id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
3,009,359,765
DISABLED test_builtin_score_mods_different_block_size_float16_score_mod4_BLOCK_SIZE3_cuda_float16 (__main__.TestFlexAttentionCUDA)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
2
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_builtin_score_mods_different_block_size_float16_score_mod4_BLOCK_SIZE3_cuda_float16&suite=TestFlexAttentionCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40883955911). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_builtin_score_mods_different_block_size_float16_score_mod4_BLOCK_SIZE3_cuda_float16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 1201, in test_builtin_score_mods_different_block_size self.run_test(score_mod, dtype, block_mask=block_mask, device=device) File "/var/lib/jenkins/workspace/test/inductor/test_flex_attention.py", line 491, in run_test golden_out.backward(backward_grad.to(torch.float64)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_tensor.py", line 648, in backward torch.autograd.backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 354, in backward _engine_run_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 679, in backward ) = flex_attention_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 490, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 486, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 346, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 320, in maybe_run_autograd return self(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 132, in __call__ return super().__call__( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 490, in __call__ return wrapper() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 486, in wrapper return self.dispatch( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 346, in dispatch return kernel(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_higher_order_ops/flex_attention.py", line 873, in sdpa_dense_backward grad_scores = grad_scores * scale torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU 0 has a total capacity of 22.05 GiB of which 588.12 MiB is free. Including non-PyTorch memory, this process has 21.46 GiB memory in use. Of the allocated memory 6.69 GiB is allocated by PyTorch, and 14.50 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) To execute this test, run the following from the base repo dir: python test/inductor/test_flex_attention.py TestFlexAttentionCUDA.test_builtin_score_mods_different_block_size_float16_score_mod4_BLOCK_SIZE3_cuda_float16 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_flex_attention.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,359,282
DISABLED test_matmul_layer_norm_dynamic_shapes_cpu (__main__.DynamicShapesCpuTests)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
4
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_matmul_layer_norm_dynamic_shapes_cpu&suite=DynamicShapesCpuTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40881678238). Over the past 3 hours, it has been determined flaky in 6 workflow(s) with 6 failures and 6 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_matmul_layer_norm_dynamic_shapes_cpu` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 5640, in test_matmul_layer_norm self.common(foo, (inp, weight), check_lowp=False) ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 489, in check_model actual = run(*example_inputs, **kwargs) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_dynamo/eval_frame.py", line 662, in _fn return fn(*args, **kwargs) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 483, in run def run(*ex, **kwargs): File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_dynamo/eval_frame.py", line 856, in _fn return fn(*args, **kwargs) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_functorch/aot_autograd.py", line 1217, in forward return compiled_fn(full_args) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 318, in runtime_wrapper all_outs = call_func_at_runtime_with_args( compiled_fn, args_, disable_amp=disable_amp, steal_args=True ) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/utils.py", line 126, in call_func_at_runtime_with_args out = normalize_as_list(f(args)) ~^^^^^^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/utils.py", line 100, in g return f(*args) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/autograd/function.py", line 575, in apply return super().apply(*args, **kwargs) # type: ignore[misc] ~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^ RuntimeError: std::bad_alloc To execute this test, run the following from the base repo dir: python test/inductor/test_torchinductor_dynamic_shapes.py DynamicShapesCpuTests.test_matmul_layer_norm_dynamic_shapes_cpu This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_dynamic_shapes.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,359,280
DISABLED test_cublas_addmm_size_1000_cuda_bfloat16 (__main__.TestMatmulCudaCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "module: linear algebra", "skipped" ]
5
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_cublas_addmm_size_1000_cuda_bfloat16&suite=TestMatmulCudaCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40883373157). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_cublas_addmm_size_1000_cuda_bfloat16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/test_matmul_cuda.py", line 146, in test_cublas_addmm self.cublas_addmm(size, dtype, False) File "/var/lib/jenkins/workspace/test/test_matmul_cuda.py", line 132, in cublas_addmm self.assertEqual(res_cpu, res_cuda) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4095, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Tensor-likes are not close! Mismatched elements: 5523 / 1003002 (0.6%) Greatest absolute difference: 7.25 at index (523, 18) (up to 0.1 allowed) Greatest relative difference: 336.0 at index (321, 416) (up to 0.1 allowed) To execute this test, run the following from the base repo dir: python test/test_matmul_cuda.py TestMatmulCudaCUDA.test_cublas_addmm_size_1000_cuda_bfloat16 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_matmul_cuda.py` cc @clee2000 @jianyuh @nikitaved @mruberry @walterddr @xwang233 @Lezcano
true
3,009,358,174
[export] set is_exporting() for strict
pianpwk
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor", "release notes: export" ]
7
CONTRIBUTOR
Helpful for upcoming work in figuring when to use stack trace in prettifying dynamic shapes errors cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,321,840
Graph Partition Issue Tracker
BoyuanFeng
open
[ "triaged", "module: cuda graphs", "oncall: pt2", "module: inductor" ]
0
CONTRIBUTOR
This issue tracks work items for graph partition which is a [feature](https://github.com/pytorch/pytorch/issues/125864) to increase cudagraph coverage. It splits off non-cudagraphable ops and cudagraphifies the remaining ops. Features: - [x] Inductor graph partition #147038 - [x] Cudagraph partition #147648 - [x] Dynamic shape inputs & outputs support #149458 - [x] `cudagraph_unsafe` custom ops support #149782 - [x] random number generator state support #150958 - [x] reorder to reduce the number of partitions for simple dependencies #150814 - [ ] improved reordering to reduce the number of partitions and peak memory #151968 Robustness: - [x] Pass all inductor tests under [test_torchinductor.py](https://github.com/pytorch/pytorch/blob/main/test/inductor/test_torchinductor.py) - [ ] Pass all cudagraph tests under [test_cudagraph_trees.py](https://github.com/pytorch/pytorch/blob/main/test/inductor/test_cudagraph_trees.py) #152048 cc @mcarilli @ezyang @eellison @penguinwu @chauhang @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
3,009,312,779
[ONNX] Update ONNX on CI
titaiwangms
closed
[ "module: onnx", "open source", "ciflow/trunk", "topic: not user facing" ]
4
COLLABORATOR
Update ONNX version on CI (split from #151694 )
true
3,009,295,944
[CUDA][TF32] Account for TF32 in `test_corrcoef`
eqy
closed
[ "module: cuda", "module: complex", "open source", "Merged", "module: tf32", "ciflow/trunk", "topic: not user facing" ]
3
COLLABORATOR
cc @ptrblck @msaroufim @jerryzh168 @ezyang @anjali411 @dylanbespalko @mruberry @nikitaved @amjames @zasdfgbnm
true
3,009,287,485
profile for torch.add(x, x) where x is a zero-sized tensor looks bogus
zou3519
open
[ "oncall: profiler" ]
6
CONTRIBUTOR
```py from torch.profiler import profile, record_function, ProfilerActivity import torch x = torch.randn(0) with profile(activities=[ProfilerActivity.CPU], record_shapes=True) as prof: with record_function("model_inference"): x + x print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=10)) ``` Gives: ``` In [7]: print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=10)) ----------------------------- ------------ ------------ ------------ ------------ ------------ ------------ Name Self CPU % Self CPU CPU total % CPU total CPU time avg # of Calls ----------------------------- ------------ ------------ ------------ ------------ ------------ ------------ aten::matmul 0.46% 8.994us 62.32% 1.213ms 606.382us 2 aten::dot 61.72% 1.201ms 61.86% 1.204ms 601.884us 2 model_inference 6.61% 128.555us 8.13% 158.251us 158.251us 1 aten::to 1.04% 20.242us 5.30% 103.077us 3.221us 32 aten::_to_copy 2.19% 42.586us 4.26% 82.835us 2.589us 32 aten::ones 2.08% 40.453us 2.87% 55.895us 13.974us 4 aten::add 2.32% 45.200us 2.59% 50.328us 12.582us 4 aten::abs 1.27% 24.757us 2.20% 42.744us 21.372us 2 aten::__lshift__ 0.67% 12.990us 1.76% 34.283us 34.283us 1 aten::pow 1.40% 27.282us 1.58% 30.817us 10.272us 3 ----------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ``` which seems really bizarre cc @robieta @chaekit @guotuofeng @guyang3532 @dzhulgakov @davidberard98 @briancoutinho @sraikund16 @sanrise
true
3,009,262,596
Add device check for inputs
yushangdi
closed
[ "fb-exported", "Merged", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: inductor (aoti)" ]
8
CONTRIBUTOR
Summary: Generate device checks for inputs in AOTI. Enable with AOTI_RUNTIME_CHECK_INPUTS=1 Test Plan: ``` buck run fbcode//mode/dev-nosan //caffe2/test/inductor:test_aot_inductor -- -r test_runtime_checks_device_type_failed ``` Differential Revision: D73382824 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,247,165
[export] warn when Dim.AUTO 0/1 specializes
pianpwk
closed
[ "Merged", "ciflow/trunk", "ciflow/inductor", "release notes: export" ]
15
CONTRIBUTOR
Fixes #151582 example warning for Dim.AUTO: ``` torch/_export/non_strict_utils.py:499] dimension inputs['x'].shape[1] 0/1 specialized; Dim.AUTO was specified along with a sample input with hint = 1. ``` example error when Dim.DYNAMIC specializes: ``` - Received user-specified dim hint Dim.DYNAMIC(min=None, max=None), but export 0/1 specialized due to hint of 0 for dimension inputs['x'].shape[0]. ```
true
3,009,238,130
[ONNX] Update decomposition logic to loop over onnx registry
titaiwangms
closed
[ "module: onnx", "open source", "Merged", "ciflow/trunk", "release notes: onnx", "topic: bug fixes" ]
8
COLLABORATOR
Fixes #150367 This PR makes decomposition table from onnx registry, which includes registered ops not only ATen and prim. This will help to keep the custom ops that are specified in the custom_translation table from decomposition during ONNX export.
true
3,009,225,842
[cutlass backend] Move cutlass compiled cache to cache_dir
henrylhtsang
closed
[ "fb-exported", "Merged", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: inductor" ]
8
CONTRIBUTOR
Moved "compiled_cache.db" to cache folder. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,206,644
[Sana][HybridCache] Fix bug in detect_attr_assignment
tugsbayasgalan
closed
[ "fb-exported", "Merged", "ciflow/trunk", "ciflow/inductor", "release notes: AO frontend" ]
6
CONTRIBUTOR
Summary: tree_flatten_with_map will internally call unflatten function with user supplied function. But this function was not returning anything causing the leaves to be None. This is wrong when the constructor is sensitive to this behaviour Test Plan: CI Differential Revision: D73388529
true
3,009,151,254
Optimize printing sympy expressions during logging and cache key computation
laithsakka
closed
[ "triaged", "oncall: pt2", "module: dynamic shapes" ]
0
CONTRIBUTOR
repo: ``` import torch def _cumsum(o): ret = [0] * (len(o) + 1) for i in range(len(o)): ret[i + 1] = ret[i] + o[i] return ret @torch.compile(dynamic=True) def func(o): out = _cumsum(o) return out func([i for i in range(2000)]) ``` We have a fast print implementation used in inductor here https://github.com/pytorch/pytorch/blob/625b4edb975da25818eeae27cdbf9ba916973961/torch/_inductor/utils.py#L652-L667 maybe we can reuse it? profile: <img width="1490" alt="Image" src="https://github.com/user-attachments/assets/d2fb3148-c981-4365-ad0d-e75406bb45d2" /> https://fburl.com/scuba/pyperf_experimental/on_demand/vo6ru8ty internal xref: https://fb.workplace.com/groups/1075192433118967/permalink/23929961646604309/ Note this part is disabled from the model compilation even we can enable it after we fix this . even though its not there we still see 10% cost for printing sympy expression in full model compilation https://docs.google.com/document/d/1H-jueMz5VJuX6qVzyBl10OhlWWkxhAjp74JGtl7JhKg/edit?ouid=111904611073736927346&usp=docs_home&ths=true cc @chauhang @penguinwu @ezyang @bobrenjc93
true
3,009,147,832
Support more dtypes for input, indices in gather
isuruf
closed
[ "module: cpu", "open source", "Merged", "ciflow/trunk", "release notes: cuda", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
9
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151715 * __->__ #151822 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @jerryzh168 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,138,412
Updates NCCLConfig with QOS variable
syed-ahmed
closed
[ "oncall: distributed", "open source", "Merged", "ciflow/trunk", "release notes: distributed (c10d)" ]
3
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151821 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
3,009,101,560
Pytorch aten::col2im not currently supported on the MPS backend
cats256
closed
[ "triaged", "module: mps" ]
2
NONE
### 🚀 The feature, motivation and pitch The aten::im2col was implemented but the backward version aten::col2im is not. ``` import torch import torch.nn.functional as F device = "mps" if torch.backends.mps.is_available() else "cpu" if __name__ == '__main__': print("torch version:", torch.__version__) tensor = torch.empty(4, 2, 40, 40, requires_grad=True).to(device) unfolded_tensor = F.unfold(input=tensor, kernel_size=3, padding=1, stride=1) loss = unfolded_tensor.sum() loss.backward() ``` Output ``` torch version: 2.6.0 UserWarning: The operator 'aten::col2im' is not currently supported on the MPS backend and will fall back to run on the CPU. This may have performance implications. (Triggered internally at [/Users/runner/work/pytorch/pytorch/pytorch/aten/src/ATen/mps/MPSFallback.mm:14](https://file+.vscode-resource.vscode-cdn.net/Users/runner/work/pytorch/pytorch/pytorch/aten/src/ATen/mps/MPSFallback.mm:14).) return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass ``` PyTorch version: 2.6.0 Hardware: Apple M4 Air 10-core CPU 10-core GPU ### Alternatives _No response_ ### Additional context aten::col2im (forward version) was implemented here https://github.com/pytorch/pytorch/issues/132711 cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
3,009,086,925
[SymmMem] Add all_to_all_vdev
kwen2501
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (c10d)" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151993 * __->__ #151819 * #151498 * #151261 Merge in/out splits into one tensor Multi-block Use sync instead of barrier Use nvshmemx_collective_launch Rotate blocks among peer write back input splits Parallel scan works Use scan for output offsets Use at most 16 blocks cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
3,009,078,319
use vectorized loads and stores for all datatypes in torch.cat
ngimel
open
[ "release notes: cuda" ]
1
COLLABORATOR
Enable vectorized stores in cat whenever possible. Unforunately, cat on the last dim still struggles to reach peak bw, when last dim sizes are small, so writes from the different threads are not coalesced. Still, it's about 15% gain for the shapes that are supported and where just vectorized reads weren't enough (where the catted slices are multiple of 16-byte alignment), dim0 cats remain approximately the same The kernel is pretty much copy-paste of CatArrayBatchedCopy_contig kernel, with regular loads/stores replaced by vectorized loads/stores, and necessary adjustments done to the offset calculation to pretend that tensor consists of alignment-sized elements. TODO: additional testing, the test failure where some intermediate tensor was of size [1,1] with strides [1024, 1024] and thus took vectorized path was pretty unexpected
true
3,009,072,489
Save/load op profiles
angelayi
closed
[ "Merged", "ciflow/trunk", "release notes: composability", "skip-url-lint" ]
7
CONTRIBUTOR
Add ability to save/load op profiles into a yaml file: ```python op_profile = self.get_sample_op_profile() # Save save_op_profiles(op_profile, "op_profile.yaml") # Load loaded = load_op_profiles("op_profile.yaml") assert op_profile == loaded ```
true
3,009,069,770
[easy] Fix test_dynamo_timed
masnesral
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151816 Summary: The structured logging counter is a global that might have been affected by earlier tests. Clear it explicitly. Fixes #148093 Test Plan: `pytest test/dynamo/test_utils.py` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,009,045,638
