dataset_name
stringclasses
4 values
dataset_version
timestamp[s]
qid
stringlengths
1
5
queId
stringlengths
32
32
competition_source_list
sequence
difficulty
stringclasses
5 values
qtype
stringclasses
1 value
problem
stringlengths
6
1.51k
answer_option_list
list
knowledge_point_routes
sequence
answer_analysis
sequence
answer_value
stringclasses
7 values
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1276
6bc8ca27e7cb46d4b06770a05282b23c
[ "2017年河南郑州豫才杯六年级竞赛第6题3分" ]
1
single_choice
某校开展评选``优秀少先队员''和``好公民''活动,``好公民''占评上人数的$$\frac{3}{4}$$,``优秀少先队员''占评上人数的$$\frac{9}{25}$$,同时获得两种称号的有$$44$$人,只获得``优秀少先队员''称号的有(~ )人.
[ [ { "aoVal": "A", "content": "$$70$$ " } ], [ { "aoVal": "B", "content": "$$80$$ " } ], [ { "aoVal": "C", "content": "$$90$$ " } ], [ { "aoVal": "D", "content": "$$100$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "把评上的总人数看做单位``$$1$$'',则评上的人数为:$$44\\div \\left( \\frac{3}{4}+\\frac{9}{25}-1 \\right)=400$$人,只得``优秀少先队员''有$$400\\times \\frac{9}{25}-44=100$$人. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2421
0c47e60f85254e06bfd18b46ceae3a20
[ "2005年六年级竞赛创新杯", "2005年第3届创新杯六年级竞赛复赛第5题" ]
1
single_choice
规定一种运算``\textasciitilde'': $$a\sim b$$表示求$$a$$,$$b$$两个数的差,即$$a$$,$$b$$中较大的数减较小的数,例如,$$5\sim 4=5-4=1$$,$$1\sim 4=4-1=3$$ , $$6\sim 6=6-6=0$$,那么化简$$\left( \frac{355}{118} \sim 2 \right)+\left( \frac{355}{118} \sim 3 \right)+\left( \frac{355}{118} \sim 4 \right)+\left( \frac{355}{118} \sim 5 \right)$$得( )
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->定义新运算->观察规律型->找规律型定义新运算" ]
[ "$$\\frac{355}{118}=3\\frac{1}{118}$$,那么$$ \\left( \\frac{355}{118} \\sim 2 \\right)+\\left( \\frac{355}{118} \\sim 3 \\right)+\\left( \\frac{355}{118} \\sim 4 \\right)+\\left( \\frac{355}{118} \\sim 5 \\right)$$ $$=3\\frac{1}{118}-2+3\\frac{1}{118}-3+4-3\\frac{1}{118}+5-3\\frac{1}{118}=4+5-2-3=4$$,选D。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1305
707fa755351e4acbae085d5d29896d45
[ "2020年新希望杯五年级竞赛决赛(8月)第17题", "2020年新希望杯五年级竞赛初赛(个人战)第17题" ]
1
single_choice
$$2019$$年国庆节是星期二,则$$2020$$年国庆节是.
[ [ { "aoVal": "A", "content": "星期一 " } ], [ { "aoVal": "B", "content": "星期二 " } ], [ { "aoVal": "C", "content": "星期三 " } ], [ { "aoVal": "D", "content": "星期四 " } ], [ { "aoVal": "E", "content": "星期五 " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$2020\\div 4=505$$,$$2020$$年是闰年. 从$$2019$$年国庆节经过$$366$$天是$$2020$$年国庆节. $$366\\div 7=52$$(周)$$\\cdots \\cdots 2$$(天), 故$$2020$$年的国庆节是星期四. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
482
ea1590b0eb6e4fdfaec54de6e5c42aef
[ "2017年第20届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第8题3分" ]
2
single_choice
下面两个算式中的每个汉字代表一个数字,不同的汉字代表不同的数字,那么正确的是. $$\begin{cases}年年\times 岁岁 = 花相似 岁岁\div 年年 = 人\div 不同 \end{cases}$$
[ [ { "aoVal": "A", "content": "年$$=2$$ " } ], [ { "aoVal": "B", "content": "岁$$=4$$ " } ], [ { "aoVal": "C", "content": "花$$=6$$ " } ], [ { "aoVal": "D", "content": "不$$=1$$ " } ] ]
[ "拓展思维->能力->逻辑分析->代数逻辑推理" ]
[ "根据分析可得, ``年年''、``岁岁''十位数字和个位数字相同, 所以都是$$11$$的倍数, 即,年$$\\times $$岁$$\\times 121=$$花相似, 又因为不同的汉字代表不同的数字,所以``年 年''或``岁岁''不能是$$11$$,年$$\\times $$岁的积只能是$$6$$或$$8$$, 由于$$22\\times 33=726$$,有相同数字,不合要求, 所以,年$$\\times $$岁的积只能是$$8$$,$$8=2\\times 4$$, 岁岁$$\\div $$年年$$=$$人$$\\div $$不同, 所以``岁''$$ ~\\textless{} ~$$ ``年'', 所以,``年年''$$=44$$、``岁岁''$$=22$$,则$$44\\times 22=968$$, 所以,岁岁$$\\div $$年年$$=22\\div 44=\\frac{1}{2}$$, $$0\\sim 9$$十个数字还剩下$$0$$、$$1$$、$$3$$、$$5$$、$$7$$,那么人$$\\div $$不同$$=5\\div 10=\\frac{1}{2}$$; 即``人''$$=5$$,``不同''$$=10$$; 综上所述,``年''$$=4$$、``岁''$$=2$$、``花''$$=9$$、``相''$$=6$$、``似''$$=8$$、``人''$$=5$$、``不''$$=1$$、``同''$$=0$$. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
901
ae1e79e9e157402b9e6f9e5f728ceed9
[ "2015年全国美国数学大联盟杯小学高年级五年级竞赛初赛" ]
0
single_choice
两个连续的非负整数的和不可能是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "质数 " } ], [ { "aoVal": "B", "content": "完全平方数 " } ], [ { "aoVal": "C", "content": "$$13$$ 的倍数 " } ], [ { "aoVal": "D", "content": "偶数 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "两个连续的非负整数的和不可能是偶数 . " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1361
316172bc10764f568d9033f2c54b4ef8
[ "2014年世界少年奥林匹克数学竞赛六年级竞赛初赛B卷第10题5分" ]
1
single_choice
李建和张雷做仰卧起坐,李建先做了$$3$$分钟,然后两人各做了$$5$$分钟,一共做仰卧起坐$$136$$次.已知每分钟李建比张雷平均多做$$4$$次,那么李建比张雷多做了~\uline{~~~~~~~~~~}~次.
