.py", line 1379, in patched return func(*newargs, **newkeywargs) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 962, in inner raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 954, in inner fn(self, device, dtype, op) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1207, in test_comprehensive raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1182, in test_comprehensive self.check_model_gpu( File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 648, in check_model_gpu check_model( File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 489, in check_model actual = run(*example_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 675, in _fn raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 860, in _compile_fx_inner raise InductorError(e, currentframe()).with_traceback( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 844, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1453, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1340, in codegen_and_compile compiled_module = graph.compile_to_module() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 2209, in compile_to_module return self._compile_to_module() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 2256, in _compile_to_module mod = PyCodeCache.load_by_key_path( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 2998, in load_by_key_path mod = _reload_python_module(key, path, set_sys_modules=in_toplevel) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/compile_tasks.py", line 31, in _reload_python_module exec(code, mod.__dict__, mod.__dict__) File "/tmp/tmphnguf6q8/ia/ciarqs3itwl3erauarkh72waychdb6cw3kszdbtuxsmbgj7bu3tc.py", line 108, in <module> async_compile.wait(globals()) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/async_compile.py", line 446, in wait self._wait_futures(scope) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/async_compile.py", line 466, in _wait_futures scope[key] = result.result() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 3500, in result return self.result_fn() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/async_compile.py", line 341, in get_result kernel.precompile( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 322, in precompile self._make_launchers() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 479, in _make_launchers launchers.append(result.make_launcher()) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1276, in make_launcher self.reload_cubin_path() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1268, in reload_cubin_path raise RuntimeError( torch._inductor.exc.InductorError: RuntimeError: ('Cubin file saved by TritonBundler not found at %s', '/tmp/tmpmtscw5y_/triton/QBSZFMNVZHWTBDR54C5W5EM6E6KMO3EKOZO5BO7PHFML2HSDTPYA/triton_poi_fused_sort_1.cubin') Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo" The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 426, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1143, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 26: SampleInput(input=Tensor[size=(), device="cuda:0", dtype=torch.float32], args=(0), kwargs={}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=26 python test/inductor/test_torchinductor_opinfo.py TestInductorOpInfoCUDA.test_comprehensive_sort_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_opinfo.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,015,324,527
DISABLED test_comprehensive_nn_functional_max_pool3d_cuda_float32 (__main__.TestInductorOpInfoCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
3
NONE
Platforms: linux, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_comprehensive_nn_functional_max_pool3d_cuda_float32&suite=TestInductorOpInfoCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41035465928). Over the past 3 hours, it has been determined flaky in 5 workflow(s) with 5 failures and 5 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_comprehensive_nn_functional_max_pool3d_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1131, in test_wrapper return test(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1430, in only_fn return fn(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 2291, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1211, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1211, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1211, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1534, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/mock.py", line 1379, in patched return func(*newargs, **newkeywargs) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 962, in inner raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 954, in inner fn(self, device, dtype, op) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1207, in test_comprehensive raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1182, in test_comprehensive self.check_model_gpu( File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 648, in check_model_gpu check_model( File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 489, in check_model actual = run(*example_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 675, in _fn raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 860, in _compile_fx_inner raise InductorError(e, currentframe()).with_traceback( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 844, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1453, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1340, in codegen_and_compile compiled_module = graph.compile_to_module() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 2209, in compile_to_module return self._compile_to_module() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 2256, in _compile_to_module mod = PyCodeCache.load_by_key_path( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 2998, in load_by_key_path mod = _reload_python_module(key, path, set_sys_modules=in_toplevel) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/compile_tasks.py", line 31, in _reload_python_module exec(code, mod.