Ensure runners have the required prefix
ZainRizvi
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
3
CONTRIBUTOR
Clone changes from https://github.com/pytorch/pytorch/pull/151696/ since that PR wouldn't merge
true
3,009,042,979
[MergeBot] Update PullRequestResolved Regex
malfet
closed
[ "Merged", "topic: not user facing" ]
3
CONTRIBUTOR
By copying an updated one from https://github.com/ezyang/ghstack/commit/cff091f3f3a598c36eb4ca99622833e1011d6fbc
true
3,009,038,580
Back out "Do not propagate real tensor in extern kernel"
yushangdi
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
5
CONTRIBUTOR
Summary: D73002775 breaks aot_compile for many draft exported models on PT2I dashboard. Revert. Example error msg: ``` OrderedSet([]) >= OrderedSet([u1185, u1186, u1187]) (inductor >= fx) fx node is: %embedding_bag_byte_prepack : [num_users=4] = call_function[target=torch.ops.quantized.embedding_bag_byte_prepack.default](args = (%view_10,), kwargs = {}) new operations are: ``` Differential Revision: D73381032 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,009,031,983
[CUDA][CPU] Bump system memory requirement for `test_cross_entropy_large_tensor`
eqy
closed
[ "module: cuda", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
3
COLLABORATOR
`/usr/bin/time` seems to show max resident pages at 119GiB cc @ptrblck @msaroufim @jerryzh168
true
3,008,980,915
[CUDA][MXFP8] bump tolerances for `test_blockwise_mxfp8_nvfp4_numerics`
eqy
closed
[ "module: cuda", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "matrix multiplication", "module: float8" ]
5
COLLABORATOR
got a slightly lower sqnr on a smaller GPU cc @ptrblck @msaroufim @jerryzh168 @yanbing-j @vkuzo @albanD @kadeng @penguinwu
true
3,008,977,635
StringCordView: make iterator fast when there is only one piece
swolchok
closed
[ "oncall: jit", "fb-exported", "Merged", "ciflow/trunk", "release notes: jit" ]
10
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151850 * #151849 * __->__ #151810 * #151807 * #151806 * #151805 * #151804 * #151803 * #151802 * #151801 This makes the StringCordView iterator a variant holding either the existing implementation (when there is more than one piece) or a simple `std::string_view::iterator` (when there is only one piece). The latter seems to be significantly cheaper. Differential Revision: [D73379178](https://our.internmc.facebook.com/intern/diff/D73379178/) cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
3,008,941,848
[export] deserialization for unbacked ranges is wrong
pianpwk
open
[ "oncall: pt2", "export-triaged", "oncall: export" ]
1
CONTRIBUTOR
### 🐛 Describe the bug ShapeEnv range info is wrong for unbacked symbols after we deserialize, with lower bound of 2: ``` import io import torch from torch.export import export, save, load class Foo(torch.nn.Module): def forward(self, x): n = x.item() return torch.empty(n) ep = export(Foo(), (torch.tensor([5]),)) buffer = io.BytesIO() save(ep, buffer) buffer.seek(0) loaded_ep = load(buffer) # pre-serialize ep print("pre-serialize") shape_env = torch._guards.detect_fake_mode([ node.meta.get("val") for node in ep.graph.nodes ]).shape_env print(shape_env.var_to_range) # deserialized ep print("deserialized") shape_env = torch._guards.detect_fake_mode([ node.meta.get("val") for node in loaded_ep.graph.nodes ]).shape_env print(shape_env.var_to_range) ``` we get: ``` pre-serialize {u0: VR[0, int_oo]} deserialized {u0: VR[2, int_oo]} ``` This happens because we were blindly clamping lower bounds for all symbols (this was intended just for backed symbols, so users could specify min=0 or 1): https://github.com/pytorch/pytorch/blob/0f8613bf5cbdd7a2af5c46e6fa1adda35c69db8d/torch/_export/serde/serialize.py#L2171 But this was conveniently helping us get past 0/1 data-dependent errors when deserializing tensor values (in empty_strided calls), which were never exposed. A more correct fix could be to save and load size-like info, and deserialize node-by-node, storing runtime asserts in the ShapeEnv as needed. Or we could just start serializing the ShapeEnv in full, so we stop running into such information loss issues. ### Versions Collecting environment information... PyTorch version: 2.8.0a0+git1a48382 Is debug build: False CUDA used to build PyTorch: 12.0 ROCM used to build PyTorch: N/A OS: CentOS Stream 9 (x86_64) GCC version: (GCC) 11.5.0 20240719 (Red Hat 11.5.0-5) Clang version: Could not collect CMake version: version 3.30.2 Libc version: glibc-2.34 Python version: 3.10.14 (main, May 6 2024, 19:42:50) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.4.3-0_fbk14_hardened_2601_gcd42476b84e9-x86_64-with-glibc2.34 Is CUDA available: False CUDA runtime version: 12.0.140 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA H100 GPU 1: NVIDIA H100 Nvidia driver version: 550.90.07 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 92 On-line CPU(s) list: 0-91 Vendor ID: AuthenticAMD Model name: AMD EPYC 9654 96-Core Processor CPU family: 25 Model: 17 Thread(s) per core: 1 Core(s) per socket: 92 Socket(s): 1 Stepping: 1 BogoMIPS: 4792.79 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm rep_good nopl cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw perfctr_core invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 clzero xsaveerptr wbnoinvd arat npt lbrv nrip_save tsc_scale vmcb_clean pausefilter pfthreshold v_vmsave_vmload vgif avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm arch_capabilities Virtualization: AMD-V Hypervisor vendor: KVM Virtualization type: full L1d cache: 5.8 MiB (92 instances) L1i cache: 5.8 MiB (92 instances) L2 cache: 46 MiB (92 instances) L3 cache: 1.4 GiB (92 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-91 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] adam-atan2-pytorch==0.1.1 [pip3] alphafold3-pytorch==0.6.6 [pip3] bert_pytorch==0.0.1a4 [pip3] ema-pytorch==0.7.3 [pip3] executorch==0.4.0.dev20240809+cpu [pip3] flake8==7.1.1 [pip3] frame-averaging-pytorch==0.1.2 [pip3] lion-pytorch==0.2.2 [pip3] mypy==1.9.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.1.3.1 [pip3] nvidia-cuda-cupti-cu12==12.1.105 [pip3] nvidia-cuda-nvrtc-cu12==12.1.105 [pip3] nvidia-cuda-runtime-cu12==12.1.105 [pip3] nvidia-cudnn-cu12==8.9.2.26 [pip3] nvidia-cufft-cu12==11.0.2.54 [pip3] nvidia-curand-cu12==10.3.2.106 [pip3] nvidia-cusolver-cu12==11.4.5.107 [pip3] nvidia-cusparse-cu12==12.1.0.106 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.18.1 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.1.105 [pip3] onnx==1.16.1 [pip3] onnxruntime==1.18.0 [pip3] onnxscript==0.3.0.dev20250225 [pip3] open-clip-torch==2.24.0 [pip3] optree==0.13.1 [pip3] pytorch-labs-segment-anything-fast==0.2 [pip3] pytorch-lightning==2.0.7 [pip3] pytorch_sphinx_theme==0.0.24 [pip3] pytorch-triton==3.0.0+45fff310c8 [pip3] rotary-embedding-torch==0.8.5 [pip3] torch==2.8.0a0+git1a48382 [pip3] torch_geometric==2.4.0 [pip3] torch-mlir==20241017.255 [pip3] torch-stoi==0.2.1 [pip3] torch_tensorrt==2.6.0 [pip3] torchao==0.10.0+git7d879462 [pip3] torchaudio==2.6.0.dev20250131+cpu [pip3] torchdiffeq==0.2.4 [pip3] torchmetrics==1.0.3 [pip3] torchrec==0.9.0a0+5e30669 [pip3] torchsde==0.2.6 [pip3] torchsr==1.0.4 [pip3] torchtext==0.18.0 [pip3] torchtune==0.5.0 [pip3] torchtyping==0.1.5 [pip3] torchvision==0.22.0a0+fab1188 [pip3] torchx==0.7.0 [pip3] triton==3.1.0 [conda] Could not collect cc @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
true
3,008,934,242
[BE] Move aarch64 docker build to larger node
malfet
closed
[ "Merged", "topic: not user facing" ]
3
CONTRIBUTOR
They happen once a week or so, not sure why it needs to be on the slowest machine possible
true
3,008,917,707
Fix missing moves in SchemaTypeParser::parseFakeAndRealType
swolchok
closed
[ "oncall: jit", "fb-exported", "Merged", "ciflow/trunk", "release notes: jit" ]
12
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151850 * #151849 * #151810 * __->__ #151807 * #151806 * #151805 * #151804 * #151803 * #151802 * #151801 Was seeing a small amount of shared_ptr traffic from these. The std::move(text) at the top is just a piggyback. Differential Revision: [D73376720](https://our.internmc.facebook.com/intern/diff/D73376720/) cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
3,008,917,624
Fix a missed c10::TypeFactory::create spot in function_schema_parser
swolchok
closed
[ "oncall: jit", "fb-exported", "Merged", "ciflow/trunk", "release notes: jit" ]
10
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151850 * #151849 * #151810 * #151807 * __->__ #151806 * #151805 * #151804 * #151803 * #151802 * #151801 Looks like we are supposed to be using TypeFactory instead of direct creation everywhere that might run on mobile. Differential Revision: [D73376716](https://our.internmc.facebook.com/intern/diff/D73376716/) cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
3,008,917,530
Fix easy missing moves in function_schema_parser
swolchok
closed
[ "oncall: jit", "fb-exported", "Merged", "ciflow/trunk", "release notes: jit" ]
14
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151850 * #151849 * #151810 * #151807 * #151806 * __->__ #151805 * #151804 * #151803 * #151802 * #151801 Just some straightforward not-moving-upon-return. Differential Revision: [D73376718](https://our.internmc.facebook.com/intern/diff/D73376718/) cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
3,008,917,434
Add & use Token::text_view() (which returns a string_view unlike text())
swolchok
closed
[ "oncall: jit", "fb-exported", "Merged", "ciflow/trunk", "release notes: jit" ]
11
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151850 * #151849 * #151810 * #151807 * #151806 * #151805 * __->__ #151804 * #151803 * #151802 * #151801 Sadly, I can't just fix text() because that might cause lifetime issues in somebody's code. Differential Revision: [D73376715](https://our.internmc.facebook.com/intern/diff/D73376715/) cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
3,008,917,351
Fix return type of TypeFactoryBase<c10::DynamicType>::get
swolchok
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
11
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151850 * #151849 * #151810 * #151807 * #151806 * #151805 * #151804 * __->__ #151803 * #151802 * #151801 getBaseType() actually returns a reference. This was causing shared_ptr copies. Differential Revision: [D73376717](https://our.internmc.facebook.com/intern/diff/D73376717/)
true
3,008,917,238
Create and use DynamicTypes for check in DispatchKeyExtractor::makeBitsetForDispatchArgs
swolchok
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
11
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151850 * #151849 * #151810 * #151807 * #151806 * #151805 * #151804 * #151803 * __->__ #151802 * #151801 On mobile, many but not all things in the JIT type subsystem start using DynamicType. Not using DynamicType was imposing a startup time cost here, as explained in the comment. Differential Revision: [D73129442](https://our.internmc.facebook.com/intern/diff/D73129442/)
true
3,008,917,147
Don't copy DynamicType argument to DynamicType::create
swolchok
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
11
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151850 * #151849 * #151810 * #151807 * #151806 * #151805 * #151804 * #151803 * #151802 * __->__ #151801 This improves performance of DynamicType::isSubtypeOfExt. Differential Revision: [D73129449](https://our.internmc.facebook.com/intern/diff/D73129449/)
true
3,008,917,062
Fix extra heap allocation in Source constructor
swolchok
closed
[ "oncall: jit", "fb-exported", "Merged", "ciflow/trunk", "release notes: jit" ]
11
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151850 * #151849 * #151810 * #151807 * #151806 * #151805 * #151804 * #151803 * #151802 * #151801 * __->__ #151800 * #151682 This was a sneaky one: the StringCordView default constructor allocates. Differential Revision: [D73129448](https://our.internmc.facebook.com/intern/diff/D73129448/) cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
3,008,913,954
Expanding subset of tensor reads wrong memory
martenlienen
open
[ "triaged", "module: correctness (silent)", "bug", "oncall: pt2", "module: dynamic shapes" ]
7
NONE
### 🐛 Describe the bug I have derived the following minimal failing example: ```python import torch def expand(x, n): return x.expand((n,)) @torch.compile() def f(n: int, device: str): numbers = torch.arange(10, device=device) for i in range(len(numbers)): expanded = expand(numbers[i], n) print(expanded[0]) device = "cuda" f(1, device) print() f(2, device) ``` This should print the integers from 0 to 9 twice, but what you get instead is ``` tensor(0, device='cuda:0') tensor(1, device='cuda:0') tensor(2, device='cuda:0') tensor(3, device='cuda:0') tensor(4, device='cuda:0') tensor(5, device='cuda:0') tensor(6, device='cuda:0') tensor(7, device='cuda:0') tensor(8, device='cuda:0') tensor(9, device='cuda:0') tensor(0, device='cuda:0') tensor(0, device='cuda:0') tensor(2, device='cuda:0') tensor(0, device='cuda:0') tensor(4, device='cuda:0') tensor(0, device='cuda:0') tensor(6, device='cuda:0') tensor(0, device='cuda:0') tensor(8, device='cuda:0') tensor(0, device='cuda:0') ``` The specific values of `n` are not important, only that they differ. If you use a `linspace` instead of an `arange`, the pattern is different. Then it prints the first value of the `linspace` in every iteration except every 5th, where it prints the correct value (at least with `dtype=torch.float32`). If I inline the definition of `expand`, the bug disappears. It only happens on CUDA devices. If you set `device = "cpu"`, it does not happen. If you don't compile `f`, it also does not happen. If we `.clone()` `numbers[i]`, it also does not happen. While this example `print`s to show the bug, I have also observed it without `print` in my sampling code (only every 5th generated sample was not trash). ### Error logs [dedicated_log_torch_trace_1jeap82o.log](https://github.com/user-attachments/files/19837453/dedicated_log_torch_trace_1jeap82o.log) [tl_out.tar.gz](https://github.com/user-attachments/files/19837462/tl_out.tar.gz) ### Versions I have confirmed this bug on 2.5.1, 2.6.0 and today's nightly. ``` Collecting environment information... PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.12 (main, Jan 17 2025, 14:35:34) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-131-generic-x86_64-with-glibc2.35 Is CUDA available: N/A CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA A100-SXM4-80GB MIG 3g.40gb Device 0: Nvidia driver version: 535.230.02 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 96 On-line CPU(s) list: 0-95 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6336Y CPU @ 2.40GHz CPU family: 6 Model: 106 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 2 Stepping: 6 CPU max MHz: 2400.0000 CPU min MHz: 800.0000 BogoMIPS: 4800.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 ds_cpl smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities L1d cache: 2.3 MiB (48 instances) L1i cache: 1.5 MiB (48 instances) L2 cache: 60 MiB (48 instances) L3 cache: 72 MiB (2 instances) NUMA node(s): 4 NUMA node0 CPU(s): 0-11,48-59 NUMA node1 CPU(s): 12-23,60-71 NUMA node2 CPU(s): 24-35,72-83 NUMA node3 CPU(s): 36-47,84-95 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] Could not collect [conda] Could not collect ``` cc @chauhang @penguinwu @ezyang @bobrenjc93
true
3,008,878,859
[c10d][fr] Fix another bug when we should continue when the op list is empty
fduwjj
closed
[ "oncall: distributed", "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
10
CONTRIBUTOR
Differential Revision: D73375318 We shouldn't check the op list when it is empty. And later, when it is empty we pops it out from the queue we will check for collective matching. Added a unit test for this case and also covered the case fixed https://github.com/pytorch/pytorch/pull/151683 in the unit test as well. cc @H-Huang @awgu @wanchaol @fegin @wz337 @wconstab @d4l3k
true
3,008,798,100
Rename register_fake_profile to unsafe_generate_fake_kernels
angelayi
closed
[ "Merged", "ciflow/trunk", "release notes: export" ]
3
CONTRIBUTOR
Fixes https://docs.google.com/document/d/1BZsuUR1zJ-52Y7wP4yWX8beB4dwYbgdu5o1qKam_iWg/edit?disco=AAABiJdX1XU
true
3,008,778,456
Update docs dependencies for local build
svekars
closed
[ "module: docs", "Merged", "ciflow/trunk", "topic: docs", "topic: not user facing" ]
17
CONTRIBUTOR
Fixes #151786 - Changed requirements.txt to a symlink to .ci/docker/requirements-docs.txt - Updated README.md with better doc build instructions. cc @sekyondaMeta @AlannaBurke
true
3,008,720,382
Deduplicate library deletion
angelayi
open
[ "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
Fixes https://github.com/pytorch/pytorch/pull/151299#issuecomment-2807160080
true
3,008,680,172
[BE]: Better cleanup optimized code from #151474
Skylion007
closed
[ "open source", "better-engineering", "Merged", "ciflow/trunk", "topic: not user facing" ]
5
COLLABORATOR
This change addresses the first/second time/mem "spike" observed Improves on #151474 by removing unnecessary stride calculations and unused arguments to the helper function https://github.com/pytorch/pytorch/issues/151351 Fixes https://github.com/pytorch/pytorch/issues/151351
true
3,008,647,092
Create decomp for searchsorted
justinchuby
open
[ "module: onnx", "triaged" ]
0
COLLABORATOR
In https://github.com/pytorch/pytorch/issues/151648#issuecomment-2817662679 the model cannot be exported to ONNX because a decomp was missing for searchsorted. Looks like a decomp can be created according to the comments.