[ [ { "aoVal": "A", "content": "$$40$$ " } ], [ { "aoVal": "B", "content": "$$45$$ " } ], [ { "aoVal": "C", "content": "$$50$$ " } ], [ { "aoVal": "D", "content": "$$56$$ " } ] ]
[ "知识标签->拓展思维->应用题模块->鸡兔同笼问题->假设法解鸡兔同笼->基本型->变型题" ]
[ "由题意,假设小建每分钟做仰卧起坐的次数与小雷一样多,这样两人做仰卧起坐的总次数就减少了$$4\\times \\left( 3+5 \\right)=32$$ (次),由此可知小雷每分钟做了$$\\left( 136-32 \\right)\\div \\left( 3+5+5 \\right)=8$$(次),进而可以分别求出小建每分钟做的次数以及两人分别做仰卧起坐的总次数之差;据此解答.解答此题关键是求得小建每分钟做的次数以及两人分别做仰卧起坐的总次数之差. 假设小建每分钟做仰卧起坐的次数与小雷一样多,这样两人做仰卧起坐的总次数就减少了$$4\\times \\left( 3+5 \\right)=32$$(次),由此可知小雷每分钟做了$$\\left( 136-32 \\right)\\div \\left( 3+5+5 \\right)=8$$(次),进而可以分别求出小建每分钟做的次数以及两人分别做仰卧起坐的总次数之差.假设小建每分钟做仰卧起坐的次数与小雷一样多,两人做仰卧起坐的总次数就减少:$$4\\times \\left( 3+5 \\right)=32$$(次)小雷每分钟做:$$\\left( 136-32 \\right)\\div \\left( 3+5+5 \\right)=8$$(次);小建每分钟做:$$8+4=12$$(次),小建一共做:$$12\\times \\left( 3+5 \\right)=96$$(次);小雷一共做:$$8\\times 5=40$$(次),小建比小雷多做:$$96-40=56$$(次). 答:小建比小雷多做$$56$$次. 故答案为:$$56$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1048
0abf5bfd5961457c8de69ea56f3bbbba
[ "2019年第23届广东世界少年奥林匹克数学竞赛三年级竞赛初赛第17题5分" ]
1
single_choice
搬家公司要搬运$$100$$只花瓶,规定完整运送$$1$$只花瓶得$$3$$元,打破$$1$$只要赔偿$$2$$元.全部搬完后搬家公司共得$$260$$元,若假设他们完整运送了$$x$$只花瓶,则$$x$$表示只.
[ [ { "aoVal": "A", "content": "$$92$$ " } ], [ { "aoVal": "B", "content": "$$90$$ " } ], [ { "aoVal": "C", "content": "$$88$$ " } ], [ { "aoVal": "D", "content": "$$80$$ " } ] ]
[ "拓展思维->七大能力->运算求解" ]
[ "他们完整运送了$$x$$只花瓶,则打破的有$$\\left( 100-x \\right)$$只, 根据题意可列方程:$$3x-2\\times \\left( 100-x \\right)=260$$, 解得$$x=92$$, 即完整运送了$$92$$只花瓶. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1652
7ff5c890b8ca46f9ac0734b6218f2d7a
[ "2020年长江杯五年级竞赛复赛B卷第18题10分" ]
2
single_choice
在第七届长江杯数学邀请赛中,甲、乙、丙、丁四名学生的成绩如下:甲、乙、丙三人的平均分是$$92$$分,乙、丙、丁三人的平均分为$$90$$分,甲、丁两人的平均分是$$96$$分.问甲多少分?
[ [ { "aoVal": "A", "content": "$$100$$ " } ], [ { "aoVal": "B", "content": "$$99$$ " } ], [ { "aoVal": "C", "content": "$$96$$ " } ], [ { "aoVal": "D", "content": "$$93$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "甲$$+$$乙$$+$$丙$$=92\\times 3=276$$(分), 乙$$+$$丙$$+$$丁$$=90\\times 3=270$$(分), 故甲$$-$$丁$$=276-270=6$$(分), 甲$$+$$丁$$=96\\times 2=192$$(分), 故甲有$$192\\div 2+6\\div 2=99$$(分), 丁有$$192-99=93$$(分). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2952
a4fa296916cf475da433c76dc622ce59
[ "2017年华杯赛六年级竞赛初赛" ]
2
single_choice
小明家到学校,乘地铁需要$$30$$分钟,乘公交车需要$$50$$分钟。某天小明因故先乘地铁,再换乘公交车,用了$$40$$分钟到达学校,其中换乘过程用了$$6$$分钟,那么这天小明乘坐公交车用了( )分钟。
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$10$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->直线型行程问题->路程速度时间->单人简单行程问题" ]
[ "设从家到学校距离共有$$[30$$,$$50]=150$$(份),那么地铁的速度是$$150\\div 30=5$$(份$$/$$分钟),公交车的速度是$$150\\div 50=3$$(份$$/$$分钟)。设这天小明乘公交用了$$x$$分钟,根据题意列出方程:$$5\\times \\left( 40-6-x \\right)+3x=150$$,解得$$x=10$$。因此小明乘公交用了$$10$$分钟。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1390
2916d81df53a4a2fb663ee9eca2f5c3e
[ "2017年IMAS小学中年级竞赛(第一轮)第11题4分" ]
1
single_choice
若$$(\Delta \div 2-2)\times 2+2=222$$,请问$$\Delta $$代表的数是.
[ [ { "aoVal": "A", "content": "$$56$$ " } ], [ { "aoVal": "B", "content": "$$224$$ " } ], [ { "aoVal": "C", "content": "$$228$$ " } ], [ { "aoVal": "D", "content": "$$876$$ " } ], [ { "aoVal": "E", "content": "$$884$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "$$\\Delta \\div 2-2=(222-2)\\div 2$$ $$=220\\div 2=110$$, 因此$$\\Delta =(110+2)\\times 2=112\\times 2=224$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
72
33a5905cb6a644da8ba9c0b10e7b08fb
[ "2011年第7届全国新希望杯小学高年级六年级竞赛第6题4分" ]
2
single_choice
盒子里装有分别写着$$1$$,$$2$$,$$3$$,$$4$$,\ldots,$$100$$的黄色卡片各一张,我们称如下操作为一次操作;从盒子里取出$$m(7\leqslant m\leqslant 10)$$张卡片,算出这$$m$$张卡片上各数之和减去$$27$$的差,将其写在一张红色卡片上(不放回).若干次操作之后,盒子里的卡片全部被取出,若所有红色卡片上的数字之和为$$n$$,那么$$n$$的最大可能值减去最小可能值等于.