__dict__, mod.__dict__) File "/tmp/torchinductor_jenkins/hj/chjbayfdlxailjcfln2wl5qoisiw3v344yicggjc2o5n66mvl2aq.py", line 250, in <module> async_compile.wait(globals()) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/async_compile.py", line 446, in wait self._wait_futures(scope) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/async_compile.py", line 466, in _wait_futures scope[key] = result.result() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 3500, in result return self.result_fn() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/async_compile.py", line 341, in get_result kernel.precompile( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 322, in precompile self._make_launchers() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 479, in _make_launchers launchers.append(result.make_launcher()) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1276, in make_launcher self.reload_cubin_path() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1268, in reload_cubin_path raise RuntimeError( torch._inductor.exc.InductorError: RuntimeError: ('Cubin file saved by TritonBundler not found at %s', '/tmp/torchinductor_jenkins/triton/0/LOXVQKYJOOWWEQNLEK3Y4RTYHB5MVDEEF3CX5X5CJJIRWGHGQQWQ/triton_per_fused_max_pool3d_with_indices_0.cubin') Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo" The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 426, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1143, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 0: SampleInput(input=Tensor[size=(1, 2, 3, 6, 5), device="cuda:0", dtype=torch.float32], args=(), kwargs={'kernel_size': '3', 'stride': '2', 'ceil_mode': 'True', 'padding': '0', 'dilation': '1', 'return_indices': 'True'}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=0 PYTORCH_TEST_WITH_SLOW=1 PYTORCH_TEST_SKIP_FAST=1 python test/inductor/test_torchinductor_opinfo.py TestInductorOpInfoCUDA.test_comprehensive_nn_functional_max_pool3d_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_opinfo.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,015,324,465
DISABLED test_index_multiple_cuda (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
2
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_index_multiple_cuda&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41035547301). Over the past 3 hours, it has been determined flaky in 10 workflow(s) with 20 failures and 10 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_index_multiple_cuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,015,324,396
DISABLED test_builtin_score_mods_float32_score_mod7_cuda_float32 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
2
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_builtin_score_mods_float32_score_mod7_cuda_float32&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41032594592). Over the past 3 hours, it has been determined flaky in 10 workflow(s) with 20 failures and 10 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_builtin_score_mods_float32_score_mod7_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 1127, in test_builtin_score_mods self.run_test(score_mod, dtype, device=device) File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 509, in run_test golden_out.backward(backward_grad.to(torch.float64)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_tensor.py", line 648, in backward torch.autograd.backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 354, in backward _engine_run_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 679, in backward ) = flex_attention_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 320, in maybe_run_autograd return self(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 847, in sdpa_dense_backward grad_softmax_scores - sum_scores + grad_logsumexp.unsqueeze(-1) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU 0 has a total capacity of 22.05 GiB of which 542.12 MiB is free. Including non-PyTorch memory, this process has 21.51 GiB memory in use. Of the allocated memory 5.88 GiB is allocated by PyTorch, and 15.37 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) To execute this test, run the following from the base repo dir: python test/inductor/test_flex_attention.py TestFlexAttentionCUDA.test_builtin_score_mods_float32_score_mod7_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,015,324,338
DISABLED test_builtin_score_mods_float32_score_mod2_cuda_float32 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
2