true
3,008,571,754
Add NCCL trafficClass option for QoS support
x41lakazam
closed
[ "oncall: distributed", "open source", "release notes: distributed (c10d)" ]
2
CONTRIBUTOR
cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
3,008,534,436
[MPS] Enable log1p and sigmoid for int64
malfet
closed
[ "Merged", "release notes: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
5
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151791 * #151790 It works on MacOS-15, but likely will need a skip for MacOS-13 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,008,534,331
[Testing] Unskip expm1 log1p for MPS
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151791 * __->__ #151790 But don't test them for unsupported dtypes (which is float64 for MPS) - Skip int64 for log1p for now (next PR will fix that) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,008,337,473
[Dynamo] Replace `unimplemented` with `unimplemented_v2` in `torch/_dynamo/variables/iter.py`
shink
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo" ]
9
CONTRIBUTOR
Part of #147913 Replace `unimplemented` with`unimplemented_v2` in `torch/_dynamo/variables/iter.py` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,008,309,210
[standalone_compile] Dynamic shape handling
zou3519
closed
[ "Merged", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: AO frontend" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151788 standalone_compile needs to get dynamic shape information from somewhere. We add a new `dynamic_shapes` argument with three options: 1. from the passed-in graph (dynamic="from_graph"). This is the default. 2. from the example inputs, thereby specializing on them. (dynamic="from_example_inputs") 3. from the current tracing context (dynamic="from_tracing_context") 1 and 3 are not exactly the same. 2 can also be used for more advanced things... (specialize on one input but not the other). Most of this PR is tests. Test Plan: - a lot of new tests. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,008,229,330
Fix doc requirements install error
zeshengzong
closed
[ "open source", "Merged", "topic: not user facing" ]
5
CONTRIBUTOR
Fixes #151786 Change version in requirements of docs consistent with version in [CI version file](https://github.com/pytorch/pytorch/blob/main/.ci/docker/requirements-docs.txt), which changed in #149331 ### Test Result ![image](https://github.com/user-attachments/assets/f8646c03-116f-4f1c-b017-11b70995626b)
true
3,008,223,002
Fail to install document dependency locally
zeshengzong
closed
[ "module: docs", "module: ci", "triaged" ]
4
CONTRIBUTOR
### 📚 The doc issue Install dependency of docs has following errors ```bash # pytorch/doc pip install -r requirements.txt ``` ![Image](https://github.com/user-attachments/assets/c8ea8d84-c29a-48f7-a1f1-111cdabf91db) ### Suggest a potential alternative/fix _No response_ cc @svekars @sekyondaMeta @AlannaBurke @seemethere @malfet @pytorch/pytorch-dev-infra
true
3,008,202,259
Optimize register_full_backward_hook description when all input no grad
zeshengzong
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "release notes: autograd" ]
4
CONTRIBUTOR
Fixes #100528 ## Test Result ### Before ![image](https://github.com/user-attachments/assets/5dd2e1d3-3bb1-49d0-84bf-8a7a6b18fa4b) ### After ![image](https://github.com/user-attachments/assets/2e16d17b-1586-40d8-b0ef-35559fc064f4)
true
3,008,197,361
Fix the Inconsistency and Description of `device_type` in `torch.random.fork_rng()`
ILCSFNO
closed
[ "triaged", "module: backend" ]
3
CONTRIBUTOR
### 🐛 Describe the bug The doc of [torch.random.fork_rng()](https://pytorch.org/docs/stable/random.html#torch.random.fork_rng) shows its description as below: https://github.com/pytorch/pytorch/blob/bf28d1cafc6ab3ea94856e5891be1b5e8a37d83c/torch/random.py#L146-L147 There are 2 issues that I wonder: First, less site is noted after `[Note: support the custom device with privateuse1]`, something related is found [here](https://pytorch.org/docs/stable/torch.html#accelerators), maybe there is some notes but not linked? ### Suggestions 1 * If there actually exists some notes about privateuse1, link it to `[Note: support the custom device with privateuse1]` like `[Note: support the custom device with privateuse1](Website Here)` * If not, add some notes [here](https://github.com/pytorch/pytorch/tree/main/docs/source/notes) or other relative path and link it to docs like `[Note: support the custom device with privateuse1](Website Here)` Second is also about `device_type`, may add description to show other devices which can be used, like issue #149722 and its PR https://github.com/pytorch/pytorch/pull/149770 Some repros here, but can't check actually, wondering whether no error is shown: ### Repro 1 ```python import torch # torch.random.fork_rng(device_type='cpu') torch.random.fork_rng(device_type='aaaaa') ``` ### Output 1 ```text <contextlib._GeneratorContextManager at 0x7f6dd9c2fa90> ``` Some deeper codes here: https://github.com/pytorch/pytorch/blob/bf28d1cafc6ab3ea94856e5891be1b5e8a37d83c/torch/random.py#L125-L160 So tried another repro: ### Repro 2 ```python import torch # def device_type='aaaaa' # code deeper if device_type == "meta": pass device_type = torch.device(device_type).type device_mod = getattr(torch, device_type, None) if device_mod is None: raise RuntimeError( f"torch has no module of `{device_type}`, you should register " + "a module by `torch._register_device_module`." ) ``` ### Output 2 ```text RuntimeError: Expected one of cpu, cuda, ipu, xpu, mkldnn, opengl, opencl, ideep, hip, ve, fpga, maia, xla, lazy, vulkan, mps, meta, hpu, mtia, privateuseone device type at start of device string: aaaaa ``` ### Suggestions 2 * To solve the mismatch between `Repro 1` and `Repro 2` (To tell the truth, I don't know what to do, because the reason why the status of `Repro 1` differs from `Repro 2` is confusing for me) * Add description of available `device_type` in docs Thanks for noting! ### Versions Nightly cc @bdhirsh
true
3,008,038,581
We could not debug inside the backward function with pdb
BraveDrXuTF
closed
[ "module: autograd", "triaged" ]
2
NONE
### 🐛 Describe the bug Even if we use detect_anomaly, ``` loss = output.mean() with torch.autograd.detect_anomaly(): loss.backward() print("Backward pass completed.") ``` we can only get such an abstract error info, ``` with torch.autograd.detect_anomaly(): Traceback (most recent call last): File "test.py", line 48, in <module> loss.backward() File "/usr/local/lib/python3.10/dist-packages/torch/_tensor.py", line 525, in backward torch.autograd.backward( File "/usr/local/lib/python3.10/dist-packages/torch/autograd/__init__.py", line 267, in backward _engine_run_backward( File "/usr/local/lib/python3.10/dist-packages/torch/autograd/graph.py", line 744, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn ``` and it does not tell me which line of code I write goes wrong. ### Versions PyTorch version: 2.3.0a0+6ddf5cf85e.nv24.04 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.29.0 Libc version: glibc-2.35 Python version: 3.10.15 (main, Oct 3 2024, 07:27:34) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-3.10.0-1160.el7.x86_64-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.4.131 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-80GB Nvidia driver version: 550.54.14 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz CPU family: 6 Model: 106 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 Stepping: 6 Frequency boost: enabled CPU max MHz: 3400.0000 CPU min MHz: 800.0000 BogoMIPS: 5200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb cat_l3 invpcid_single intel_pt ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq md_clear pconfig spec_ctrl intel_stibp flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 3 MiB (64 instances) L1i cache: 2 MiB (64 instances) L2 cache: 80 MiB (64 instances) L3 cache: 96 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; Load fences, usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] cudnn==1.1.2 [pip3] numpy==1.24.4 [pip3] nvtx==0.2.5 [pip3] onnx==1.16.0 [pip3] optree==0.11.0 [pip3] pynvjitlink==0.1.13 [pip3] pytorch-quantization==2.1.2 [pip3] pytorch-triton==3.0.0+a9bc1a364 [pip3] torch==2.3.0a0+6ddf5cf85e.nv24.4 [pip3] torch-tensorrt==2.3.0a0 [pip3] torchdata==0.7.1a0 [pip3] torchtext==0.17.0a0 [pip3] torchvision==0.18.0a0 [conda] No relevant packages cc @ezyang @albanD @gqchen @nikitaved @soulitzer @Varal7 @xmfan
true
3,007,955,984
JVP: Option to Disable Gradient Caching for Tangents
qsh-zh
open
[ "triaged", "module: functorch" ]
0
NONE
### 🚀 The feature, motivation and pitch I'm requesting a new option for `torch.func.jvp` to disable gradient caching and tracking specifically for the tangent output without affecting the primal output. Currently, when using `torch.func.jvp(fn, primals, tangents)`, the JVP output requires gradients by default, which causes it to cache activations unnecessarily. In many use-cases like mine, the JVP tangent vectors are used for auxiliary calculations but are not part of the computation graph for backpropagation. This leads to: 1. Unnecessary memory usage from cached activations for the tangent calculations 2. No way to selectively disable gradient tracking for just the tangent part I propose adding an optional parameter to `torch.func.jvp`, perhaps named `track_tangent_grad=True` (defaulting to True for backward compatibility), that would allow users to disable gradient tracking specifically for the JVP output without affecting the primal output and without requiring multiple forward passes. Example of desired usage: ```python # Current behavior output, jvp = func.jvp(layer, (x, ), (v, )) assert output.requires_grad == True assert jvp.requires_grad == True # Caches activations unnecessarily # Proposed behavior output, jvp = func.jvp(layer, (x, ), (v, ), track_tangent_grad=False) assert output.requires_grad == True assert jvp.requires_grad == False # No activation caching ``` ### Alternatives Currently, I have to use workarounds like: 1. Detaching the JVP output after calculation (`jvp.detach()`), which works but is less efficient than not caching in the first place 2. Using separate forward passes (`layer(x)` and then a separate JVP calculation with `no_grad`), which increases computation 3. Complex wrappers around the JVP function, which reduce code clarity None of these solutions are ideal, as they either increase computation or don't fully prevent the unnecessary caching during the forward pass. ### Additional context _No response_ cc @zou3519 @Chillee @samdow @kshitij12345
true
3,007,912,715
[MPS] Move ops modifiers to testing utils so other tests can reuse
qqaatw
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/mps" ]
6
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151177 * __->__ #151781 Test collection check on macOS 13.7.1: ``` python -m pytest test/test_mps.py --collect-only python -m pytest -v test/test_mps.py::TestConsistencyCPU ``` Before: ``` 6390 tests collected in 8.34s 3936 passed, 205 skipped, 1306 xfailed in 1570.34s (0:26:10) ``` After: ``` 6390 tests collected in 7.71s 3936 passed, 205 skipped, 1306 xfailed in 1631.11s (0:27:12) ```
true
3,007,897,385
Horizontal
sunjiweiswift
open
[ "triaged", "open source", "module: inductor" ]
2
NONE
Fixes #ISSUE_NUMBER cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,007,833,710
[Indcutor Remote Cache] Raise an exception if redis module is required but not available
ChuanqiXu9
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor" ]
13
CONTRIBUTOR
If we need redis but redis is not available, it is better to tell the user to install redis instead of continue silently. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,007,766,608
Normalize dynamic size symbols in template codegen cache key.
laithsakka
open
[ "topic: not user facing", "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150869 * __->__ #151778 * #151773 * #151764 if we have the following tensors (s0, 1)*( 1, s0) and (s1, 1)*( 1, s1), then currently we generate the same code for during mm auto-tuning when expanding the mm_template. Eventhough the generated code is NOT dependent on the input symbol names, we cache miss right now because we have the input size as part of the cache key. This diff normalize the input sizes in the cache key such that (s0, 1) and (s1, 1) would appear as (normalized_0, 1) hence we would cache hit. This patter exist in the compiled full model cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,007,713,127
enable windows inductor UT in CI
yuchengliu1
open
[ "open source", "ciflow/trunk", "release notes: releng", "module: dynamo", "ciflow/inductor", "ciflow/xpu" ]
4
NONE
cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,007,694,022
[dynamo] Some inefficiencies around handling __torch_function__
anijain2305
open
[ "triaged", "oncall: pt2", "module: dynamo" ]
2
CONTRIBUTOR
### 🐛 Describe the bug I was looking at reducing compile time for a GGUF SD model (https://github.com/pytorch/pytorch/issues/150706), and I found some inefficiencies around `__torch_function__`. The model heavily relies on torch function. Testing on a single transformer layer, I was able to reduce Dynamo time from 3 seconds to below 2 seconds with this patch. I am not confident that this patch is good, it will be good if someone can take over. I tried to reduce the number of times `__torch_function__` was called. I saw that for torch.compile, it was getting called 3x more times. A majority of these calls were not getting traced by Dynamo, which hinted that they were either coming from compiler themselves (like calling x._is_view to check something can call `__torch_function__`). ``` diff --git a/torch/_dynamo/output_graph.py b/torch/_dynamo/output_graph.py index 2dc2209a2c6..6228ec0d949 100644 --- a/torch/_dynamo/output_graph.py +++ b/torch/_dynamo/output_graph.py @@ -1471,7 +1471,8 @@ class OutputGraph: self.tracing_context.fake_mode = backend_fake_mode with self.restore_global_state(): - compiled_fn = self.call_user_compiler(gm) + with torch._C.DisableTorchFunction(): + compiled_fn = self.call_user_compiler(gm) from torch.fx._lazy_graph_module import _LazyGraphModule diff --git a/torch/_dynamo/polyfills/tensor.py b/torch/_dynamo/polyfills/tensor.py index 002ccf5d1d4..b3d81036ab3 100644 --- a/torch/_dynamo/polyfills/tensor.py +++ b/torch/_dynamo/polyfills/tensor.py @@ -11,25 +11,26 @@ from ..decorators import substitute_in_graph def make_subclass( cls: type[Any], data: torch.Tensor, requires_grad: bool = False, **kwargs: Any ) -> Any: - # This is a rough approximation of `THPVariable_make_subclass`. It should - # suffice for most of Dynamo tracing purposes. - # https://github.com/pytorch/pytorch/blob/ccfde4dadfa3c342076a1ee387017f84dd4ad2f7/torch/csrc/autograd/python_variable.cpp#L597-L650 - assert len(kwargs) == 0, "_make_subclass only supports requires_grad as keyword arg" - data = data.detach() - - # Avoid unnecessary `requires_grad` mutation, which isn't supported in Dynamo. - if data.requires_grad != requires_grad: - data.requires_grad = requires_grad - - # Dynamo can't yet handle upcasting to base tensor type via `as_subclass`. - if cls is torch.Tensor: - return torch.Tensor(data) - - # Calling `as_subclass` because - # 1. Dynamo knows how to handle it - # 2. the C impls match at this point -- both `THPVariable_make_subclass` and - # `THPVariable_as_subclass` calls `THPVariable_NewWithVar`. - return data.as_subclass(cls) + with torch._C.DisableTorchFunctionSubclass(): + # This is a rough approximation of `THPVariable_make_subclass`. It should + # suffice for most of Dynamo tracing purposes. + # https://github.com/pytorch/pytorch/blob/ccfde4dadfa3c342076a1ee387017f84dd4ad2f7/torch/csrc/autograd/python_variable.cpp#L597-L650 + assert len(kwargs) == 0, "_make_subclass only supports requires_grad as keyword arg" + data = data.detach() + + # Avoid unnecessary `requires_grad` mutation, which isn't supported in Dynamo. + if data.requires_grad != requires_grad: + data.requires_grad = requires_grad + + # Dynamo can't yet handle upcasting to base tensor type via `as_subclass`. + if cls is torch.Tensor: + return torch.Tensor(data) + + # Calling `as_subclass` because + # 1. Dynamo knows how to handle it + # 2. the C impls match at this point -- both `THPVariable_make_subclass` and + # `THPVariable_as_subclass` calls `THPVariable_NewWithVar`. + return data.as_subclass(cls) __all__ = [ diff --git a/torch/_dynamo/variables/builder.py b/torch/_dynamo/variables/builder.py index 6e80e1ef563..b05f2403f56 100644 --- a/torch/_dynamo/variables/builder.py +++ b/torch/_dynamo/variables/builder.py @@ -425,7 +425,8 @@ class VariableBuilder: if cached_vt: return cached_vt - vt = self._wrap(value) + with torch._C.DisableTorchFunctionSubclass(): + vt = self._wrap(value) vt.source = self.source if ( self._can_lift_attrs_to_inputs(vt) diff --git a/torch/_dynamo/variables/torch_function.py b/torch/_dynamo/variables/torch_function.py index dd7f6fa1f53..c376e2a745f 100644 --- a/torch/_dynamo/variables/torch_function.py +++ b/torch/_dynamo/variables/torch_function.py @@ -628,7 +628,7 @@ class TensorWithTFOverrideVariable(TensorVariable): # Handle non-overriden attributes inherited from `torch.Tensor`. attr_is_overriden = _is_attr_overidden(tx, self, name) - if hasattr(torch.Tensor, name) and not attr_is_overriden: + if hasattr(torch.Tensor, name) and not attr_is_overriden and not inspect.ismethoddescriptor(getattr(torch.Tensor, name)): if tx.output.torch_function_enabled: if self.source: install_guard( ``` Changing my "eager" backend to do this might have helped as well ``` def my_backend(gm, *args): def inner(*n_args): with torch._C.DisableTorchFunction(): return gm.forward(*n_args) return inner ``` cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames @StrongerXi @mlazos ### Error logs _No response_ ### Versions NA
true
3,007,684,847
[Inductor] Modify TritonTemplate store_output function to support TMA stores
NikhilAPatel
open
[ "topic: not user facing", "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151775 * #151774 Summary: The `store_output` macro -- used in Triton templates to generate triton kernel code for storing output using `tl.store` -- has been modified to support TMA based stores. This now allows functions using TMA stores to benefit from inductor epilogue fusion. Additionally, it is now a lot easier to add TMA stores to existing kernels. The persistent + TMA template mm template was updated to use this logic. Test Plan: contbuild and OSS CI Reviewers: paulzhan cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,007,684,760
[Inductor] Modify persistent+TMA template for Triton mm and admm to use new TMA API
NikhilAPatel
open
[ "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
7
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151775 * __->__ #151774 Summary: This PR modifies the Triton template for persisten+TMA mm and admm to use the new functional API for TMA introduced here: https://github.com/triton-lang/triton/pull/6248/ This also involves setting a global Triton allocator function to be called at kernel launch for any kernels that require additional global memory workspace. This is done in triton_heuristics.py directly before kernels are launched. Test Plan: contbuild & OSS CI Reviewers: paulzhan cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,007,662,223
Cache code generation during triton template expansion and enable it for mm_template.