[ [ { "aoVal": "A", "content": "$$108$$ " } ], [ { "aoVal": "B", "content": "$$96$$ " } ], [ { "aoVal": "C", "content": "$$88$$ " } ], [ { "aoVal": "D", "content": "$$81$$ " } ] ]
[ "知识标签->数学思想->整体思想" ]
[ "先算卡片的总值. 最小值$$100\\div 10=10$$次,共减$$10\\times 27$$; 最多$$14$$次,共减去$$14\\times 27$$, 因此差为$$(14-10)\\times 27=108$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2708
494bea3026c245d59a119bc044a289b0
[ "2015年全国AMC六年级竞赛8第9题" ]
1
single_choice
在她工作的第一天,贾纳贝尔卖出了一个小部件.第二天,她卖了三个小部件.第三天,她卖出了五个小部件,接下来的每一天,她都比前一天多卖出两个小部件.工作$20$天后,贾纳贝尔总共卖出了多少个小部件?
[ [ { "aoVal": "A", "content": "$$39$$ " } ], [ { "aoVal": "B", "content": "$$40$$ " } ], [ { "aoVal": "C", "content": "$$210$$ " } ], [ { "aoVal": "D", "content": "$$400$$ " } ], [ { "aoVal": "E", "content": "$$401$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->等差数列->等差数列求和", "Overseas Competition->知识点->计算模块->数列与数表->等差数列" ]
[ "翻译:贾娜贝尔第一天上班买了$$1$$个小装饰品,第二天买了$$3$$个装饰品,第三天卖出了$$5$$个,以后每一天比前一天多卖出$$2$$个装饰品,那么他工作了$$20$$天,一共卖出个装饰品? $$1+3+5+\\cdots +\\left[ \\left( 20-1 \\right)\\times 2+1 \\right]$$ $$=1+3+5+\\cdots +39$$ $$=\\left( 1+39 \\right)\\times 20\\div 2$$ $$=400$$. The sum of $$1$$,$$3$$,$$5$$,$$\\cdots \\cdots $$$$39$$ is $$\\frac{\\left( 1+39 \\right)\\left( 20 \\right)}{2}=$$$$\\text{D}$$ $$400$$. The sum is just the sum of the first $$20$$ old integers, which is $${{20}^{2}}=$$$$\\text{D}$$ $$400$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
605
105632d525094ee7a22b46016761382e
[ "2015年全国美国数学大联盟杯小学高年级五年级竞赛初赛第24题" ]
0
single_choice
$$24$$ 和 $$30$$ 的最小公倍数减去$$24$$ 和$$30$$的最大公因数等于多少?
[ [ { "aoVal": "A", "content": "$$114$$ " } ], [ { "aoVal": "B", "content": "$$117$$ " } ], [ { "aoVal": "C", "content": "$$234$$ " } ], [ { "aoVal": "D", "content": "$$237$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$24$$ 和 $$30$$ 的最小公倍数减去$$24$$ 和$$30$$的最大公因数等于多少? " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1265
3df5ab98d1f649ce95a40915ebcee48c
[ "2012年IMAS小学中年级竞赛第一轮检测试题第13题4分" ]
2
single_choice
一群学生排成长方形队形.小明所站的位置,从前面数是第$$4$$列,从后面数是第$$7$$列,从左边数是第$$3$$行,从右边数是第$$9$$行.请问这群学生共有多少名?
[ [ { "aoVal": "A", "content": "$$90$$名 " } ], [ { "aoVal": "B", "content": "$$100$$名 " } ], [ { "aoVal": "C", "content": "$$110$$名 " } ], [ { "aoVal": "D", "content": "$$120$$名 " } ] ]
[ "拓展思维->拓展思维->应用题模块->方阵问题->实心方阵->实心方阵基本问题" ]
[ "根据题意可知长方形队形中每列有$$3+9-1=11$$(名),每行有$$4+7-1=10$$(名),所以学生总数为$$11\\times 10=110$$(名). " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
220
b5364f861ce84edd86501127abe5282b
[ "2015年华杯赛六年级竞赛初赛", "2015年华杯赛四年级竞赛初赛", "2015年华杯赛四年级竞赛初赛" ]
2
single_choice
一只旧钟的分针和时针每重合一次,需要经过标准时间$$66$$分。那么,这只旧钟的$$24$$小时比标准时间的$$24$$小时( )
[ [ { "aoVal": "A", "content": "快$$12$$分 " } ], [ { "aoVal": "B", "content": "快$$6$$分 " } ], [ { "aoVal": "C", "content": "慢$$6$$分 " } ], [ { "aoVal": "D", "content": "慢$$12$$分 " } ] ]
[ "拓展思维->拓展思维->组合模块->时间问题->时间计算" ]
[ "正常时钟分针和时针重合一次需要$$\\frac{360}{360-30}\\times 60=\\frac{720}{11}$$(分),而旧钟需要$$66$$分,因此旧钟比正常时钟慢,且正常时钟和旧钟的时间比为$$\\frac{720}{11}:66=\\frac{720}{726}=\\frac{120}{121}$$,所以正常时钟走$$24$$小时,旧钟需要走$$24$$小时多$$12$$分钟,因此这只旧钟比标准时间慢$$12$$分钟。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
262
7f3b608ce64c4431bc72ac96ef351109
[ "2017年第15届湖北武汉创新杯五年级竞赛初赛第7题" ]
2
single_choice
盒中有形状、大小、质料相同的红、白、黑颜色的球各$$10$$个,摸出若干个,要保证摸出的球中至少有$$3$$个球同色,摸出球的个数至少为个.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "最不利原则.要保证拿到一种颜色至少有$$3$$个,则根据最不利原则,可先取每种颜色$$2$$个,最后取一个不论取哪种颜色,都一定可以满足条件,即需要$$2\\times 3+1=7$$个. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1343
70ac5311a30c4c629ced142180bf5d32
[ "其它改编题", "2017年全国华杯赛小学中年级竞赛初赛模拟第2题" ]
1
single_choice
西点店里卖的面包都是$$5$$个一袋或$$3$$个一袋的,不拆开零售.已知$$5$$个一袋的售价是$$10$$元,$$3$$个一袋的售价是$$7$$元.要给$$48$$位同学每人发$$1$$个面包最少要花~\uline{~~~~~~~~~~}~元钱.
