Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Sub-tasks:
sentiment-classification
Languages:
Latvian
Size:
1K - 10K
ArXiv:
License:
Updated readme from the GitHub page
Browse files
README.md
CHANGED
@@ -1,14 +1,67 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
task_categories:
|
4 |
-
- text-classification
|
5 |
-
language:
|
6 |
-
- lv
|
7 |
-
tags:
|
8 |
-
- sentiment
|
9 |
-
- sentiment analysis
|
10 |
-
- sentiment classification
|
11 |
-
|
12 |
-
|
13 |
-
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
task_categories:
|
4 |
+
- text-classification
|
5 |
+
language:
|
6 |
+
- lv
|
7 |
+
tags:
|
8 |
+
- sentiment
|
9 |
+
- sentiment analysis
|
10 |
+
- sentiment classification
|
11 |
+
- Latvian
|
12 |
+
- Twitter
|
13 |
+
- social media
|
14 |
+
- short text
|
15 |
+
pretty_name: Latvian Twitter Eater Corpus - Sentiment
|
16 |
+
size_categories:
|
17 |
+
- 1K<n<10K
|
18 |
+
---
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
# Latvian Twitter Eater Corpus - Sentiment Analysis Sub-corpus
|
25 |
+
|
26 |
+
This sub-corpus contains 5420 tweets with human-annotated sentiment as positive (pos), neutral (neu) or negative (neg). 1631 tweets are positive, 2507 - neutral and 1282 - negative.
|
27 |
+
|
28 |
+
- **ltec-sentiment-annotated.json** contains tweets with human annotated sentiment
|
29 |
+
- **ltec-sentiment-annotated-test.json** contains the test set that we used in our paper
|
30 |
+
- **ltec-sentiment-automatic.json** contains tweets with automatically assigned sentiment based on emoticons
|
31 |
+
|
32 |
+
## Tweet Structure
|
33 |
+
```json
|
34 |
+
{
|
35 |
+
"sentiment":"pos",
|
36 |
+
"screen_name":"artisare",
|
37 |
+
"tweet_id":221520985738846209,
|
38 |
+
"tweet_text":"@mazheks Burgā ir brančs?!? Es jau sāku domāt ka uz Pērli jāmauc ēst pirms tam Illy paķerot kafiju. Cikos domā?"
|
39 |
+
}
|
40 |
+
```
|
41 |
+
|
42 |
+
|
43 |
+
## Other Latvian twitter sentiment corpora
|
44 |
+
---------
|
45 |
+
* [Pinnis](https://github.com/pmarcis/latvian-tweet-corpus) - ~ 7000 tweets from politicians and companies
|
46 |
+
* [Peisenieks](https://github.com/FnTm/latvian-tweet-sentiment-corpus) - ~ 1000 general tweets with sentiment annotated by multiple annotators
|
47 |
+
* [Vīksna](https://github.com/RinaldsViksna/sikzinu_analize) - ~ 4000 general tweets
|
48 |
+
* [Nicmanis](https://github.com/nicemanis/LV-twitter-sentiment-corpus) - ~ 2000 general tweets
|
49 |
+
* [Špats](https://github.com/gatis/om) - ~ 6000 general tweets (lowercased)
|
50 |
+
|
51 |
+
|
52 |
+
Publications
|
53 |
+
---------
|
54 |
+
|
55 |
+
If you use this corpus or scripts, please cite the following paper:
|
56 |
+
|
57 |
+
Uga Sproģis and Matīss Rikters (2020). "[What Can We Learn From Almost a Decade of Food Tweets.](https://arxiv.org/abs/2007.05194)" In Proceedings of the 9th Conference Human Language Technologies - The Baltic Perspective ([Baltic HLT 2020](https://klc.vdu.lt/hlt/programme)) (2020).
|
58 |
+
|
59 |
+
```bibtex
|
60 |
+
@inproceedings{SprogisRikters2020BalticHLT,
|
61 |
+
author = {Sproģis, Uga and Rikters, Matīss},
|
62 |
+
booktitle={In Proceedings of the 9th Conference Human Language Technologies - The Baltic Perspective (Baltic HLT 2020)},
|
63 |
+
title = {{What Can We Learn From Almost a Decade of Food Tweets}},
|
64 |
+
address={Kaunas, Lithuania},
|
65 |
+
year = {2020}
|
66 |
+
}
|
67 |
+
```
|