laithsakka
open
[ "topic: not user facing", "module: inductor", "ciflow/inductor" ]
5
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151773 In a model, we see ~~ 40% of the time in mm/addmm tuning. The model have 2000 mm, many of which receives the same input shapes. with autotune enabled, this become expensive, while we already cache auto tuning results, we did not used to cache the generation of the python code and the loading for each config that we autotune on. This diff handles the code generation part (template expansions) a previous diff handled the loading part. This is expected to save 20% of the model I am working on. How do we do the caching? For a given configurations and input layout, the generated code is always the same. One caveat is that some other information collected during code generation are input dependent (namely depends on inputs names and symbol names in inputs). and not just layout. ! To handle those we use a record and replay approach, where we record the functions that are called during code generation that effect those outputs and replay them at a cache hit. Effect on the current benchmark on a local run on dev server. mm_loop. 24115830838 -> 18362098019 mm_loop_dynamic 30506097176-> 25697270062 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,007,660,921
[Inductor] Modify persistent+TMA template for Triton mm and admm to use new TMA API
NikhilAPatel
closed
[ "topic: not user facing", "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151772 Summary: This PR modifies the Triton template for persisten+TMA mm and admm to use the new functional API for TMA introduced here: https://github.com/triton-lang/triton/pull/6248/ This also involves setting a global Triton allocator function to be called at kernel launch for any kernels that require additional global memory workspace. This is done in triton_heuristics.py directly before kernels are launched. Test Plan: contbuild & OSS CI Reviewers: paulzhan cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,007,629,416
Graph break on .t() when Tensor._make_subclass
KareemMusleh
open
[ "triaged", "oncall: pt2", "dynamo-triage-jan2025" ]
2
NONE
### 🐛 Describe the bug this is similar to #150265 ```python from torch import nn import torch torch_compile_options = { "epilogue_fusion" : True, "max_autotune" : True, "shape_padding" : True, "trace.enabled" : True, "triton.cudagraphs" : False, } class a(nn.Linear): def __init__(self, b): super().__init__(128, 128) self.b = b class b(nn.Parameter): def __new__(cls, data): self = torch.Tensor._make_subclass(cls, data) return self A = a(b(torch.randn(12, 12))) @torch.compile(fullgraph = True, dynamic = True, options = torch_compile_options) def test(): out = 3 * A.b.t() return out test() ``` ### Versions PyTorch version: 2.8.0.dev20250420+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.31.6 Libc version: glibc-2.35 Python version: 3.11.12 (main, Apr 9 2025, 08:55:54) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.1.123+-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 12.5.82 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.2.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 2 On-line CPU(s) list: 0,1 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) CPU @ 2.20GHz CPU family: 6 Model: 79 Thread(s) per core: 2 Core(s) per socket: 1 Socket(s): 1 Stepping: 0 BogoMIPS: 4399.99 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap xsaveopt arat md_clear arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 32 KiB (1 instance) L1i cache: 32 KiB (1 instance) L2 cache: 256 KiB (1 instance) L3 cache: 55 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0,1 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable; SMT Host state unknown Vulnerability Meltdown: Vulnerable Vulnerability Mmio stale data: Vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Vulnerable Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Not affected; BHI: Vulnerable Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable Versions of relevant libraries: [pip3] numpy==2.0.2 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.26.2 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] nvtx==0.2.11 [pip3] optree==0.15.0 [pip3] pynvjitlink-cu12==0.5.2 [pip3] pytorch-triton==3.3.0+git96316ce5 [pip3] torch==2.8.0.dev20250420+cu126 [pip3] torchaudio==2.6.0.dev20250420+cu126 [pip3] torchsummary==1.5.1 [pip3] torchvision==0.22.0.dev20250420+cu126 [pip3] triton==3.2.0 [conda] Could not collect cc @chauhang @penguinwu
true
3,007,575,819
[2/n][Optimus][Auto-AC] Support activation quantization with scaling
mengluy0125
open
[ "fb-exported", "ciflow/trunk", "release notes: fx", "fx", "module: inductor", "module: dynamo", "ciflow/inductor" ]
13
CONTRIBUTOR
Summary: Previously, we only support non-scaling quantization, which may lead to overflow, here we support scaling quantization, and set it as the default version. Here, we quantize activation nodes based on the size_in_mb, the default value is 100, i.e., as long as the node has at least 100MB size, we will quantize it. Test Plan: ### how to enable ``` torch._inductor.config.post_grad_fusion_options = { "activation_quantization_aten_pass": { "quant_type": "torch.float8_e5m2", -> default is this type to quantize, you can change the type "use_scaling": False, -> default is False, if you want to use scaling verison, set it to True "size_in_mb": 0.0, -> default is 100, you can tune the value. "exclude_primals": False, -> whether want to exclude quantize parameters, default is False "allowed_dtypes": "torch.float16;torch.bfloat16;torch.float32", -> dtype you consider to quant, use ";" to separate, default is torch.bfloat16 }, } ``` ### toy model ``` buck2 run mode/opt //scripts/qyz/autoac:quantization ``` ``` Epoch [80/200], Loss: 19227.2109 Epoch [100/200], Loss: 1353.5272 Epoch [120/200], Loss: 38630.6758 Epoch [140/200], Loss: 6239.9155 Epoch [160/200], Loss: 6039.1567 Epoch [180/200], Loss: 3994.3569 Epoch [200/200], Loss: 146.3966 ``` Differential Revision: D73015996 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,007,487,842
Add adaptive_avg_pool2d input and output_size check
zeshengzong
open
[ "triaged", "open source", "topic: not user facing" ]
4
CONTRIBUTOR
Fixes #126673 ## Test Result ```python import torch import torch.nn as nn batch_size = 10 channels = 3 length = 32 input_tensor = torch.randn([batch_size, channels, length]) adaptive_avg_pool = nn.AdaptiveAvgPool2d(output_size=16) output_tensor = adaptive_avg_pool(input_tensor) print(output_tensor.shape) UserWarning: Input dimensions [10, 3, 32] different with output_size [16, 16] (Triggered internally at /home/zong/code/pytorch/aten/src/ATen/native/AdaptiveAveragePooling.cpp:39.) return torch._C._nn.adaptive_avg_pool2d(input, _output_size) torch.Size([10, 16, 16]) batch_size = 10 channels = 3 length = 32 input_tensor = torch.randn([batch_size, channels, length]) adaptive_avg_pool = nn.AdaptiveAvgPool2d(output_size=[3, 32]) # no warning output_tensor = adaptive_avg_pool(input_tensor) print(output_tensor.shape) torch.Size([10, 3, 32]) ```
true
3,007,410,439
Run standalone compile tests on cpu/gpu
oulgen
closed
[ "Merged", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151603 * #151609 * __->__ #151768 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,007,362,018
[Don't merge] Upgrade oneDNN to v3.8 for XPU build
mengfei25
open
[ "module: mkldnn", "open source", "ciflow/binaries_wheel", "ciflow/xpu" ]
7
CONTRIBUTOR
Fixes #ISSUE_NUMBER cc @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @snadampal
true
3,007,360,311
Support regexes in dynamic sources allowlist
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151885 * __->__ #151766 As requested by Shuai. I also included an additional refactor to capture changes in the whitelist over time since previously the first time it was set, it was impossible override when a new config was set. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,007,358,085
Upgrade oneDNN to v3.8 for XPU build
mengfei25
closed
[ "module: mkldnn", "open source" ]
2
CONTRIBUTOR
Fixes #ISSUE_NUMBER cc @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @snadampal
true
3,007,348,292
Refactor TritonTemplate.generate and move codgen part to generate_and_load
laithsakka
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
9
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151764 Splitting https://github.com/pytorch/pytorch/pull/149267/ . This first PR just refactor the code without adding any caching functionality. The logic of generating the code and loading it is moved to generate_and_load() + some typing cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,007,338,023
Eagerly guard when dealing with float32 scalar tensor item calls
bobrenjc93
closed
[ "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151763 * #151766 Fixes #151470 SymFloats implicitly only supports float64 as we can see in code like this: https://github.com/pytorch/pytorch/blob/main/torch/_subclasses/fake_tensor.py#L479. This PR fixes the above issue by eagerly guarding when dealing with float32 scalar tensor item calls cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,007,173,059
Support for grouped query attention in ONNX export
cyanic-selkie
open
[ "module: onnx", "triaged" ]
3
NONE
### 🚀 The feature, motivation and pitch Hi, when using `enabled_gqa` with `scaled_dot_product_attention`, the ONNX export fails - this is documented. However, since QGA is very popular currently, and the Attention ONNX op already supports it, I was wondering if there is any plan to add support for it in the exporter, and if so, how soon, thanks. ### Alternatives _No response_ ### Additional context _No response_
true
3,007,117,746
Inconsistent `sum`/`dot`/`norm` behavior
melnikovsky
open
[ "triaged", "module: linear algebra" ]
10
CONTRIBUTOR
### 🐛 Describe the bug Summation of huge `float32` arrays is admittedly a sensitive subject, but different routines use inconsistent (and seemingly undocumented?) approaches. Particularly, `torch.sum` is the most precise, while `linalg.norm` on 10 CPU cores is as slow but has inferior accuracy. Would it be possible to normalize these somehow? How do I get consistent results even in future `pytorch` versions? Below is the output for three functions, the right answer is `1e9` ``` 1 thread: torch.linalg.norm(x)**2=tensor(6.5533e+08), timeit: [1.0846478752791882, 1.0839017871767282, 1.0842528380453587] torch.dot(x,x)=tensor(9.7329e+08), timeit: [1.0753544569015503, 1.075887642800808, 1.075775207951665] (x*x).sum()=tensor(1.0000e+09), timeit: [4.653062522411346, 4.647735759615898, 4.65124611929059] 10 threads: torch.linalg.norm(x)**2=tensor(6.5533e+08), timeit: [1.0826967414468527, 1.0804776344448328, 1.078405149281025] torch.dot(x,x)=tensor(9.9902e+08), timeit: [0.2012637760490179, 0.2010939735919237, 0.20179643481969833] (x*x).sum()=tensor(1.0000e+09), timeit: [1.0688033681362867, 1.0729365721344948, 1.0708447061479092] ``` The code itself: ```python import torch import timeit def play(x): print(f'{torch.linalg.norm(x)**2=}, timeit:', timeit.repeat('torch.linalg.norm(x)**2', number=4, repeat=3, globals=globals() )) print(f'{torch.dot(x,x)=}, timeit:', timeit.repeat('torch.dot(x,x)', number=4, repeat=3, globals=globals())) print(f'{(x*x).sum()=}, timeit:', timeit.repeat('(x*x).sum()', number=4, repeat=3, globals=globals())) x=torch.randn(1_000_000_000, dtype=torch.float32, device='cpu') torch.set_num_threads(1) print('\t 1 thread:') play(x) torch.set_num_threads(10) print('\n\t 10 threads:') play(x) ``` ### Versions Collecting environment information... PyTorch version: 2.6.0 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Red Hat Enterprise Linux release 8.10 (Ootpa) (x86_64) GCC version: (GCC) 12.2.0 Clang version: Could not collect CMake version: version 3.26.5 Libc version: glibc-2.28 Python version: 3.13.3 | packaged by conda-forge | (main, Apr 14 2025, 20:44:03) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-4.18.0-553.27.1.el8_10.x86_64-x86_64-with-glibc2.28 Is CUDA available: True CUDA runtime version: 12.8.93 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A40 Nvidia driver version: 560.35.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 24 On-line CPU(s) list: 0-23 Thread(s) per core: 1 Core(s) per socket: 12 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 106 Model name: Intel(R) Xeon(R) Gold 5317 CPU @ 3.00GHz Stepping: 6 CPU MHz: 3000.000 CPU max MHz: 3600.0000 CPU min MHz: 800.0000 BogoMIPS: 6000.00 L1d cache: 48K L1i cache: 32K L2 cache: 1280K L3 cache: 18432K NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities Versions of relevant libraries: [pip3] numpy==2.2.5 [pip3] optree==0.14.1 [pip3] torch==2.6.0 [pip3] triton==3.2.0+git576374f8 [conda] cuda-cudart 12.8.90 h5888daf_1 conda-forge [conda] cuda-cudart_linux-64 12.8.90 h3f2d84a_1 conda-forge [conda] cuda-cupti 12.8.90 h5888daf_1 conda-forge [conda] cuda-nvrtc 12.8.93 h5888daf_1 conda-forge [conda] cuda-nvtx 12.8.90 h5888daf_1 conda-forge [conda] cudnn 9.8.0.87 h81d5506_1 conda-forge [conda] libblas 3.9.0 31_hfdb39a5_mkl conda-forge [conda] libcblas 3.9.0 31_h372d94f_mkl conda-forge [conda] libcublas 12.8.4.1 h9ab20c4_1 conda-forge [conda] libcufft 11.3.3.83 h5888daf_1 conda-forge [conda] libcurand 10.3.9.90 h9ab20c4_1 conda-forge [conda] libcusolver 11.7.3.90 h9ab20c4_1 conda-forge [conda] libcusparse 12.5.8.93 h5888daf_1 conda-forge [conda] liblapack 3.9.0 31_hc41d3b0_mkl conda-forge [conda] libmagma 2.9.0 h19665d7_1 conda-forge [conda] libnvjitlink 12.8.93 h5888daf_1 conda-forge [conda] libtorch 2.6.0 cuda126_mkl_h99b69db_304 conda-forge [conda] mkl 2024.2.2 ha957f24_16 conda-forge [conda] nccl 2.26.2.1 ha44e49d_1 conda-forge [conda] numpy 2.2.5 py313h17eae1a_0 conda-forge [conda] optree 0.14.1 py313hdb19cb5_0 [conda] pytorch 2.6.0 cuda126_mkl_py313_he20fe19_304 conda-forge [conda] pytorch-gpu 2.6.0 cuda126_mkl_ha999a5f_304 conda-forge [conda] triton 3.2.0 cuda126py313h46f6bd1_1 conda-forge cc @jianyuh @nikitaved @mruberry @walterddr @xwang233 @Lezcano
true
3,007,061,212
[MPS] Implement upsample_nearest3d_vec operator
donghao1393
open
[ "triaged", "open source", "release notes: mps" ]
3
NONE