[ [ { "aoVal": "A", "content": "$$96$$ " } ], [ { "aoVal": "B", "content": "$$97$$ " } ], [ { "aoVal": "C", "content": "$$100$$ " } ], [ { "aoVal": "D", "content": "$$112$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->归一归总问题->归总问题" ]
[ "因为买$$15$$个面包时,$$3$$个大袋比$$5$$个小袋划算,所以大袋的单价比小袋的便宜,那么应该尽量多买大袋的. 若买$$9$$个大袋和$$1$$个小袋,$$9\\times 5+1\\times 3=48$$个,总价是$$10\\times 9+7\\times 1=97$$元. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2664
883262a912a946c48c9bb81fc25283cf
[ "2019年第22届世界少年奥林匹克数学竞赛四年级竞赛复赛(中国区)第2题3分" ]
1
single_choice
一个三位小数,精确到十分位是$$10.0$$.这个三位小数最大是,最小是.
[ [ { "aoVal": "A", "content": "$$10.045$$,$$10.001$$ " } ], [ { "aoVal": "B", "content": "$$10.049$$,$$10.001$$ " } ], [ { "aoVal": "C", "content": "$$10.049$$,$$9.950$$ " } ], [ { "aoVal": "D", "content": "$$10.049$$,$$9.999$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "一个三位小数,四舍五入到十分位得到$$10.0$$, 原三位小数通过``四舍''获得最大值,通过``五入''获得最小值. 那么通过四舍的原小数百分位数字可能是:$$1$$、$$2$$、$$3$$、$$4$$, 那么通过五入的原小数百分位数字可能是:$$5$$、$$6$$、$$7$$、$$8$$、$$9$$, 所以最大是$$10.049$$,最小是$$9.950$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2866
a4195a30f9bb47a1880a339c03c23328
[ "2020年新希望杯六年级竞赛(2月)第25题" ]
1
single_choice
比较大小:$$1+ \frac{1}{2^{2}}+ \frac{1}{3^{2}}+ \frac{1}{4^{2}} \cdots + \frac{1}{2020^{2}}$$~\uline{~~~~~~~~~~}~$$2$$.
[ [ { "aoVal": "A", "content": "$$\\textgreater$$ " } ], [ { "aoVal": "B", "content": "$$\\textless{}$$ " } ], [ { "aoVal": "C", "content": "$$=$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "$$\\frac{1}{{{2}^{2}}}+\\frac{1}{{{3}^{2}}}+\\cdots +\\frac{1}{{{2020}^{2}}} ~\\textless{} ~\\frac{1}{1\\times 2}+\\frac{1}{2\\times 3}+\\cdots +\\frac{1}{1999\\times 2020}$$ $$=1-\\frac{1}{2020}=\\frac{2019}{2020}$$. ∴$$1+\\frac{1}{{{2}^{2}}}+\\frac{1}{{{3}^{2}}}+\\cdots +\\frac{1}{{{2020}^{2}}} ~\\textless{} ~1+\\frac{2019}{2020} ~\\textless{} ~2$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
493
d3985ecb10cb4d3ba3828281e24f20f5
[ "2014年全国学而思杯五年级竞赛第20题" ]
4
single_choice
\hspace{0pt}老师在黑板上随机写了$$8$$个数,每个数都是$$1$$、$$2$$、$$4$$中的某一个.学生们每次擦去两个相同的数,并把这两个相同的数的和写在黑板上.如果某位同学在黑板上写出了``$$2048$$'',则过程``成功结束'',否则老师就再随机写一个数上去($$1$$或$$2$$或$$4$$),以保证黑板上仍有$$8$$个数.学生每次成功写数都会得与此数相同的分数,例如:擦去两个$$2$$,写上$$4$$,得到$$4$$分.如果并没有写出$$2048$$,但已没有相同的数可以同时擦去,则过程``失败结束''.请问: (2)若一个过程结束后恰好得到了$$18000$$分,能否是一次``成功结束''?为什么?(请写出具体解题过程)
[ [ { "aoVal": "A", "content": "能 " } ], [ { "aoVal": "B", "content": "不能 " } ] ]
[ "知识标签->数学思想->逐步调整思想" ]
[ "(2)同上题,出现了$$2048$$,至少要得如下的分数:$$2048+1024\\times 2+512\\times 4+256\\times 8+128\\times 16+64\\times 32+32\\times64+16\\times 128+8\\times 256$$$$=2048\\times 9=18432$$ 由于$$18000\\textless18432$$,因此$$18000$$分是不可能成功结束的. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
59
6b1619ee88d644fcb1ff04491f8e0984
[ "2016年新希望杯六年级竞赛训练题(一)第5题" ]
1
single_choice
现在有$$21$$本故事书分给$$5$$个人阅读,如果每个人得到的数量均不相同,那么得到故事书最多的人至少可得到本.
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$7$$ " } ], [ { "aoVal": "C", "content": "$$9$$ " } ], [ { "aoVal": "D", "content": "$$11$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->抽屉原理->简单抽屉原理" ]
[ "五人分别是$$2$$、$$3$$、$$4$$、$$5$$、$$7$$本.(不止一种情况.) " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1310
1bcb6aa08fe841d58f612105a27c703f
[ "2020年新希望杯二年级竞赛决赛(8月)第6题", "2020年新希望杯二年级竞赛初赛(个人战)第6题" ]
1
single_choice
李叔叔排队买票,他前面有$$5$$人,后面有$$6$$人.一共有人排队买票.
[ [ { "aoVal": "A", "content": "$$9$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$11$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "加上李叔叔自己,一共:$$5+6+1=12$$(人), 故选择:$$\\text{C}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2151
6691fb20e97644e8a0d10d74d53adfa7
[ "2011年第9届全国创新杯小学高年级六年级竞赛第3题" ]
1
single_choice
钟表上$$12$$点$$15$$分,时针与分针夹角为(~ ).
[ [ { "aoVal": "A", "content": "$$90{}^{}\\circ $$ " } ], [ { "aoVal": "B", "content": "$$82.5{}^{}\\circ $$ " } ], [ { "aoVal": "C", "content": "$$67.5{}^{}\\circ $$ " } ], [ { "aoVal": "D", "content": "$$60{}^{}\\circ $$ " } ] ]
[ "拓展思维->拓展思维->行程模块->时钟问题->时钟上的追及问题->已知时间求角度" ]
[ "$$12$$点时,夹角为$$0{}^{}\\circ $$;$$15$$分钟后,分钟往前走了$$90{}^{}\\circ $$,时针走了$$7.5{}^{}\\circ $$,此时夹角为$$82.5{}^{}\\circ $$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2198
9945729ee07e4988a210ec08ea6f85f0
[ "2018年第23届华杯赛小学中年级竞赛初赛第6题", "2018年华杯赛小学中年级竞赛初赛第6题10分" ]
1
single_choice
$$I$$型和$$II$$型电子玩具车各一辆,沿相同的两个圆形轨道跑动,$$I$$型每$$5$$分钟跑$$1$$圈,$$II$$型每$$3$$分钟跑$$1$$圈,某同一时刻,$$I$$型和$$II$$型恰好都开始跑第$$19$$圈,则$$I$$型比$$II$$型提前(~ )分钟开始跑动.