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_builtin_score_mods_float32_score_mod2_cuda_float32&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41036274598). Over the past 3 hours, it has been determined flaky in 10 workflow(s) with 20 failures and 10 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_builtin_score_mods_float32_score_mod2_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 1127, in test_builtin_score_mods self.run_test(score_mod, dtype, device=device) File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 509, in run_test golden_out.backward(backward_grad.to(torch.float64)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_tensor.py", line 648, in backward torch.autograd.backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 354, in backward _engine_run_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 679, in backward ) = flex_attention_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 320, in maybe_run_autograd return self(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 501, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 497, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 357, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 847, in sdpa_dense_backward grad_softmax_scores - sum_scores + grad_logsumexp.unsqueeze(-1) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU 0 has a total capacity of 22.05 GiB of which 412.12 MiB is free. Including non-PyTorch memory, this process has 21.63 GiB memory in use. Of the allocated memory 5.80 GiB is allocated by PyTorch, and 15.57 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) To execute this test, run the following from the base repo dir: python test/inductor/test_flex_attention.py TestFlexAttentionCUDA.test_builtin_score_mods_float32_score_mod2_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,015,323,533
unbreak fb:operator_benchmark_test
sharpobject
open
[ "fb-exported", "ciflow/trunk", "topic: not user facing" ]
7
NONE
Summary: unbreak fb:operator_benchmark_test Test Plan: works on my machine Differential Revision: D73540912
true
3,015,292,815
[Graph Partition] Pass all cudagraph tree tests
BoyuanFeng
open
[ "oncall: distributed", "ciflow/trunk", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor" ]
1
CONTRIBUTOR
Fixes #ISSUE_NUMBER cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,015,258,285
[Build] fix functorch install dir
stefantalpalaru
closed
[ "triaged", "open source", "topic: not user facing" ]
4
NONE
null
true
3,015,253,927
Pin theme to a branch
svekars
closed
[ "module: docs", "Merged", "ciflow/trunk", "topic: docs", "topic: not user facing" ]
3
CONTRIBUTOR
cc @sekyondaMeta @AlannaBurke
true
3,015,240,302
[DTensor] make test_dtensor_ops report dtensor_args
wconstab
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "topic: not user facing", "merging" ]
7
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #149764 * __->__ #152045 Before: Does not report DTensor args, and you can't tell which combination of sharding/replication is used for that particular iteration ``` RuntimeError: failed to run: torch.flatten, with (*[tensor([[[-6.1074e-01, 1.1260e+00, 1.7686e+00, -7.8216e+ [ 8.8558e-01, -3.0949e+00, -5.4584e+00, -8.5322e+00], [-2.9770e-01, -3.2814e+00, -7.5875e+00, -8.1269e+00], [-6.0136e+00, -5.1712e+00, -4.2667e+00, -4.2142e+00]], [[-7.5171e+00, 5.3900e+00, -7.9208e+00, 6.1000e+00], [-1.7350e+00, -3.6188e-03, -7.1592e+00, 9.2951e-02], [ 5.7143e+00, -3.0805e+00, 7.6227e+00, -7.4862e+00], [ 4.3167e-01, -4.9678e+00, -1.2441e+00, -2.3042e+00]], [[-7.4280e+00, -2.7754e+00, -5.2989e+00, -6.1920e+00], [-2.5225e+00, -5.2520e+00, 6.5686e+00, -6.0350e+00], [-5.1740e+00, -1.6405e+00, -4.4463e+00, -5.1884e+00], [ 3.9581e+00, -6.3151e-01, -3.3223e+00, 4.0546e+00]], [[-2.8112e+00, 3.8742e+00, -4.4612e+00, -5.0016e+00], [ 7.0568e+00, -2.0951e-01, -8.0049e+00, -4.1438e+00], [ 3.1207e+00, -7.6518e+00, 7.1084e+00, -1.0500e+00], [ 8.8823e+00, -1.1178e+00, 4.8485e+00, -8.8593e+00]]], requires_grad=True)], **{}) ``` After: You can see the particular DTensor spec that failed ``` RuntimeError: failed to run: torch.flatten, with (*[DTensor(local_tensor=tensor([[[-6.0136, -5.1712, -4.2667, [[ 0.4317, -4.9678, -1.2441, -2.3042]], [[ 3.9581, -0.6315, -3.3223, 4.0546]], [[ 8.8823, -1.1178, 4.8485, -8.8593]]], requires_grad=True), device_mesh=DeviceMesh('cpu', [0, 1, 2,3]), placements=(Shard(dim=1),))], **{}) ``` cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @d4l3k
true
3,015,240,169
Move verbose warning to warning_once
wconstab
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * (to be filled) It was printing 1000s of lines for me.. cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @d4l3k
true
3,015,219,633
[DO NOT LAND] Use cudaGetDevice in OSSProxyExecutor
yiming0416
closed
[ "fb-exported", "ciflow/inductor", "release notes: inductor (aoti)" ]
10
CONTRIBUTOR
Summary: I am trying to use `cudaGetDevice()` in `oss_proxy_executor.cpp` and guard it under the macro `USE_CUDA`. However, seems like the code under `USE_CUDA` was never invoked even if I built PyTorch on a GPU machine. The `device_idx` remains -1, ideally it should change to `0` after `cudaGetDevice()` is called. Test Plan: CI Differential Revision: D73537817
true
3,015,211,547