# MPS Implementation of upsample_nearest3d_vec This PR adds a Metal Performance Shaders (MPS) implementation of the `upsample_nearest3d_vec` operator for PyTorch on macOS. This implementation enables 3D nearest neighbor upsampling to run natively on Apple Silicon GPUs. ## Changes - Added MPS implementation of `upsample_nearest3d_vec` in `aten/src/ATen/native/mps/operations/UpSample.mm` - Added tests in `test/test_mps_upsample_nearest3d.py` - Requires macOS 13.1 or newer due to Metal API requirements ## Implementation Details The implementation uses a custom Metal compute shader to perform 3D nearest neighbor upsampling. The shader calculates the source coordinates for each output voxel and samples the nearest input voxel. Key features: - Supports both `scale_factor` and `size` parameters - Handles non-contiguous tensors - Supports empty tensors - Supports both float32 and float16 data types ## Limitations - Backward pass is not yet implemented - Only supports upsampling (scale factors >= 1.0) - Integer data types are not supported (Metal limitation) ## Testing The implementation has been tested with various input shapes, scale factors, and data types. All tests pass on macOS 13.1 and newer. ## Performance The MPS implementation provides significant performance improvements over the CPU implementation, especially for larger tensors. ## Future Work - Implement backward pass - Support downsampling (scale factors < 1.0) - Optimize performance further ## Related Issues This PR addresses the need for native MPS implementation of 3D upsampling operations, which was previously falling back to CPU. This PR relies on https://github.com/pytorch/pytorch/pull/149378 based on https://github.com/pytorch/pytorch/releases/tag/v2.7.0-rc10
true
3,007,034,055
"_get_pg_default_device" deprecated warning in "Getting Started with Distributed Checkpoint (DCP)"
michael080808
open
[ "oncall: distributed", "triaged" ]
0
NONE
### 📚 The doc issue I tried both the "[Saving](https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html#saving)" and "[Loading](https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html#loading)" code from "[Getting Started with Distributed Checkpoint (DCP)](https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html)" on torch2.6+cu126. Both `save` and `load` in `torch.distributed.checkpoint` seem to use "_get_pg_default_device" and give me the warning: ``` /opt/anaconda3/envs/Holo/lib/python3.13/site-packages/torch/distributed/distributed_c10d.py:863: UserWarning: `_get_pg_default_device` will be deprecated, it only stays for backward-compatiblity reason. If you need to find a device for object collectives, please use `_get_object_coll_device`. If you need to query the device types supported by group, please use `_device_capability(group)`. ``` I have noticed that there is [#136790 pull request](https://github.com/pytorch/pytorch/pull/136790) about this warning. I'm not sure whether this is a doc issue or not. ### Suggest a potential alternative/fix Maybe `torch.distributed.checkpoint` needs a further cleanup about `_get_pg_default_device`. cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
3,006,946,347
torch.testing._internal.optests - MPS Support
goldfishsound
open
[ "open source", "topic: not user facing" ]
3
NONE
# autograd_registration_check ## Adding support for MPS device 1. Why this PR The generated test by optests.generate_opcheck_tests() for the "test_autograd_registration " test case will fail for tensors on the mps device. 2. Reason for failure The current implementation of the function autograd_registration_check() in torch/testing/_internal/optests/autograd_registration.py is missing a dispatch key for the mps device. 3. Solution Adding the "AutogradMPS" dispatch key for the mps device.
true
3,006,793,070
[logging] Put "everything" WaitCounters in dynamo_timed
masnesral
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor" ]
5
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151757 * #151749 Summary: The main motivation is to capture the cudagraphs overhead in a WaitCounter. We'll combine that with Triton autotuning, and therefore rename to "compile_runtime_overheads". Since we have a couple WaitCounters where we want to capture all runtime and compile overheads, let's put the accounting in dynamo_timed so we'll automatically capture any toplevel timed regions that get added in the future. Also, dynamo_timed already has to figure out if we're timing a runtime vs. compile-time event, so we can reuse some of that logic. Test Plan: Ran an internal model with `TORCHINDUCTOR_BENCHMARK_FUSION=1` (to get benchmarking at compile time in addition to runtime). Overall compile time from various sources matches up: * tlparse: https://fburl.com/9fgsstkr. Eyeballing, total time should be 32 ranks x 2175 = ~69.6k s * ods: https://fburl.com/canvas/r4clhnb7. Right on. * dynamo_compile: https://fburl.com/scuba/dynamo_compile/ax71aqox. Right on. * pt2_compile_events: https://fburl.com/scuba/pt2_compile_events/shcjd9ql. Right on. And the runtime overhead: * ods: https://fburl.com/canvas/nvgjb282 * dynamo_compile: https://fburl.com/scuba/dynamo_compile/f2dtv0qh If we compare that to a run of the same model without the changes in this stack, results can mismatch by a lot: * tlparse: https://fburl.com/cchxwd1s. Eyeballing, total time should be 32 ranks x 2300s = ~73.5k s * ods: https://fburl.com/canvas/x1i3wvf4. It's kinda close * dynamo_compile: https://fburl.com/scuba/dynamo_compile/l7sgxdxd. Waaay too high. * pt2_compile_events: https://fburl.com/scuba/pt2_compile_events/jb4s9z1u. This is the only one that's actually correct. The discrepancy is even worse if we focus on the runtime events: * ods: https://fburl.com/canvas/a4o9f7ou * dynamo_compile: https://fburl.com/scuba/dynamo_compile/95izaes1 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,006,756,813
[dynamo] Call __torch_function__ on only overridable tensor methods or attrs
anijain2305
open
[ "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151620 * #150704 * #151410 * #151409 * __->__ #151756 * #151633 * #151477 * #151357 * #151256 * #151330 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,006,747,720
[ez] fix typo in comment
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151755 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,006,660,272
[MPS] Add support for hermite_polynomial_he (inductor/eager).
dcci
closed
[ "Merged", "topic: improvements", "module: mps", "release notes: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
4
MEMBER
cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,006,638,675
reroute index to fast implementation for indexing on 0th dimension
ngimel
closed
[ "Merged", "Reverted", "ciflow/trunk", "release notes: cuda", "ci-no-td" ]
6
COLLABORATOR
Per title, improve x[index] cuda perf for the common case of indexing along the first dim, using vectorized gather kernel
true
3,006,629,397
Refactor duplicate code into a utility function in pytorch/torch/nn/functional.py
aaiss0927
open
[ "open source", "ciflow/trunk", "topic: not user facing" ]
6
NONE
Description: This PR refactors duplicate code for validating dropout probability values into a utility function `probability_checking()` in pytorch/torch/nn/functional.py. Changes: - Created a new utility function `probability_checking(p)` that validates if the dropout probability parameter is within valid range (0.0 to 1.0) - Replaced identical validation code in six dropout-related functions with calls to this utility function The changes improve code maintainability by eliminating duplicate logic while preserving the exact same validation behavior.
true
3,006,592,786
Update __init__.py
Mazgagzam
open
[ "triaged", "open source", "topic: not user facing" ]
4
NONE
Refactor `factory_kwargs` to simplify key validation and merging - Replaced the manual key checks and dictionary updates with a more efficient and readable approach. - Simplified the handling of unexpected kwargs using set operations. - Ensured no conflicts between `kwargs` and `factory_kwargs` using intersection checks. - Improved readability and maintainability of the code. Fixes #ISSUE_NUMBER
true
3,006,588,469
add min/max_seqlen to non_differentiable
sumantro93
closed
[ "open source", "Merged", "ciflow/trunk", "release notes: nested tensor" ]
9
CONTRIBUTOR
Fixes #148988
true
3,006,536,462
[logging] Fix duration logging for dynamo_compile
masnesral
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151757 * __->__ #151749 Summary: There are a few issues I'm solving:. 1. It's too hard to measure total pt2 overhead using the dynamo_compile table because users need to know the columns representing all the top-level events (dynamo_cumulative_compile_time_us, etc.). Instead, let's populate the existing duration_us field for all top-level events. The complication is that runtime events in particular (Triton autotuning, cudagraphify) can be collapsed into a single row, with gaps in between, so we can't simply use `end_time - start_time` in all cases. Instead, we'll sum durations for all outer events when updating the compile-time or runtime metrics context. Introduce a 'depth' counter in TLS to track the nesting of CompilationMetrics events. 2. The existing implementation relies on callers of dynamo_timed to specify whether the event is a runtime or compile-time event. That doesn't work because some methods can be called in both situations, e.g., `CachingAutotuner.benchmark_all_configs`. For example `TORCHINDUCTOR_BENCHMARK_FUSION=1` enables benchmarking during compile-time. Instead, we can figure out automatically whether we're measuring a compile-time or runtime event and log accordingling. 3. If `log_compilation_events` were to throw an exception, we'd fail to clear the aggregated counters for runtime logs and they could be attributed to the wrong compile ID. I didn't actually find evidence of this in practice, but I added exception handling for extra safety. Test Plan: Ran internal models and compared dynamo_compile to pt2_compile_events: `TORCHINDUCTOR_BENCHMARK_FUSION=0` * tlparse: https://fburl.com/itciwnxc * dynamo_compile: https://fburl.com/scuba/dynamo_compile/yvkif5vb * pt2_compile_events: https://fburl.com/scuba/pt2_compile_events/segijet7 `TORCHINDUCTOR_BENCHMARK_FUSION=1` * tlparse: https://fburl.com/jgurcvkw * dynamo_compile: https://fburl.com/scuba/dynamo_compile/uum91ceb * pt2_compile_events: https://fburl.com/scuba/pt2_compile_events/x4xnisez cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,006,462,091
[Benchmarking] Add sam and stable_diffusion to MPS benchmarked models
malfet
closed
[ "Merged", "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #151748
true
3,006,461,263
[Benchmarking] Run MPS benchmarks for [b]float16
malfet
closed
[ "Merged", "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151748 * __->__ #151747 And implicitly pass `--float32` when collecting results for "notset" option. Speedups for some models are much higher for float16 dtype, but it's important to track accuracy
true
3,006,435,215
[AotInductor][Export][Triton] how to export custom triton kernels when use torch.export.export
zzq96
open
[ "oncall: pt2", "export-triaged", "oncall: export", "module: aotinductor", "module: user triton" ]
2
NONE
### 🐛 Describe the bug our framework is based on torch, and includes some custom triton kernels. in inference phase, we try use different gpu type(such as training on H100, inference on L40). so we should load exported model and call aoti_compile_and_package to generate aot model based on inference gpu, but error with below msg when call torch.load: ``` torch._export.serde.serialize.SerializeError: Unsupported target type for node Node(target='torch.ops.triton_kernel.add.default', inputs=[NamedArgument(name='x', arg=Argument(as_tensor=TensorArgument(name='linear')), kind=1), NamedArgument(name='y', arg=Argument(as_tensor=TensorArgument(name='mul')), kind=1)], outputs=[Argument(as_tensor=TensorArgument(name='add'))], metadata={'stack_trace': ' File "/usr/local/app/torch_learn/export/model_export.py", line 72, in forward\n output = triton_add(dense_output, bias)\n File "/usr/bin/python3.9/lib/python3.9/site-packages/torch/_library/custom_ops.py", line 671, in __call__\n return self._opoverload(*args, **kwargs)\n', 'nn_module_stack': 'L__self__,,__main__.SimpleModel', 'source_fn_stack': 'add_default,torch.ops.triton_kernel.add.default', 'torch_fn': 'add.default_1;OpOverload.add.default'}, is_hop_single_tensor_return=None): <class 'str'> ``` In my understanding, torch need source code of triton kernels when load exported_model. but our framwork is big, and in some cases, user may define their custom triton kernels. it's diffcult for us to obtain user source code and download this big framework in inference gpu machine. any suggestions? the simple model code is: ```python import torch import torch.nn as nn import torch import triton import triton.language as tl @triton.jit def add_kernel( x_ptr, y_ptr, output_ptr, n_elements, BLOCK_SIZE: tl.constexpr, ): pid = tl.program_id(axis=0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements x = tl.load(x_ptr + offsets, mask=mask) y = tl.load(y_ptr + offsets, mask=mask) output = x + y tl.store(output_ptr + offsets, output, mask=mask) @torch.library.triton_op("triton_kernel::add", mutates_args={}) def triton_add(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: n_elements = x.numel() output = torch.empty_like(x) BLOCK_SIZE = 1024 grid = (triton.cdiv(n_elements, BLOCK_SIZE),) torch.library.wrap_triton(add_kernel)[grid]( x, y, output, n_elements, BLOCK_SIZE, ) return output class SimpleModel(nn.Module): def __init__(self, input_dim, hidden_dim): super(SimpleModel, self).