[ [ { "aoVal": "A", "content": "$$32$$ " } ], [ { "aoVal": "B", "content": "$$36$$ " } ], [ { "aoVal": "C", "content": "$$38$$ " } ], [ { "aoVal": "D", "content": "$$54$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->环形跑道->相遇与追及结合" ]
[ "开始跑第$$19$$圈,说明跑了$$18$$圈: $$I$$型跑$$18$$圈用时:$$18\\times 5=90$$(分钟); $$II$$型$$18$$圈用时:$$18\\times 3=54$$(分钟); 故相差$$90-54=36$$(分钟),则提前$$36$$分钟. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2016
e1474e433cfc4b51bb7372aed88089bd
[ "2004年第2届创新杯五年级竞赛初赛第9题", "2004年五年级竞赛创新杯" ]
2
single_choice
兴农农机厂某车间共有61个工人,已知每个工人平均每天可加工甲种部件5个,或者乙种部件4个,或者丙种部件3个,但加工4个甲种部件,1个乙种部件和6个丙种部件才能配成一套,为了使加工出来的甲、乙、丙三种部件恰好都能配成套,那么,安排加工甲种部件的人数应是( ).
[ [ { "aoVal": "A", "content": "5人 " } ], [ { "aoVal": "B", "content": "12人 " } ], [ { "aoVal": "C", "content": "16人 " } ], [ { "aoVal": "D", "content": "20人 " } ] ]
[ "拓展思维->拓展思维->组合模块->操作与策略->统筹规划->调运中的统筹" ]
[ "称1个工人一天的工作量为1个工,则加工一个甲、乙、丙种部件分别需要$$\\frac{1}{5},\\frac{1}{4},\\frac{1}{3}$$个工,从而知道,每生产1套,甲部件需要$$\\frac{1}{5}\\times 4=0.8$$个工,乙部件需要$$\\frac{1}{4}\\times 1=0.25$$个工,丙部件需要$$\\frac{1}{3}\\times 6=2$$个工,因此,每天可生产$$61\\div \\left( 0.8+0.25+2 \\right)=20$$套.其中生产甲部件需要$$20\\times 0.8$$个工,即需要16个工人工作1天 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1559
ff8080814502fa24014507b668e20b9e
[ "2014年全国迎春杯四年级竞赛初赛第14题" ]
2
single_choice
甲乙两人合作打一份材料.开始甲每分钟打$$100$$ 个字,乙每分钟打$$200$$个字.合作到完成总量的一半时,甲速度变为原来的$$3$$倍,而乙休息了$$5$$分钟后继续按原速度打字.最后当材料完成时,甲、乙打字数相等.那么,这份材料共(~~~~~~~ )个字.
[ [ { "aoVal": "A", "content": "$$3000$$ " } ], [ { "aoVal": "B", "content": "$$6000$$ " } ], [ { "aoVal": "C", "content": "$$12000$$ " } ], [ { "aoVal": "D", "content": "$$18000$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "前一半时乙的工作量是甲的$$2$$倍,所以后一半甲应是乙的$$2$$倍.把后一半工作量分为$$6$$份,甲应为$$4$$份,乙应为$$2$$份,说明乙休息时甲打了$$1$$份,这一份的量是$$100\\times 3\\times 5=1500$$字,故总工作量是$$1500\\times6\\times 2=18000$$字. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
860
96b3a1f50ed94ff6ac17c3b77ca08fc2
[ "2018年湖北武汉新希望杯六年级竞赛训练题(五)第4题" ]
2
single_choice
十进制数$$25$$转换成二进制数是$_{2}$.
[ [ { "aoVal": "A", "content": "$$11101$$ " } ], [ { "aoVal": "B", "content": "$$1011$$ " } ], [ { "aoVal": "C", "content": "$$10101$$ " } ], [ { "aoVal": "D", "content": "$$11001$$ " } ] ]
[ "拓展思维->七大能力->数据处理" ]
[ "$$25=16+8+1$$,则$$25$$转换成二进制数是$$11001$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
247
682e9d91470d4461ab4cf4e4c9def511
[ "2020年第24届YMO三年级竞赛决赛第8题3分", "2017年华杯赛四年级竞赛初赛" ]
2
single_choice
从$$1$$至$$10$$这$$10$$个整数中,至少取( )个数,才能保证其中有两个数的和等于$$10$$。
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->抽屉原理->简单抽屉原理" ]
[ "先找到和为$$10$$的组合:$$(1$$,$$9)$$、$$(2$$,$$8)$$、$$(3$$,$$7)$$、$$(4$$,$$6)$$,剩下$$5$$、$$10$$,若前面四组数中各取一个,后面$$5$$、$$10$$全取,这样还不能满足题目要求的两数和为$$10$$,如果再取剩下四个中的任意一个,必定会凑出和为$$10$$的组合,故最少要取$$6+1=7$$(个)。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1163
1d92185d72af4654be1d24986db1ccdf
[ "2018年湖北武汉新希望杯五年级竞赛训练题(四)第4题" ]
1
single_choice
(学而思拓展,难度★★☆☆☆) 水果店规定:如果购买芒果不超过$$10$$千克,那么每千克售价$$4$$元;如果超过$$10$$千克,那么超过的部分每千克$$3.5$$元.某人买了$$24$$千克芒果,他应付元.
[ [ { "aoVal": "A", "content": "$$84$$ " } ], [ { "aoVal": "B", "content": "$$89$$ " } ], [ { "aoVal": "C", "content": "$$90$$ " } ], [ { "aoVal": "D", "content": "$$96$$ " } ] ]
[ "拓展思维->思想->分类讨论思想" ]
[ "$$4\\times 10+3.5\\times (24-10)=89$$(元). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2193
2819f7b026304ecf8f928918c48ef46c
[ "其它改编题", "2018年第8届北京学而思综合能力诊断五年级竞赛年度教学质量监测第10题" ]
3
single_choice
一辆汽车从甲地出发到$$300$$千米外的乙地去,前$$120$$千米的平均速度为$$40$$千米/时,要想使这辆汽车从甲地到乙地的平均速度为$$50$$千米/时,剩下的路程应以~\uline{~~~~~~~~~~}~千米/时行驶.