distrubuted: false positive Grad strides vs Bucket strides warning
nikitaved
open
[ "oncall: distributed" ]
1
COLLABORATOR
### 🐛 Describe the bug I am training a model on a single node with 4 GPUs using the HF [Accelerate](https://github.com/huggingface/accelerate) through SLURM. And this is the warning message I get: ``` /my_cluster_folder/site-packages/torch/autograd/graph.py:824: UserWarning: Grad strides do not match bucket view strides. This may indicate grad was not created according to the gradient layout contract, or that the param's strides changed since DDP was constructed. This is not an error, but may impair performance. grad.sizes() = [768, 1], strides() = [1, 1] bucket_view.sizes() = [768, 1], strides() = [1, 768] (Triggered internally at /pytorch/torch/csrc/distributed/c10d/reducer.cpp:331.) ``` Technically speaking, the contract is not breached. It is not necessarily a bug, but the warning message could be improved for such cases, as the code seems to directly compare strides: https://github.com/pytorch/pytorch/blob/562328501e167206dc7d4b16895b5ae538520e06/torch/csrc/distributed/c10d/reducer.cpp#L330-L332 ### Versions ``` PyTorch version: 2.8.0.dev20250422+cu128 Is debug build: False CUDA used to build PyTorch: 12.8 ROCM used to build PyTorch: N/A OS: Rocky Linux 9.5 (Blue Onyx) (x86_64) GCC version: (conda-forge gcc 13.3.0-2) 13.3.0 Clang version: Could not collect CMake version: version 3.31.4 Libc version: glibc-2.34 Python version: 3.13.2 | packaged by conda-forge | (main, Feb 17 2025, 14:10:22) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-5.14.0-503.23.1.el9_5.x86_64-x86_64-with-glibc2.34 Is CUDA available: False CUDA runtime version: 12.8.61 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 96 On-line CPU(s) list: 0-95 Vendor ID: AuthenticAMD Model name: AMD EPYC 7402 24-Core Processor CPU family: 23 Model: 49 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 2 Stepping: 0 Frequency boost: enabled CPU(s) scaling MHz: 61% CPU max MHz: 2800.0000 CPU min MHz: 1500.0000 BogoMIPS: 5599.65 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sev sev_es Virtualization: AMD-V L1d cache: 1.5 MiB (48 instances) L1i cache: 1.5 MiB (48 instances) L2 cache: 24 MiB (48 instances) L3 cache: 256 MiB (16 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-23,48-71 NUMA node1 CPU(s): 24-47,72-95 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.3 [pip3] nvidia-cublas-cu12==12.8.3.14 [pip3] nvidia-cuda-cupti-cu12==12.8.57 [pip3] nvidia-cuda-nvrtc-cu12==12.8.61 [pip3] nvidia-cuda-runtime-cu12==12.8.57 [pip3] nvidia-cudnn-cu12==9.8.0.87 [pip3] nvidia-cufft-cu12==11.3.3.41 [pip3] nvidia-curand-cu12==10.3.9.55 [pip3] nvidia-cusolver-cu12==11.7.2.55 [pip3] nvidia-cusparse-cu12==12.5.7.53 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.26.2 [pip3] nvidia-nvjitlink-cu12==12.8.61 [pip3] nvidia-nvtx-cu12==12.8.55 [pip3] optree==0.14.0 [pip3] pytorch-triton==3.3.0+git96316ce5 [pip3] torch==2.8.0.dev20250422+cu128 [pip3] torchaudio==2.6.0.dev20250422+cu128 [pip3] torchvision==0.22.0.dev20250422+cu128 [pip3] triton==3.2.0 [conda] Could not collect ``` cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
3,015,170,919
[map] always turn on dynamo for map
ydwu4
open
[ "fb-exported", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
7
CONTRIBUTOR
Summary: X-link: https://github.com/pytorch/executorch/pull/10409 Reland D72896450 Make map consistent with other control flow ops. After the change, map is able to support accessing closures in the map fn. Test Plan: See existing tests. Reviewed By: zou3519 Differential Revision: D73138427 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,015,145,214
Improve stable library apis per Scott's feedback
janeyx99
closed
[ "Merged", "ciflow/trunk", "ciflow/inductor", "release notes: inductor (aoti)" ]
6
CONTRIBUTOR
Following 3 suggestions: 1. inline at::Tensor arg 2. use uniq ptr of array vs std::vector 3. document the `std::optional<S>()` case Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152040
true
3,015,136,256
Fix GuardOnDataDependentSymNode in the normalize operator
henryoier
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
17
CONTRIBUTOR
Test Plan: Dumped the local net torch.package to local Ran ``` buck2 run scripts/shengqin:test_model_export -- /tmp/mtia_local_torch_package {\"local\":null} ``` succeeded Reviewed By: hongyang-zhao Differential Revision: D73405271
true
3,015,135,494
[AOTInductor] Inherit Buffer if not being updated
22quinn
closed
[ "fb-exported", "ciflow/trunk", "ciflow/inductor", "release notes: inductor (aoti)" ]
6
CONTRIBUTOR
Summary: Inherit buffer from original constants buffer if it's not being updated. Test Plan: TBD @diff-train-skip-merge
true
3,015,131,954
Re-enable FakeTensor caching for SymInts
aorenste
closed
[ "fb-exported", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
5
CONTRIBUTOR
Summary: This backs out D60320595 which itself turned off FakeTensor caching when a SymInt was present. Tests seem to pass so I'm assuming some dynamic shape work fixed what was breaking previously. Test Plan: Reran the tests listed in T196779132 and they seem to pass. Differential Revision: D73532965 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true