__init__() self.dense = nn.Linear(input_dim, hidden_dim) def forward(self, x): dense_output = self.dense(x) bias = torch.ones_like(dense_output) * 0.5 output = triton_add(dense_output, bias) return output def main(): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") input_dim = 10 hidden_dim = 20 batch_size = 16 model = SimpleModel(input_dim, hidden_dim).to(device) x = torch.randn(batch_size, input_dim, device=device) with torch.no_grad(): output = model(x) exported_model = torch.export.export( model, (x,), ) torch.export.save(exported_model, "exported_model.pt") if __name__ == "__main__": main() ``` run this code, a exported_model is in `./exported_model.pt` then run aot export code: ```python import torch torch.set_default_device("cuda") saved_exported_program = torch.export.load(f"exported_model.pt") torch._inductor.aoti_compile_and_package( saved_exported_program, package_path=f"aot_model.pt2", ) ``` ### Versions Collecting environment information... PyTorch version: 2.7.0+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A GCC version: (GCC) 10.3.1 20210422 (Red Hat 10.3.1-1) Clang version: 9.0.1 (Red Hat 9.0.1-2.module_el8.2.0+309+0c7b6b03) CMake version: version 3.19.0 Libc version: glibc-2.28 Python version: 3.9.16 (main, Dec 11 2024, 20:47:20) [GCC 8.3.1 20191121 (Red Hat 8.3.1-5)] (64-bit runtime) Python platform: Linux-5.4.119-1-tlinux4-0010.3-x86_64-with-glibc2.28 Is CUDA available: True CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A10 GPU 1: NVIDIA A10 GPU 2: NVIDIA A10 GPU 3: NVIDIA A10 Nvidia driver version: 470.141.03 cuDNN version: Probably one of the following: /usr/lib/libcudnn.so.8.9.7 /usr/lib/libcudnn_adv_infer.so.8.9.7 /usr/lib/libcudnn_adv_train.so.8.9.7 /usr/lib/libcudnn_cnn_infer.so.8.9.7 /usr/lib/libcudnn_cnn_train.so.8.9.7 /usr/lib/libcudnn_ops_infer.so.8.9.7 /usr/lib/libcudnn_ops_train.so.8.9.7 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 224 On-line CPU(s) list: 0-223 Thread(s) per core: 2 Core(s) per socket: 56 Socket(s): 2 NUMA node(s): 2 Vendor ID: AuthenticAMD CPU family: 25 Model: 1 Model name: AMD EPYC 7K83 64-Core Processor Stepping: 0 CPU MHz: 2545.218 BogoMIPS: 5090.43 Hypervisor vendor: KVM Virtualization type: full L1d cache: 32K L1i cache: 32K L2 cache: 512K L3 cache: 32768K NUMA node0 CPU(s): 0-111 NUMA node1 CPU(s): 112-223 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm rep_good nopl cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext ibpb vmmcall fsgsbase bmi1 avx2 smep bmi2 erms rdseed adx smap clflushopt sha_ni xsaveopt xsavec xgetbv1 arat Versions of relevant libraries: [pip3] numpy==1.23.5 [pip3] nvidia-cublas-cu11==11.11.3.6 [pip3] nvidia-cuda-cupti-cu11==11.8.87 [pip3] nvidia-cuda-nvrtc-cu11==11.8.89 [pip3] nvidia-cuda-runtime-cu11==11.8.89 [pip3] nvidia-cudnn-cu11==9.1.0.70 [pip3] nvidia-cufft-cu11==10.9.0.58 [pip3] nvidia-curand-cu11==10.3.0.86 [pip3] nvidia-cusolver-cu11==11.4.1.48 [pip3] nvidia-cusparse-cu11==11.7.5.86 [pip3] nvidia-nccl-cu11==2.21.5 [pip3] nvidia-nvtx-cu11==11.8.86 [pip3] onnx==1.17.0 [pip3] onnxscript==0.1.0 [pip3] tf2onnx==1.9.3 [pip3] torch==2.7.0+cu118 [pip3] triton==3.0.0 [conda] Could not collect cc @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4 @desertfire @chenyang78 @yushangdi @benjaminglass1 @oulgen @aakhundov @davidberard98
true
3,006,395,711
[inductor] [cuda] [silent incorrectness] `F.softmax-torch.argsort` output silent incorrectness when tensor input is very large
shaoyuyoung
open
[ "triaged", "oncall: pt2", "module: inductor", "topic: fuzzer" ]
1
CONTRIBUTOR
### 🐛 Describe the bug **symptom**: `F.softmax-torch.argsort` output silent incorrectness when tensor input is very large **device backend**: only triton ```python import torch import torch.nn as nn import torch.nn.functional as F from torch._inductor import config config.fallback_random = True torch.set_grad_enabled(False) torch.manual_seed(0) class Model(nn.Module): def __init__(self): super().__init__() def forward(self, x): x = F.softmax(x, dim=1) return torch.argsort(x, dim=1) model = Model() x = torch.randn([1, 30000]) # tensor input should large enough inputs = [x] def run_test(model, inputs, device, backend): torch.manual_seed(0) model = model.to(device) inputs = [x.to(device) for x in inputs] if backend != "eager": model = torch.compile(model, backend=backend) torch.manual_seed(0) output = model(*inputs) return output device = 'cuda' output = run_test(model, inputs, device, 'eager') c_output = run_test(model, inputs, device, 'inductor') print(torch.allclose(output, c_output, rtol=1e-3, atol=1e-3)) print(torch.max(torch.abs(c_output - output))) fp64 = run_test(model.to(dtype=torch.float64), [x.to(dtype=torch.float64) for x in inputs], device, 'eager') print(torch._dynamo.utils.same(output, c_output, fp64)) ``` ### Error logs triton ``` False tensor(18221, device='cuda:0') E0419 20:06:50.456000 1653871 site-packages/torch/_dynamo/utils.py:2955] Accuracy failed: allclose not within tol=0.0001 False ``` CPP ``` True tensor(0) True ``` ### Versions nightly 20250418 cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
3,006,385,994
[inductor] [silent incorrectness] [dtype processing] `torch.clamp` can't implicitly covert `int64`
shaoyuyoung
open
[ "high priority", "triaged", "oncall: pt2", "module: aotdispatch", "module: inductor", "module: pt2-dispatcher" ]
3
CONTRIBUTOR
### 🐛 Describe the bug **symptom**: It's a very interesting edge case. When the range of `torch.clamp` is set to **(-0.5, 0.5)**, given an initial `int64` input, it can be **implicitly converted** into `f32` in eager, but inductor loses this mechanism and still outputs `int64`, subsequently resulting silent incorrectness. **device backend**: both CPP and triton ```python import torch import torch.nn as nn import torch.nn.functional as F from torch._inductor import config config.fallback_random = True torch.set_grad_enabled(False) torch.manual_seed(0) class Model(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): x = torch.clamp(x, min=-0.5, max=0.5) return x model = Model() x = torch.tensor(1) print('input:') print(x) print(x.dtype) inputs = [x] def run_test(model, inputs, device, backend): torch.manual_seed(0) model = model.to(device) inputs = [x.to(device) for x in inputs] if backend != "eager": model = torch.compile(model, backend=backend) torch.manual_seed(0) output = model(*inputs) return output device = 'cpu' output = run_test(model, inputs, device, 'eager') c_output = run_test(model, inputs, device, 'aot_eager_decomp_partition') print("eager output:") print(output) print(output.dtype) print("inductor output:") print(c_output) print(c_output.dtype) ``` ### Error logs ``` input: tensor(1) torch.int64 eager output: tensor(0.5000) torch.float32 inductor output: tensor(0) torch.int64 ``` ### Versions nightly 20250414 cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @muchulee8 @amjames @aakhundov @bdhirsh
true
3,006,331,537
[Inductor] Dynamo hangs when processing an operator, seemingly depending on a logical argument value
alexsamardzic
closed
[ "triaged", "oncall: pt2", "module: dynamo" ]
2
COLLABORATOR
### 🐛 Describe the bug Here is a reproducer: ```Python import torch device = "cuda" group_size = 4 M, N, K = 16, 32, 64 dtype_AB = torch.float8_e4m3fn dtype_scale = torch.float32 dtype_offset = torch.int32 dtype_C = torch.bfloat16 A = torch.ones(M, K * group_size, device=device).to(dtype_AB) B = torch.ones(N, K * group_size, device=device).to(dtype_AB) A_scale = torch.ones(group_size * M, device=device, dtype=dtype_scale) B_scale = torch.ones(group_size * N, device=device, dtype=dtype_scale) offs = torch.arange(K, group_size * K + 1, K, device=device, dtype=dtype_offset) f_ref = torch._scaled_grouped_mm f = torch.compile( f_ref, ) torch.compiler.allow_in_graph(f_ref) for use_fast_accum in [False, True]: print("use_fast_accum =", use_fast_accum) C_ref = f_ref( A, B.transpose(-2, -1), A_scale, B_scale, offs, out_dtype=dtype_C, use_fast_accum=use_fast_accum, ) C = f( A, B.transpose(-2, -1), A_scale, B_scale, offs, out_dtype=dtype_C, use_fast_accum=use_fast_accum, ) assert torch.allclose(C, C_ref, atol=1e-3, rtol=1e-3) ``` The first iteration of the loop, when `use_fast_accum` argument of `_scaled_grouped_mm` operator is set to `False`, goes fine, but in the second iteration, when the argument set to `True`, the compilation hangs. If a breakpoint set [here](https://github.com/pytorch/pytorch/blob/92d0c40c4921abf01a01a173453815b975781d85/torch/_dynamo/output_graph.py#L1617), and then trying to step over and return from this function, it seems that the hang happens at this place. (Note: the `_scaled_grouped_mm` operator works on Hopper only.) Background: Initial support for auto-tuning of this operator is added through #150421, and I've encountered the issue while working on extending it through #150944. However, the problem is not related to auto-tuning, it could be reproduced with c3bc6b3, that was before #150421. ### Error logs Here is a backtrace from gdb, when reproducer stopped after being hang for some time. Apparently, it hangs in a `cudaStreamSynchronize()`. <details> <summary>Gdb backtrace</summary> ``` #0 0x00007f95417203bf in ?? () from /usr/lib/x86_64-linux-gnu/libcuda.so.1 #1 0x00007f95413d368c in ?? () from /usr/lib/x86_64-linux-gnu/libcuda.so.1 #2 0x00007f954149699a in ?? () from /usr/lib/x86_64-linux-gnu/libcuda.so.1 #3 0x00007f95416f0029 in ?? () from /usr/lib/x86_64-linux-gnu/libcuda.so.1 #4 0x00007f954153d89d in ?? () from /usr/lib/x86_64-linux-gnu/libcuda.so.1 #5 0x00007f95b12143a5 in ?? () from /scratch/pytorch-dev/lib/libcudart.so.12 #6 0x00007f95b12757d8 in cudaStreamSynchronize () from /scratch/pytorch-dev/lib/libcudart.so.12 #7 0x00007f959a673f3c in at::native::_local_scalar_dense_cuda(at::Tensor const&)::{lambda()#1}::operator()() const [clone .isra.0] () from /scratch/pytorch/torch/lib/libtorch_cuda.so #8 0x00007f959a675995 in at::native::_local_scalar_dense_cuda(at::Tensor const&) () from /scratch/pytorch/torch/lib/libtorch_cuda.so #9 0x00007f959c298788 in at::(anonymous namespace)::(anonymous namespace)::wrapper_CUDA___local_scalar_dense(at::Tensor const&) () from /scratch/pytorch/torch/lib/libtorch_cuda.so #10 0x00007f959c298810 in c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<c10::Scalar (at::Tensor const&), &at::(anonymous namespace)::(anonymous namespace)::wrapper_CUDA___local_scalar_dense>, c10::Scalar, c10::guts::typelist::typelist<at::Tensor const&> >, c10::Scalar (at::Tensor const&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&) () from /scratch/pytorch/torch/lib/libtorch_cuda.so #11 0x00007f95a5b5d93a in at::_ops::_local_scalar_dense::call(at::Tensor const&) () from /scratch/pytorch/torch/lib/libtorch_cpu.so #12 0x00007f95a512eff3 in at::native::item(at::Tensor const&) () from /scratch/pytorch/torch/lib/libtorch_cpu.so #13 0x00007f95a624cb31 in c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<c10::Scalar (at::Tensor const&), &at::(anonymous namespace)::(anonymous namespace)::wrapper_CompositeImplicitAutograd__item>, c10::Scalar, c10::guts::typelist::typelist<at::Tensor const&> >, c10::Scalar (at::Tensor const&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&) () from /scratch/pytorch/torch/lib/libtorch_cpu.so #14 0x00007f95a599133a in at::_ops::item::call(at::Tensor const&) () from /scratch/pytorch/torch/lib/libtorch_cpu.so #15 0x00007f95a6808057 in unsigned char at::Tensor::item<unsigned char>() const () from /scratch/pytorch/torch/lib/libtorch_cpu.so #16 0x00007f95a51d2899 in at::native::allclose(at::Tensor const&, at::Tensor const&, double, double, bool) () from /scratch/pytorch/torch/lib/libtorch_cpu.so #17 0x00007f95a79742df in torch::autograd::VariableType::(anonymous namespace)::allclose(c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, double, double, bool) () from /scratch/pytorch/torch/lib/libtorch_cpu.so #18 0x00007f95a577cceb in at::_ops::allclose::call(at::Tensor const&, at::Tensor const&, double, double, bool) () from /scratch/pytorch/torch/lib/libtorch_cpu.so #19 0x00007f95b0634f2d in torch::autograd::THPVariable_allclose(_object*, _object*, _object*) () from /scratch/pytorch/torch/lib/libtorch_python.so #20 0x000055bf35f0e4b6 in cfunction_call (func=<built-in method allclose of type object at remote 0x7f95b1187fe0>, args=<optimized out>, kwargs=<optimized out>) at /usr/local/src/conda/python-3.9.22/Objects/methodobject.c:543 #21 0x000055bf35ef6d4c in _PyObject_MakeTpCall (tstate=0x55bf36327ca0, callable=callable@entry=<built-in method allclose of type object at remote 0x7f95b1187fe0>, args=<optimized out>, nargs=<optimized out>, keywords=keywords@entry=('atol', 'rtol')) at /usr/local/src/conda/python-3.9.22/Objects/call.c:191 #22 0x000055bf35ef3488 in _PyObject_VectorcallTstate (kwnames=('atol', 'rtol'), nargsf=<optimized out>, args=<optimized out>, callable=<built-in method allclose of type object at remote 0x7f95b1187fe0>, tstate=<optimized out>) at /usr/local/src/conda/python-3.9.22/Include/cpython/abstract.h:116 #23 _PyObject_VectorcallTstate (kwnames=('atol', 'rtol'), nargsf=<optimized out>, args=<optimized out>, callable=<built-in method allclose of type object at remote 0x7f95b1187fe0>, tstate=<optimized out>) at /usr/local/src/conda/python-3.9.22/Include/cpython/abstract.h:103 #24 PyObject_Vectorcall (kwnames=('atol', 'rtol'), nargsf=<optimized out>, args=<optimized out>, callable=<built-in method allclose of type object at remote 0x7f95b1187fe0>) at /usr/local/src/conda/python-3.9.22/Include/cpython/abstract.h:127 #25 call_function (kwnames=('atol', 'rtol'), oparg=<optimized out>, pp_stack=<synthetic pointer>, tstate=<optimized out>) at /usr/local/src/conda/python-3.9.22/Python/ceval.c:5077 #26 _PyEval_EvalFrameDefault (tstate=<optimized out>, f=Frame 0x55bf36384a90, for file /scratch/pytorch/repro.py, line 34, in <module> (), throwflag=<optimized out>) at /usr/local/src/conda/python-3.9.22/Python/ceval.c:3537 #27 0x000055bf35eed685 in _PyEval_EvalFrame (throwflag=0, f=Frame 0x55bf36384a90, for file /scratch/pytorch/repro.py, line 34, in <module> (), tstate=0x55bf36327ca0) at /usr/local/src/conda/python-3.9.22/Include/internal/pycore_ceval.h:40 #28 _PyEval_EvalCode (tstate=0x55bf36327ca0, _co=<optimized out>, globals=<optimized out>, locals=<optimized out>, args=<optimized out>, argcount=argcount@entry=0, kwnames=0x0, kwargs=0x0, kwcount=<optimized out>, kwstep=2, defs=0x0, defcount=<optimized out>, kwdefs=0x0, closure=0x0, name=0x0, qualname=0x0) at /usr/local/src/conda/python-3.9.22/Python/ceval.c:4329 #29 0x000055bf35eed338 in _PyEval_EvalCodeWithName (_co=<optimized out>, globals=<optimized out>, locals=<optimized out>, args=<optimized out>, argcount=argcount@entry=0, kwnames=<optimized out>, kwargs=0x0, kwcount=0, kwstep=2, defs=0x0, defcount=0, kwdefs=0x0, closure=0x0, name=0x0, qualname=0x0) at /usr/local/src/conda/python-3.9.22/Python/ceval.c:4361 #30 0x000055bf35eed2e9 in PyEval_EvalCodeEx (_co=_co@entry=<code at remote 0x7f95b84a45b0>, globals=globals@entry={'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <SourceFileLoader(name='__main__', path='/scratch/pytorch/repro.py') at remote 0x7f95b857dc10>, '__spec__': None, '__annotations__': {}, '__builtins__': <module at remote 0x7f95b8568ae0>, '__file__': '/scratch/pytorch/repro.py', '__cached__': None, 'torch': <module at remote 0x7f95b835a220>, 'device': 'cuda', 'group_size': 4, 'M': 16, 'N': 32, 'K': 64, 'dtype_AB': <torch.dtype at remote 0x7f94a02574b0>, 'dtype_scale': <torch.dtype at remote 0x7f94a02cbdb0>, 'dtype_offset': <torch.dtype at remote 0x7f94a02cbc90>, 'dtype_C': <torch.dtype at remote 0x7f94a0257150>, 'A': <Tensor() at remote 0x7f949dd4c9f0>, 'B': <Tensor at remote 0x7f95b835a860>, 'A_scale': <Tensor() at remote 0x7f95b82fa040>, 'B_scale': <Tensor() at remote 0x7f95b835a810>, 'offs': <Tensor() at remote 0x7f95b835a8b0>, 'f_ref': <built-in method _scaled_grouped_mm of type object at remote 0x7f95b1187fe0>, 'f': <function at remote 0x7f9533bea820>, 'use_f...