|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""DocBank document understanding dataset.""" |
|
|
|
import os |
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@misc{li2020docbank, |
|
title={DocBank: A Benchmark Dataset for Document Layout Analysis}, |
|
author={Minghao Li and Yiheng Xu and Lei Cui and Shaohan Huang and Furu Wei and Zhoujun Li and Ming Zhou}, |
|
year={2020}, |
|
eprint={2006.01038}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
DocBank is a new large-scale dataset that is constructed using a weak supervision approach. |
|
It enables models to integrate both the textual and layout information for downstream tasks. |
|
The current DocBank dataset totally includes 500K document pages, where 400K for training, 50K for validation and 50K for testing. |
|
""" |
|
|
|
_HOMEPAGE = "https://doc-analysis.github.io/docbank-page/index.html" |
|
|
|
_LICENSE = "Apache-2.0 license" |
|
|
|
|
|
class DocBank(datasets.GeneratorBasedBuilder): |
|
"""DocBank is a dataset for Visual Document Understanding. |
|
It enable models to integrate both textual and layout informtion for downstream tasks.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
@property |
|
def manual_download_instructions(self): |
|
return """\ |
|
Please download the DocBank dataset from https://doc-analysis.github.io/docbank-page/index.html. Uncompress the dataset and use that location in |
|
--data_dir argument. """ |
|
|
|
def _info(self): |
|
|
|
features = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"token": datasets.Value("string"), |
|
"bounding_box": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))), |
|
"color": datasets.Sequence(datasets.Sequence(datasets.Value("uint8"))), |
|
"font": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) |
|
cwd = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(cwd,"train.jsonl"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(cwd,"dev.jsonl"), |
|
"split": "dev", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(cwd,"test.jsonl"), |
|
"split": "test" |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
|
|
with open(filepath,'rt') as fp: |
|
for file in fp: |
|
index,basename = eval(file) |
|
|
|
txt_file = self.data_dir+'/DocBank_500K_txt/'+basename+'.txt' |
|
img_file = self.data_dir+'/DocBank_500K_ori_img/'+basename+'_ori.jpg' |
|
|
|
with open(txt_file, 'r', encoding='utf8') as fp: |
|
|
|
words = [] |
|
bboxes = [] |
|
rgbs = [] |
|
fontnames = [] |
|
structures = [] |
|
|
|
for row in fp: |
|
tts = row.split('\t') |
|
|
|
assert len(tts) == 10, f'Incomplete line in file {txt_file}' |
|
|
|
word = tts[0] |
|
bbox = list(map(int, tts[1:5])) |
|
rgb = list(map(int, tts[5:8])) |
|
fontname = tts[8] |
|
structure = tts[9].strip() |
|
|
|
words.append(word) |
|
bboxes.append(bbox) |
|
rgbs.append(rgb) |
|
fontnames.append(fontname) |
|
structures.append(structure) |
|
|
|
|
|
|
|
yield index, { |
|
"image": img_file, |
|
"token": words, |
|
"bounding_box": bboxes, |
|
"color": rgbs, |
|
"font": fontnames, |
|
"label": structures, |
|
} |