[ [ { "aoVal": "A", "content": "$$30$$ " } ], [ { "aoVal": "B", "content": "$$60$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ], [ { "aoVal": "D", "content": "$$45$$ " } ] ]
[ "知识标签->拓展思维->行程模块->直线型行程问题->路程速度时间->单人变速问题" ]
[ "剩下的路程为:$$300-120=180$$(千米),计划总时间为:$$300\\div 50=6$$(小时),前$$120$$千米已用去$$120\\div 40=3($$小时),所以剩下路程的速度为: $$(300-120)\\div (6-3)=60$$(千米/时). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
551
011a9db0d50b431ea6554b90892d290b
[ "2008年陈省身杯小学高年级六年级竞赛第12题" ]
3
single_choice
$$ABCD$$都是小于$$100$$的合数,并且$$ABCD$$两两互质,则$$A+B+C+D$$的最大值为~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "答案请写在答题卡上 " } ] ]
[ "知识标签->课内知识点->数的认识->数的特征->质数与合数->质数的特征" ]
[ "答案请写在答题卡上 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
315
4a491ed0990841cca68e362e2c21d337
[ "2018年第6届湖北长江杯六年级竞赛初赛A卷第22题10分" ]
2
single_choice
在一次数学竞赛中,$$A$$,$$B$$,$$C$$,$$D$$,$$E$$五位同学分别得了前五名(没有并列同一名次的),关于各人的名次大家作出了下面的猜测: $$A$$说:``第二名是$$D$$,第三名是$$B$$.'' $$B$$说:``第二名是$$C$$,第四名是$$E$$.'' $$C$$说:``第一名是$$E$$,第五名是$$A$$.'' $$D$$说:``第三名是$$C$$,第四名是$$A$$.'' $$E$$说:``第二名是$$B$$,第五名是$$D$$.'' 结果每人都只猜对了一半,他们的名次从高到低排列是.
[ [ { "aoVal": "A", "content": "E、$$C$$、$$B$$、$$A$$、D " } ], [ { "aoVal": "B", "content": "C、$$B$$、$$E$$、$$A$$、D " } ], [ { "aoVal": "C", "content": "A、$$D$$、$$B$$、$$C$$、E " } ], [ { "aoVal": "D", "content": "D、$$A$$、$$C$$、$$B$$、E " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->假设型逻辑推理->真假话->半真半假" ]
[ "假设$$A$$猜的第一句是真的,那么$$B$$猜的第二句是真的,即第四名是$$E$$,那么$$C$$猜的``E是第一名''是错的,$$A$$是第五名,那么$$D$$猜的$$C$$是第三名是对的,那么$$B$$就是第一名,从而$$E$$说的全是错的,所以假设不成立.所以$$A$$猜的第二句是真的,即$$B$$是第三名,那么$$D$$猜的第一句是错的,从而$$A$$是第四名,所以$$C$$猜的第二句是错的,$$E$$是第一名,从而$$B$$猜的$$C$$是第二名是对的,$$E$$猜的第五名是$$\\text{D}$$正确,所以,第一名是$$E$$,第二名是$$C$$,第三名是$$B$$,第四名是$$A$$,第五名是$$D$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1838
9bb012723ef44d16af7cf1c74ded7071
[ "2007年六年级竞赛创新杯", "2007年第5届创新杯六年级竞赛第4题5分" ]
1
single_choice
甲、乙、丙三人出同样多的钱买同样的笔记本,最后甲、乙都比丙多得3本,甲、乙都给了丙2.4元,那么每本笔记本的价格是( )元
[ [ { "aoVal": "A", "content": "0.8 " } ], [ { "aoVal": "B", "content": "1.2 " } ], [ { "aoVal": "C", "content": "2.4 " } ], [ { "aoVal": "D", "content": "4.8 " } ] ]
[ "拓展思维->拓展思维->应用题模块->列方程解应用题->设而不求" ]
[ "设丙得了$$x$$本,则甲.乙二人各得了$$x+3$$本,总共$$3x+6$$本,平均每人应得$$x+2$$本,而甲比平均数多拿了1本,所以每本笔记本的价格是2.4元. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2257
fb1a4c36116f4631a67c63acc4bd2416
[ "2014年全国华杯赛小学高年级竞赛初赛A卷第5题" ]
2
single_choice
某学校组织一次远足活动,计划$$10$$点$$10$$分从甲地出发,$$13$$点$$10$$分到达乙地,但出发晚了$$5$$分钟,却早到达了$$4$$分钟.甲乙两地之间的丙地恰好是按照计划时间到达的,那么到达丙地的时间是.
[ [ { "aoVal": "A", "content": "$$11$$点$$40$$分 " } ], [ { "aoVal": "B", "content": "$$11$$点$$50$$分 " } ], [ { "aoVal": "C", "content": "$$12$$点 " } ], [ { "aoVal": "D", "content": "$$12$$点$$10$$分 " } ] ]
[ "拓展思维->七大能力->运算求解" ]
[ "相当于两辆车$$A$$,$$B$$在同一条路上,一辆按原速行驶,一辆按新的速度行驶.那么,晚出发五分钟相当于$$B$$追已经行驶了$$5$$分钟的$$A$$在丙地追上,当$$B$$到达乙地的时候$$A$$还有$$4$$分钟的路程,这样就是两次追击问题,速度差不变追击路程的比是$$5:4$$所以,(甲地到丙地的距离):(丙地到乙地的距离)$$=5:4$$,所以时间比为$$5:4$$,所以选择$$B$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
359
baeb6e4a2a01451f8bef26cc5f4b1fbf
[ "2015年第27届广东广州五羊杯小学高年级竞赛第2题4分" ]
1
single_choice
在下面的括号中分别填入$$+$$、$$-$$、$$\times $$、$$\div $$符号,每个符号只能用一次,使得$$a$$,$$b$$,$$c$$,$$d$$之和为最大. $$\frac{1}{2}( )\frac{1}{9}=a$$,$$\frac{1}{9}( )\frac{1}{8}=b$$,$$\frac{1}{4}( )\frac{1}{7}=c$$,$$\frac{1}{5}( )\frac{1}{6}=d$$
[ [ { "aoVal": "A", "content": "$$+$$,$$-$$,$$\\times $$,$$\\div $$ " } ], [ { "aoVal": "B", "content": "$$\\div $$,$$-$$,$$+$$,$$\\times $$ " } ], [ { "aoVal": "C", "content": "$$\\div $$,$$-$$,$$\\times $$,$$+$$ " } ], [ { "aoVal": "D", "content": "$$\\times $$,$$\\div $$,$$=$$,$$+$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "四个式子中所含的$$8$$个分数都小于二分之一, 所以四个式子的和、差、积都小于$$1$$. 那么我们可以先考虑商最大的情况. $$\\frac{1}{2}\\div \\frac{1}{9}=a$$,$$\\frac{1}{3}-\\frac{1}{8}=b$$,$$\\frac{1}{4}+\\frac{1}{7}=c$$,$$\\frac{1}{5}\\times \\frac{1}{6}=d$$. 和为$$5\\frac{113}{840}$$,但不必求出. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
257
ff5e7db85ab84d469da0787a3f72ecf6
[ "2017年IMAS小学中年级竞赛(第二轮)第3题4分" ]
1
single_choice
将算式$$1\Delta 2\Delta 3\Delta 8\Delta 15$$的$$\Delta $$处分别填入「$$+$$」或「$$-$$」号后计算此算式的值. 请问总共可以得到多少个不同的正整数值?