(truncated), locals=locals@entry={'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <SourceFileLoader(name='__main__', path='/scratch/pytorch/repro.py') at remote 0x7f95b857dc10>, '__spec__': None, '__annotations__': {}, '__builtins__': <module at remote 0x7f95b8568ae0>, '__file__': '/scratch/pytorch/repro.py', '__cached__': None, 'torch': <module at remote 0x7f95b835a220>, 'device': 'cuda', 'group_size': 4, 'M': 16, 'N': 32, 'K': 64, 'dtype_AB': <torch.dtype at remote 0x7f94a02574b0>, 'dtype_scale': <torch.dtype at remote 0x7f94a02cbdb0>, 'dtype_offset': <torch.dtype at remote 0x7f94a02cbc90>, 'dtype_C': <torch.dtype at remote 0x7f94a0257150>, 'A': <Tensor() at remote 0x7f949dd4c9f0>, 'B': <Tensor at remote 0x7f95b835a860>, 'A_scale': <Tensor() at remote 0x7f95b82fa040>, 'B_scale': <Tensor() at remote 0x7f95b835a810>, 'offs': <Tensor() at remote 0x7f95b835a8b0>, 'f_ref': <built-in method _scaled_grouped_mm of type object at remote 0x7f95b1187fe0>, 'f': <function at remote 0x7f9533bea820>, 'use_f...(truncated), args=args@entry=0x0, argcount=argcount@entry=0, kws=kws@entry=0x0, kwcount=0, defs=0x0, defcount=0, kwdefs=0x0, closure=0x0) at /usr/local/src/conda/python-3.9.22/Python/ceval.c:4377 #31 0x000055bf35f97ddb in PyEval_EvalCode (co=co@entry=<code at remote 0x7f95b84a45b0>, globals=globals@entry={'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <SourceFileLoader(name='__main__', path='/scratch/pytorch/repro.py') at remote 0x7f95b857dc10>, '__spec__': None, '__annotations__': {}, '__builtins__': <module at remote 0x7f95b8568ae0>, '__file__': '/scratch/pytorch/repro.py', '__cached__': None, 'torch': <module at remote 0x7f95b835a220>, 'device': 'cuda', 'group_size': 4, 'M': 16, 'N': 32, 'K': 64, 'dtype_AB': <torch.dtype at remote 0x7f94a02574b0>, 'dtype_scale': <torch.dtype at remote 0x7f94a02cbdb0>, 'dtype_offset': <torch.dtype at remote 0x7f94a02cbc90>, 'dtype_C': <torch.dtype at remote 0x7f94a0257150>, 'A': <Tensor() at remote 0x7f949dd4c9f0>, 'B': <Tensor at remote 0x7f95b835a860>, 'A_scale': <Tensor() at remote 0x7f95b82fa040>, 'B_scale': <Tensor() at remote 0x7f95b835a810>, 'offs': <Tensor() at remote 0x7f95b835a8b0>, 'f_ref': <built-in method _scaled_grouped_mm of type object at remote 0x7f95b1187fe0>, 'f': <function at remote 0x7f9533bea820>, 'use_f...(truncated), locals=locals@entry={'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <SourceFileLoader(name='__main__', path='/scratch/pytorch/repro.py') at remote 0x7f95b857dc10>, '__spec__': None, '__annotations__': {}, '__builtins__': <module at remote 0x7f95b8568ae0>, '__file__': '/scratch/pytorch/repro.py', '__cached__': None, 'torch': <module at remote 0x7f95b835a220>, 'device': 'cuda', 'group_size': 4, 'M': 16, 'N': 32, 'K': 64, 'dtype_AB': <torch.dtype at remote 0x7f94a02574b0>, 'dtype_scale': <torch.dtype at remote 0x7f94a02cbdb0>, 'dtype_offset': <torch.dtype at remote 0x7f94a02cbc90>, 'dtype_C': <torch.dtype at remote 0x7f94a0257150>, 'A': <Tensor() at remote 0x7f949dd4c9f0>, 'B': <Tensor at remote 0x7f95b835a860>, 'A_scale': <Tensor() at remote 0x7f95b82fa040>, 'B_scale': <Tensor() at remote 0x7f95b835a810>, 'offs': <Tensor() at remote 0x7f95b835a8b0>, 'f_ref': <built-in method _scaled_grouped_mm of type object at remote 0x7f95b1187fe0>, 'f': <function at remote 0x7f9533bea820>, 'use_f...(truncated)) at /usr/local/src/conda/python-3.9.22/Python/ceval.c:828 #32 0x000055bf35fc4eaa in run_eval_code_obj (tstate=tstate@entry=0x55bf36327ca0, co=co@entry=0x7f95b84a45b0, globals=globals@entry={'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <SourceFileLoader(name='__main__', path='/scratch/pytorch/repro.py') at remote 0x7f95b857dc10>, '__spec__': None, '__annotations__': {}, '__builtins__': <module at remote 0x7f95b8568ae0>, '__file__': '/scratch/pytorch/repro.py', '__cached__': None, 'torch': <module at remote 0x7f95b835a220>, 'device': 'cuda', 'group_size': 4, 'M': 16, 'N': 32, 'K': 64, 'dtype_AB': <torch.dtype at remote 0x7f94a02574b0>, 'dtype_scale': <torch.dtype at remote 0x7f94a02cbdb0>, 'dtype_offset': <torch.dtype at remote 0x7f94a02cbc90>, 'dtype_C': <torch.dtype at remote 0x7f94a0257150>, 'A': <Tensor() at remote 0x7f949dd4c9f0>, 'B': <Tensor at remote 0x7f95b835a860>, 'A_scale': <Tensor() at remote 0x7f95b82fa040>, 'B_scale': <Tensor() at remote 0x7f95b835a810>, 'offs': <Tensor() at remote 0x7f95b835a8b0>, 'f_ref': <built-in method _scaled_grouped_mm of type object at remote 0x7f95b1187fe0>, 'f': <function at remote 0x7f9533bea820>, 'use_f...(truncated), locals=locals@entry={'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <SourceFileLoader(name='__main__', path='/scratch/pytorch/repro.py') at remote 0x7f95b857dc10>, '__spec__': None, '__annotations__': {}, '__builtins__': <module at remote 0x7f95b8568ae0>, '__file__': '/scratch/pytorch/repro.py', '__cached__': None, 'torch': <module at remote 0x7f95b835a220>, 'device': 'cuda', 'group_size': 4, 'M': 16, 'N': 32, 'K': 64, 'dtype_AB': <torch.dtype at remote 0x7f94a02574b0>, 'dtype_scale': <torch.dtype at remote 0x7f94a02cbdb0>, 'dtype_offset': <torch.dtype at remote 0x7f94a02cbc90>, 'dtype_C': <torch.dtype at remote 0x7f94a0257150>, 'A': <Tensor() at remote 0x7f949dd4c9f0>, 'B': <Tensor at remote 0x7f95b835a860>, 'A_scale': <Tensor() at remote 0x7f95b82fa040>, 'B_scale': <Tensor() at remote 0x7f95b835a810>, 'offs': <Tensor() at remote 0x7f95b835a8b0>, 'f_ref': <built-in method _scaled_grouped_mm of type object at remote 0x7f95b1187fe0>, 'f': <function at remote 0x7f9533bea820>, 'use_f...(truncated)) at /usr/local/src/conda/python-3.9.22/Python/pythonrun.c:1221 #33 0x000055bf35fc1353 in run_mod (mod=mod@entry=0x55bf363fe360, filename=filename@entry='/scratch/pytorch/repro.py', globals=globals@entry={'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <SourceFileLoader(name='__main__', path='/scratch/pytorch/repro.py') at remote 0x7f95b857dc10>, '__spec__': None, '__annotations__': {}, '__builtins__': <module at remote 0x7f95b8568ae0>, '__file__': '/scratch/pytorch/repro.py', '__cached__': None, 'torch': <module at remote 0x7f95b835a220>, 'device': 'cuda', 'group_size': 4, 'M': 16, 'N': 32, 'K': 64, 'dtype_AB': <torch.dtype at remote 0x7f94a02574b0>, 'dtype_scale': <torch.dtype at remote 0x7f94a02cbdb0>, 'dtype_offset': <torch.dtype at remote 0x7f94a02cbc90>, 'dtype_C': <torch.dtype at remote 0x7f94a0257150>, 'A': <Tensor() at remote 0x7f949dd4c9f0>, 'B': <Tensor at remote 0x7f95b835a860>, 'A_scale': <Tensor() at remote 0x7f95b82fa040>, 'B_scale': <Tensor() at remote 0x7f95b835a810>, 'offs': <Tensor() at remote 0x7f95b835a8b0>, 'f_ref': <built-in method _scaled_grouped_mm of type object at remote 0x7f95b1187fe0>, 'f': <function at remote 0x7f9533bea820>, 'use_f...(truncated), locals=locals@entry={'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <SourceFileLoader(name='__main__', path='/scratch/pytorch/repro.py') at remote 0x7f95b857dc10>, '__spec__': None, '__annotations__': {}, '__builtins__': <module at remote 0x7f95b8568ae0>, '__file__': '/scratch/pytorch/repro.py', '__cached__': None, 'torch': <module at remote 0x7f95b835a220>, 'device': 'cuda', 'group_size': 4, 'M': 16, 'N': 32, 'K': 64, 'dtype_AB': <torch.dtype at remote 0x7f94a02574b0>, 'dtype_scale': <torch.dtype at remote 0x7f94a02cbdb0>, 'dtype_offset': <torch.dtype at remote 0x7f94a02cbc90>, 'dtype_C': <torch.dtype at remote 0x7f94a0257150>, 'A': <Tensor() at remote 0x7f949dd4c9f0>, 'B': <Tensor at remote 0x7f95b835a860>, 'A_scale': <Tensor() at remote 0x7f95b82fa040>, 'B_scale': <Tensor() at remote 0x7f95b835a810>, 'offs': <Tensor() at remote 0x7f95b835a8b0>, 'f_ref': <built-in method _scaled_grouped_mm of type object at remote 0x7f95b1187fe0>, 'f': <function at remote 0x7f9533bea820>, 'use_f...(truncated), flags=flags@entry=0x7ffce610ce08, arena=arena@entry=0x7f95b855b950) at /usr/local/src/conda/python-3.9.22/Python/pythonrun.c:1242 #34 0x000055bf35e5c347 in pyrun_file (fp=fp@entry=0x55bf363602f0, filename=filename@entry='/scratch/pytorch/repro.py', start=start@entry=257, globals=globals@entry={'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <SourceFileLoader(name='__main__', path='/scratch/pytorch/repro.py') at remote 0x7f95b857dc10>, '__spec__': None, '__annotations__': {}, '__builtins__': <module at remote 0x7f95b8568ae0>, '__file__': '/scratch/pytorch/repro.py', '__cached__': None, 'torch': <module at remote 0x7f95b835a220>, 'device': 'cuda', 'group_size': 4, 'M': 16, 'N': 32, 'K': 64, 'dtype_AB': <torch.dtype at remote 0x7f94a02574b0>, 'dtype_scale': <torch.dtype at remote 0x7f94a02cbdb0>, 'dtype_offset': <torch.dtype at remote 0x7f94a02cbc90>, 'dtype_C': <torch.dtype at remote 0x7f94a0257150>, 'A': <Tensor() at remote 0x7f949dd4c9f0>, 'B': <Tensor at remote 0x7f95b835a860>, 'A_scale': <Tensor() at remote 0x7f95b82fa040>, 'B_scale': <Tensor() at remote 0x7f95b835a810>, 'offs': <Tensor() at remote 0x7f95b835a8b0>, 'f_ref': <built-in method _scaled_grouped_mm of type object at remote 0x7f95b1187fe0>, 'f': <function at remote 0x7f9533bea820>, 'use_f...(truncated), locals=locals@entry={'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <SourceFileLoader(name='__main__', path='/scratch/pytorch/repro.py') at remote 0x7f95b857dc10>, '__spec__': None, '__annotations__': {}, '__builtins__': <module at remote 0x7f95b8568ae0>, '__file__': '/scratch/pytorch/repro.py', '__cached__': None, 'torch': <module at remote 0x7f95b835a220>, 'device': 'cuda', 'group_size': 4, 'M': 16, 'N': 32, 'K': 64, 'dtype_AB': <torch.dtype at remote 0x7f94a02574b0>, 'dtype_scale': <torch.dtype at remote 0x7f94a02cbdb0>, 'dtype_offset': <torch.dtype at remote 0x7f94a02cbc90>, 'dtype_C': <torch.dtype at remote 0x7f94a0257150>, 'A': <Tensor() at remote 0x7f949dd4c9f0>, 'B': <Tensor at remote 0x7f95b835a860>, 'A_scale': <Tensor() at remote 0x7f95b82fa040>, 'B_scale': <Tensor() at remote 0x7f95b835a810>, 'offs': <Tensor() at remote 0x7f95b835a8b0>, 'f_ref': <built-in method _scaled_grouped_mm of type object at remote 0x7f95b1187fe0>, 'f': <function at remote 0x7f9533bea820>, 'use_f...(truncated), closeit=closeit@entry=1, flags=0x7ffce610ce08) at /usr/local/src/conda/python-3.9.22/Python/pythonrun.c:1140 #35 0x000055bf35fbb270 in pyrun_simple_file (flags=0x7ffce610ce08, closeit=1, filename='/scratch/pytorch/repro.py', fp=0x55bf363602f0) at /usr/local/src/conda/python-3.9.22/Python/pythonrun.c:450 #36 PyRun_SimpleFileExFlags (fp=0x55bf363602f0, filename=<optimized out>, closeit=1, flags=0x7ffce610ce08) at /usr/local/src/conda/python-3.9.22/Python/pythonrun.c:483 #37 0x000055bf35fb88a4 in pymain_run_file (cf=0x7ffce610ce08, config=0x55bf363266e0) at /usr/local/src/conda/python-3.9.22/Modules/main.c:377 #38 pymain_run_python (exitcode=0x7ffce610ce00) at /usr/local/src/conda/python-3.9.22/Modules/main.c:606 #39 Py_RunMain () at /usr/local/src/conda/python-3.9.22/Modules/main.c:685 #40 0x000055bf35f8bc57 in Py_BytesMain (argc=<optimized out>, argv=<optimized out>) at /usr/local/src/conda/python-3.9.22/Modules/main.c:1105 #41 0x00007f95b865cd90 in ?? () from /usr/lib/x86_64-linux-gnu/libc.so.6 #42 0x00007f95b865ce40 in __libc_start_main () from /usr/lib/x86_64-linux-gnu/libc.so.6 #43 0x000055bf35f8bb6e in _start () ``` </details> ### Versions <details> <summary>The <tt>collect_env.py</tt> output</summary> ``` Collecting environment information... PyTorch version: 2.8.0a0+git92d0c40 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (conda-forge gcc 13.3.0-2) 13.3.0 Clang version: 20.1.3 (https://github.com/conda-forge/clangdev-feedstock 3e9dfa811865fe27bcd95c0004d27603f2ec4a73) CMake version: version 4.0.1 Libc version: glibc-2.35 Python version: 3.9.22 | packaged by conda-forge | (main, Apr 14 2025, 23:35:59) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-5.15.0-119-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.6.85 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3 Nvidia driver version: 560.35.03 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.5.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.5.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.5.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.5.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.5.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.5.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.5.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.5.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: False CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6448Y CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 Stepping: 8 BogoMIPS: 4200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 3 MiB (64 instances) L1i cache: 2 MiB (64 instances) L2 cache: 128 MiB (64 instances) L3 cache: 120 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99,101,103,105,107,109,111,113,115,117,119,121,123,125,127 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] flake8==6.1.0 [pip3] flake8-bugbear==23.3.23 [pip3] flake8-comprehensions==3.15.0 [pip3] flake8-executable==2.1.3 [pip3] flake8-logging-format==0.9.0 [pip3] flake8-pyi==23.3.1 [pip3] flake8-simplify==0.19.3 [pip3] mypy==1.14.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] optree==0.13.0 [pip3] pytorch-triton==3.3.0+git96316ce5 [pip3] torch==2.8.0a0+git92d0c40 [conda] cuda-cudart 12.6.77 h5888daf_0 conda-forge [conda] cuda-cudart-dev 12.6.77 h5888daf_0 conda-forge [conda] cuda-cudart-dev_linux-64 12.6.77 h3f2d84a_0 conda-forge [conda] cuda-cudart-static 12.6.77 h5888daf_0 conda-forge [conda] cuda-cudart-static_linux-64 12.6.77 h3f2d84a_0 conda-forge [conda] cuda-cudart_linux-64 12.6.77 h3f2d84a_0 conda-forge [conda] cuda-cupti 12.6.80 hbd13f7d_0 conda-forge [conda] cuda-cupti-dev 12.6.80 h5888daf_0 conda-forge [conda] cuda-libraries-dev 12.6.3 ha770c72_0 conda-forge [conda] cuda-nvrtc 12.6.85 hbd13f7d_0 conda-forge [conda] cuda-nvrtc-dev 12.6.85 h5888daf_0 conda-forge [conda] cuda-nvtx 12.6.77 hbd13f7d_0 conda-forge [conda] cuda-nvtx-dev 12.6.77 ha770c72_0 conda-forge [conda] cuda-opencl 12.6.77 hbd13f7d_0 conda-forge [conda] cuda-opencl-dev 12.6.77 h5888daf_0 conda-forge [conda] cudnn 9.8.0.87 h81d5506_1 conda-forge [conda] libcublas 12.6.4.1 h5888daf_1 conda-forge [conda] libcublas-dev 12.6.4.1 h5888daf_1 conda-forge [conda] libcufft 11.3.0.4 hbd13f7d_0 conda-forge [conda] libcufft-dev 11.3.0.4 h5888daf_0 conda-forge [conda] libcurand 10.3.7.77 hbd13f7d_0 conda-forge [conda] libcurand-dev 10.3.7.77 h5888daf_0 conda-forge [conda] libcusolver 11.7.1.2 h5888daf_1 conda-forge [conda] libcusolver-dev 11.7.1.2 h5888daf_1 conda-forge [conda] libcusparse 12.5.4.2 hbd13f7d_0 conda-forge [conda] libcusparse-dev 12.5.4.2 h5888daf_0 conda-forge [conda] libmagma 2.9.0 h19665d7_1 conda-forge [conda] libmagma_sparse 2.9.0 h19665d7_0 conda-forge [conda] libnvjitlink 12.6.85 hbd13f7d_0 conda-forge [conda] libnvjitlink-dev 12.6.85 h5888daf_0 conda-forge [conda] magma 2.9.0 h3d470c8_0 conda-forge [conda] mkl 2024.2.2 ha957f24_16 conda-forge [conda] mkl-include 2025.1.0 hf2ce2f3_808 conda-forge [conda] numpy 1.26.4 pypi_0 pypi [conda] optree 0.13.0 pypi_0 pypi [conda] pytorch-triton 3.3.0+git96316ce5 pypi_0 pypi [conda] torch 2.8.0a0+git92d0c40 dev_0 <develop> [conda] torchfix 0.4.0 pypi_0 pypi ``` </details> cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true
3,006,319,425