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$14$$ " } ], [ { "aoVal": "E", "content": "$$16$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "当$$15$$前面的符号是「$$-$$」号时, $$1+2+3+8=14\\textless{}15$$,故得不到正整数; 当$$15$$前面的符号是「$$+$$」号时,由于$$1$$前面没有空格,相当于有一个加号, 所以无论后面怎么填,这个算式的结果都是大于$$1$$的, 而$$2$$、$$3$$、$$8$$之间的差各不相等, 因此,这三个数前面任意一个符号不同时得到的结果都不相同, 因此总共可以得到$$2\\times2\\times2=8$$个不同的正整数值. 故选$$\\text{A}$$. ", "<p>可知共有$$2\\times2\\times2\\times2=16$$种填入「$$+$$」或「$$-$$」号的方式:</p>\n<p>①$$1+2+3+8+15=29$$;</p>\n<p>②$$1+2+3+8-15=14-15&lt;{}0$$,不为正整数;</p>\n<p>③$$1+2+3-8+15=13$$;</p>\n<p>④$$1+2-3+8+15=23$$;</p>\n<p>⑤$$1-2+3+8+15=25$$;</p>\n<p>⑥$$1+2+3-8-15=6-23&lt;{}0$$,不为正整数;</p>\n<p>⑦$$1+2-3+8-15=11-18&lt;{}0$$,不为正整数;</p>\n<p>⑧$$1-2+3+8-15=10-15&lt;{}0$$,不为正整数;</p>\n<p>⑨$$1+2-3-8+15=7$$;</p>\n<p>⑩$$1-2+3-8+15=9$$;</p>\n<p>⑪$$1-2-3+8+15=19$$;</p>\n<p>⑫$$1+2-3-8-15=3-26&lt;{}0$$,不为正整数;</p>\n<p>⑬$$1-2+3-8-15=4-25&lt;{}0$$,不为正整数;</p>\n<p>⑭$$1-2-3+8-15=9-20&lt;{}0$$,不为正整数;</p>\n<p>⑮$$1-2-3-8+15=3$$;</p>\n<p>⑯$$1-2-3-8-15=1-28&lt;{}0$$,不为正整数.</p>\n<p>其中总共有$$29$$、$$13$$、$$23$$、$$25$$、$$7$$、$$9$$、$$19$$、$$3$$共$$8$$个不同的正整数值.</p>\n<p>故选$$\\text{A}$$.</p>" ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
717
481bb4542186431988cd6b83f17d903f
[ "2016年全国华杯赛小学高年级竞赛初赛第3题" ]
2
single_choice
在一个七位整数中,任何三个连续排列的数字都构成一个能被$$11$$或$$13$$整除的三位数,则这个七位数最大是.
[ [ { "aoVal": "A", "content": "$$9981733$$ " } ], [ { "aoVal": "B", "content": "$$9884737$$ " } ], [ { "aoVal": "C", "content": "$$9978137$$ " } ], [ { "aoVal": "D", "content": "$$9871773$$ " } ] ]
[ "拓展思维->能力->逻辑分析->代数逻辑推理" ]
[ "注意到由于任意三个连续排列的数字都能构成三位数,所以这个七位数的前五个数字不能是$$0$$,逐步极端分析,得$$988=13\\times 76$$,$$884=13\\times 68$$,$$847=11\\times 77$$,$$473=11\\times 43$$,$$737=11\\times 67$$ " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
706
b9bd72266e5046e1b05d8bf16f92d16d
[ "2017年河南郑州K6联赛竞赛模拟第六套第2题4分" ]
0
single_choice
一个两位数,十位上的数字是$$5$$,个位上的数字是$$a$$,表示这个两位数的式子是( ~ ~).
[ [ { "aoVal": "A", "content": "$$50+a$$ " } ], [ { "aoVal": "B", "content": "$$5+a$$ " } ], [ { "aoVal": "C", "content": "$$50a$$ " } ], [ { "aoVal": "D", "content": "$$5a$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "十位上的数字是$$5$$,也就是表示$$5$$个十,即$$50$$;个位上的数字是$$a$$,也就是表示$$a$$个一,即$$a$$.所以这个两位数就是$$50+a$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2852
6594c3aee99648ad921473a07d788115
[ "2018年第8届北京学而思综合能力诊断二年级竞赛年度教学质量第9题" ]
1
single_choice
$$2018$$俄罗斯世界杯刚刚落下帷幕,其中世界杯英文单词``$$WORLD CUP$$''中不同字母代表 着大于$$1$$的不同数字,请问$$W+O+R+L+D+C+U+P=$$(~ ).
[ [ { "aoVal": "A", "content": "$$43$$ " } ], [ { "aoVal": "B", "content": "$$44$$ " } ], [ { "aoVal": "C", "content": "$$45$$ " } ], [ { "aoVal": "D", "content": "$$54$$~ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "大于$$1$$的不同数字为:$$2$$、$$3$$、$$4$$、$$5$$、$$6$$、$$7$$、$$8$$、$$9$$,所以$$W+O+R+L+D+C+U+P=1+2+3+4+5+6+7+8+9=44$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
410
8605aa3c6ca6486c841a9d8ff3430b62
[ "2008年四年级竞赛创新杯", "2008年第6届创新杯四年级竞赛初赛B卷第10题5分" ]
2
single_choice
$$16$$个外表一样的球,有$$10$$克和$$9$$克两种重量.先取两个球,天平两边各放一个使天平不平衡.就拿这两个球作为标准,将余下的$$14$$个球分成$$7$$对,用天平与这对标准球逐一比较,结果是$$3$$对较重,$$2$$对较轻,$$2$$对与标准球一样重,那么这$$16$$个球的总重量是克.