Implement avg_pool3d for MPS backend
donghao1393
open
[ "triaged", "open source", "release notes: mps" ]
7
NONE
This PR implements the avg_pool3d operation for the MPS backend using a custom Metal shader. This will allow users with Apple Silicon GPUs to use 3D average pooling operations without falling back to CPU. ## Implementation Details The implementation includes: 1. A custom Metal shader for 3D average pooling 2. C++ interface to integrate with PyTorch 3. Support for both forward and backward passes 4. Comprehensive test cases 5. macOS version compatibility check (requires macOS 13.2+) 6. Special case handling for Long data type with divisor_override ## Development Challenges and Solutions During the development process, we encountered several challenges: 1. **Metal Shader Compilation**: Initially, we faced issues with Metal shader compilation due to missing Xcode tools. We resolved this by ensuring proper Xcode installation and configuration. 2. **Command Buffer Conflicts**: When processing non-contiguous tensors, we encountered Metal command buffer errors with the message: 'A command encoder is already encoding to this command buffer'. This occurred because: - Metal requires that only one command encoder can be active for a command buffer at a time - When processing non-contiguous tensors, the tensor conversion operations were creating their own command encoders without properly ending previous ones - The error would occur when our code tried to create a new command encoder while another was still active We solved this by: - Adding explicit MPS stream synchronization before and after our operations using mpsStream->synchronize() - Creating a separate code path for non-contiguous tensors that first converts them to contiguous format - Ensuring proper command encoder lifecycle management by ending encoding before synchronizing the stream 3. **Version Compatibility**: We added explicit checks to ensure the implementation only runs on macOS 13.2 or newer, as earlier versions may not support all the required Metal features: ```cpp TORCH_CHECK(is_macos_13_or_newer(MacOSVersion::MACOS_VER_13_2_PLUS), "avg_pool3d is only supported on MPS for MacOS_13_2 or newer"); ``` 4. **Special Case Handling**: For certain edge cases (Long data type with divisor_override), we implemented a CPU fallback as MPS doesn't support these combinations efficiently. 5. **Improved Error Handling**: We added comprehensive dimension and data type checks to provide better error messages and ensure correct usage: - Checking input and output tensor dimensions - Verifying data type compatibility - Validating parameter values ## Implementation Approach We chose to implement a custom Metal shader rather than using multiple 2D pooling operations or other approaches because: 1. It provides better performance for 3D data 2. It allows for more precise control over the pooling operation 3. It's consistent with how other 3D operations are implemented in PyTorch ## Alternative Approaches Considered 1. **Multiple 2D Pooling Operations**: We initially considered implementing avg_pool3d using multiple avg_pool2d operations, but this would have been less efficient and more complex to maintain. 2. **Using MPSCNNPooling**: We explored using the built-in Metal Performance Shaders for pooling, but they don't directly support 3D pooling operations. 3. **CPU Fallback**: The simplest approach would have been to fall back to CPU implementation, but this would have defeated the purpose of MPS acceleration. ## Update History **April 19, 2025:** Fixed issues with Metal command buffer handling when processing non-contiguous tensors. The solution ensures proper synchronization of MPS streams and correct handling of command encoders, avoiding the 'A command encoder is already encoding to this command buffer' error. **April 20, 2025:** - Marked PR as ready for review after comprehensive testing and verification - Fixed linting issues and improved documentation - Added comprehensive dimension and data type checks for better error handling - Verified compatibility with various use cases, including those with the .out variant This addresses issue #141287. Fixes #151741 #141044
true
3,006,318,804
Implement avg_pool3d for MPS backend
donghao1393
closed
[]
1
NONE
This PR implements the avg_pool3d operation for the MPS backend using a custom Metal shader. This will allow users with Apple Silicon GPUs to use 3D average pooling operations without falling back to CPU. The implementation includes: 1. A custom Metal shader for 3D average pooling 2. C++ interface to integrate with PyTorch 3. Support for both forward and backward passes 4. Comprehensive test cases This addresses issue #141287.
true
3,006,271,921
mps and cpu backends produce different training results with FFT and Adam
ChenkaiMao97
open
[ "needs reproduction", "triaged", "module: correctness (silent)", "module: fft", "module: mps" ]
1
NONE
### 🐛 Describe the bug Hi, I have a model that uses 2d FFT operations, and I'm seeing convergent training results on Cuda and cpu, while getting divergent results on mps (loss drops for the first few steps and then explodes). I'm not sure where the error is coming from, but I've created this minimal example below with a simple model with a fourier layer and trained on some random data. I observe different behaviors as well. Especially, (1) with FFT and Adam, on cpu backend the loss drops but on mps backend it explodes. (2) If I change FFT to Conv2d, or change adam to SGD, it seems the loss is dropping on both cpu and mps. ```python import torch import torch.nn as nn import torch.nn.functional as F ################ model definition ################## class SpectralConv2d(nn.Module): def __init__(self, in_channels, out_channels, hidden_freq, modes1, modes2): super().__init__() scale = (1 / in_channels / out_channels) self.weights = nn.Parameter(scale * torch.rand(in_channels, out_channels, modes1, modes2, 2, dtype=torch.float32)) def compl_mul2d(self, input, weights): return torch.einsum("bixy,ioxy->boxy", input, weights) def forward(self, x): batchsize = x.shape[0] x_ft = torch.fft.rfftn(x, dim=[-2,-1]) weights = torch.view_as_complex(self.weights) weights_r = F.interpolate(weights.real, size=(x.size(-2), x.size(-1)//2+1)) weights_i = F.interpolate(weights.imag, size=(x.size(-2), x.size(-1)//2+1)) weights = torch.view_as_complex(torch.stack((weights_r, weights_i), dim=-1)) out_ft = self.compl_mul2d(x_ft, weights) x = torch.fft.irfftn(out_ft, s=(x.size(-2), x.size(-1))) return x #################### training with different backends ################ batch_size = 8 in_c = 2 out_c = 4 hidden_freq = 8 sizex, sizey = (128, 128) modes1, modes2 = (16, 16) def train(backend, seed = 42): torch.manual_seed(seed) if backend=='cpu': device = torch.device("cpu") elif backend=='mps': device = torch.device("mps") model = SpectralConv2d(in_c, out_c, hidden_freq, modes1, modes2).to(device) optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) criterion = nn.MSELoss() x_train = torch.randn(batch_size, in_c, sizex, sizey) y_train = torch.randn(batch_size, out_c, sizex, sizey) x_train = x_train.to(device) y_train = y_train.to(device) for step in range(1000): out = model(x_train) loss = criterion(out, y_train) loss.backward() optimizer.step() optimizer.zero_grad() if (step+1) % 100 == 0: print(f"Step {(step+1):03d} | Loss: {loss.item():.6f}") train('cpu') train('mps') ``` output for `train('cpu')`: > Step 100 | Loss: 0.995368 Step 200 | Loss: 0.992208 Step 300 | Loss: 0.991863 Step 400 | Loss: 0.991827 Step 500 | Loss: 0.991824 Step 600 | Loss: 0.991824 Step 700 | Loss: 0.991824 Step 800 | Loss: 0.991824 Step 900 | Loss: 0.991824 Step 1000 | Loss: 0.991824 output for `train('mps')`: > Step 100 | Loss: 1.058992 Step 200 | Loss: 1.172400 Step 300 | Loss: 1.356889 Step 400 | Loss: 1.608124 Step 500 | Loss: 1.922639 Step 600 | Loss: 2.297220 Step 700 | Loss: 2.729716 Step 800 | Loss: 3.218872 Step 900 | Loss: 3.761904 Step 1000 | Loss: 4.357483 With smaller learning rate (e.g. 1e-5), the trends are the same. I'm using python version 3.10.17, torch version 2.6.0 on a mac studio (M2 Ultra) with Sequoia 15.2. Could you please check if you can reproduce the error, and if you have suggestions on how to debug? Thanks a lot. ### Versions PyTorch version: 2.6.0 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 15.2 (arm64) GCC version: Could not collect Clang version: 17.0.0 (clang-1700.0.13.3) CMake version: Could not collect Libc version: N/A Python version: 3.10.17 | packaged by conda-forge | (main, Apr 10 2025, 22:23:34) [Clang 18.1.8 ] (64-bit runtime) Python platform: macOS-15.2-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M2 Ultra Versions of relevant libraries: [pip3] numpy==2.2.4 [pip3] optree==0.15.0 [pip3] torch==2.6.0 [pip3] torchvision==0.21.0 [pip3] torchvision-extra-decoders==0.0.2 [conda] Could not collect cc @mruberry @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
3,006,251,332
[Dynamo][Easy] Remove unreachable code
shink
closed
[ "open source", "Merged", "topic: not user facing", "module: dynamo" ]
18
CONTRIBUTOR
This line is unreachable: https://github.com/pytorch/pytorch/blob/f6c1cf04b5158bac7263e4708f22dab63e7456ad/torch/_dynamo/output_graph.py#L275 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,006,192,906
[inductor] [triton] the generated triton code throws `NameError('rindex is not defined')` when using `torch.cummin`
shaoyuyoung
closed
[ "high priority", "triaged", "oncall: pt2", "module: inductor" ]
1
CONTRIBUTOR
### 🐛 Describe the bug **symptom**: The triton kernel code generated by inductor throws **variable name undefined error**. I am not sure whether this is the inductor bug or triton bug? **device backend**: only triton has this issue. ```python import torch import torch.nn as nn import torch.nn.functional as F from torch._inductor import config config.fallback_random = True torch.set_grad_enabled(False) import os os.environ['TORCHDYNAMO_VERBOSE'] = '1' class Model(torch.nn.Module): def __init__(self): super().__init__() self.register_buffer('special_values', torch.tensor([1.0, -2.0, 3.0, float('nan'), float('inf')])) def forward(self, x): x = torch.complex(x, self.special_values) x = torch.prod(x, dim=-1) x = x.unsqueeze(0) abs_x = x.abs() values, indices = torch.cummin(abs_x, dim=0) return indices model = Model() x = torch.tensor([1.0, float('inf'), -1.5, 0.0, float('nan')]) inputs = [x] def run_test(model, inputs, device, backend): torch.manual_seed(0) model = model.to(device) inputs = [x.to(device) for x in inputs] if backend != "eager": model = torch.compile(model, backend=backend) try: output = model(*inputs) print(f"succeed on {backend}") except Exception as e: print(e) device = "cuda" run_test(model, inputs, device, 'eager') run_test(model, inputs, device, 'inductor') ``` ### Error logs ``` succeed on eager E0419 13:01:41.174000 1612172 site-packages/torch/_inductor/runtime/triton_heuristics.py:617] [0/0] NameError('rindex is not defined') CompilationError: at 6:58: def triton_poi_fused_cummin_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), rindex, None) ^ NameError('rindex is not defined') ``` ### Versions nightly 20250418 cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @muchulee8 @amjames @aakhundov
true
3,006,123,877
[inductor] [cuda] [fake tensor] `torch.triu_indices` throws `pointer argument` error when using `[0, 0]`
shaoyuyoung
open
[ "triaged", "actionable", "oncall: pt2", "module: fakeTensor", "module: dynamo", "dynamo-triage-jan2025" ]
1
CONTRIBUTOR
### 🐛 Describe the bug **symptom**: if not using `[0, 0]` silice, eager will throw `Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!`. However, if we use `[0, 0]` to get the first element, eager can pass the check, but inductor throws the error. **device backend**: triton ```python import torch import torch.nn as nn import torch.nn.functional as F from torch._inductor import config config.fallback_random = True torch.set_grad_enabled(False) import os os.environ['TORCHDYNAMO_VERBOSE'] = '1' class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x): x = x + torch.triu_indices(1, 1)[0, 0] # [0, 0] is the trigger condition return x model = Model() x = torch.randn(1) inputs = [x] def run_test(model, inputs, device, backend): torch.manual_seed(0) model = model.to(device) inputs = [x.to(device) for x in inputs] if backend != "eager": model = torch.compile(model, backend=backend) try: output = model(*inputs) print(f"succeed on {backend}") except Exception as e: print(e) device = "cuda" run_test(model, inputs, device, 'eager') run_test(model, inputs, device, 'inductor') ``` ### Error logs ``` succeed on eager Pointer argument (at 1) cannot be accessed from Triton (cpu tensor?) ``` ### Versions nightly 20250414 cc @chauhang @penguinwu @eellison @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames @zou3519 @bdhirsh
true