[ [ { "aoVal": "A", "content": "$$134$$ " } ], [ { "aoVal": "B", "content": "$$135$$ " } ], [ { "aoVal": "C", "content": "$$143$$ " } ], [ { "aoVal": "D", "content": "$$153$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->条件型逻辑推理->神推理" ]
[ "第一次称的两个球,天平不平衡,所以$$1$$个球是$$10$$克,$$1$$个球是$$9$$克,作为标准的这对球重$$10+9=19$$(克)。比标准重的一对球重$$20$$克,比标准轻的一对球重$$18$$克,和标准重一样的一对球重$$19$$克,因此,这$$16$$个球的总重量为:$$20\\times 3+19\\times 3+18\\times 2=153$$(克)。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3216
2c09d6cd2ff44cf08f5264af032a3701
[ "2017年全国美国数学大联盟杯五年级竞赛初赛" ]
2
single_choice
设$$n$$是一任意自然数.若将$$n$$的各位数字反向排列所得自然数$${n}_{1}$$与$$n$$相等,则称$$n$$为回文数.例如,若$$n=1234321$$,则称$$n$$为一回文数;但若$$n=1234567$$,则$$n$$不是回文数.请问在$$10000$$和$$100000$$之间有多少个回文数?
[ [ { "aoVal": "A", "content": "$$900$$ " } ], [ { "aoVal": "B", "content": "$$1000$$ " } ], [ { "aoVal": "C", "content": "$$1100$$ " } ], [ { "aoVal": "D", "content": "$$1200$$ " } ], [ { "aoVal": "E", "content": "$$1500$$ " } ] ]
[ "拓展思维->思想->枚举思想" ]
[ "在$$10000$$和$$100000$$之间的数都是五位数,不妨设其为$$\\overline{abcba}$$,$$a$$不为$$0$$有$$9$$种选择,$$b$$、$$c$$均有$$10$$种选择,故共有$$9\\times 10\\times 10=900$$个回文数. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
569
04399a8724da4e958a6ddd5ba9c8e2d2
[ "2017年河南郑州小升初豫才杯第二场第11题", "2017年河南郑州豫才杯竞赛第11题" ]
0
single_choice
$$100$$以内,能同时被$$9$$和$$5$$整除的最大偶数是(~ ).
[ [ { "aoVal": "A", "content": "$$75$$ " } ], [ { "aoVal": "B", "content": "$$85$$ " } ], [ { "aoVal": "C", "content": "$$90$$ " } ], [ { "aoVal": "D", "content": "$$95$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->奇数与偶数->奇数与偶数的认识" ]
[ "能同时被$$9$$和$$5$$整除的数一定能被$$45$$整除,所以$$100$$以内只有$$90$$符合题意. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1905
b78cd33347254d0988bbe586706cf656
[ "2020年第23届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第7题3分" ]
1
single_choice
甲乙丙丁四人参加了一次考试.甲乙的成绩和比丙丁的成绩和高$$17$$分,甲比乙低$$4$$分,丙比丁高$$5$$分.四人中最高分比最低分高分.
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$13$$ " } ], [ { "aoVal": "D", "content": "$$16$$ " } ] ]
[ "拓展思维->能力->符号代换->代数运算" ]
[ "首先根据题意,可得乙比甲的成绩高,丙比丁的成绩高,然后根据题意,设乙得了$$x$$分,则甲得了$$x-4$$分,丙得了$$y$$分,则丁得了$$y-5$$分,再根据:甲、乙的成绩和$$-$$丙、丁的成绩和$$=17$$,求出$$x$$、$$y$$的关系,判断出四人中最高分、最低分各是多少,即可求出四人中最高分比最低分高多少. 设乙得了$$x$$分,则甲得了$$x-4$$分,丙得了$$y$$分,则丁得了$$y-5$$分, 所以$$(x+x-4)-(y+y-5)=17$$, 整理,可得:$$2x-2y+1=17$$, 所以$$2x-2y=16$$, 所以$$x-y=8$$, 所以乙比丙得分高; 因为$$x-y=8$$, 所以$$(x-4)-(y-5)=9$$, 所以甲比丁得分高, 所以乙得分最高,丁得分最低, 所以四人中最高分比最低分高: $$x-(y-5)=x-y+5=8+5=13$$(分), 答:四人中最高分比最低分高$$13$$分. 故答案为:$$13$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1040
45e0d9cb707045a3b50d6ba9c6025a60
[ "2017年四川成都六年级竞赛“全能明星”选拔赛第7题2分" ]
2
single_choice
某学校合唱队与舞蹈队的人数之比为$$3:2$$,如果将合唱队队员调$$10$$人到舞蹈队,则人数之比为$$7:8$$.合唱队原有.
[ [ { "aoVal": "A", "content": "$$40$$人 " } ], [ { "aoVal": "B", "content": "$$48$$人 " } ], [ { "aoVal": "C", "content": "$$44$$人 " } ], [ { "aoVal": "D", "content": "$$45$$人 " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "根据合唱队与舞蹈队调人前后人数之比可知,调出$$10$$人前,合唱队人数占全体人数的$$\\frac{3}{3+2}$$,调出$$10$$人后,占全体人数的$$\\frac{7}{7+8}$$,则全体人数为$$10\\div \\left( \\frac{3}{3+2}-\\frac{7}{7+8} \\right)$$人,求出全体人数后,就能根据合唱队人数在全体人数中的占比求出合唱队原来有多少人.列式计算为$$\\left[ 10\\div \\left( \\frac{3}{3+2}-\\frac{7}{7+8} \\right) \\right]\\times \\frac{3}{3+2}=45$$(人). " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2406
0fa72b15204a4b69b3f40249f2c0a809
[ "2018年第8届北京学而思综合能力诊断二年级竞赛年度教学质量第1题" ]
0
single_choice
算式$$\textasciitilde7+8\times 9$$的正确结果是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$65$$ " } ], [ { "aoVal": "B", "content": "$$72$$ " } ], [ { "aoVal": "C", "content": "$$79$$ " } ], [ { "aoVal": "D", "content": "$$135$$ " } ] ]
[ "知识标签->拓展思维->计算模块->整数->四则混合运算" ]
[ "先算乘除,再算加减,$$7+8\\times 9=7+72=79$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2733
ff8080814502fa2401450bdf56e11785
[ "2014年全国迎春杯五年级竞赛复赛第1题" ]
1
single_choice
一个最大的三位数除以一个整数,得到的商四舍五入保留一位小数后是$$2.5$$,除数最小是(~~~~~~~ ).
[ [ { "aoVal": "A", "content": "$$400$$ " } ], [ { "aoVal": "B", "content": "$$396$$ " } ], [ { "aoVal": "C", "content": "$$392$$ " } ], [ { "aoVal": "D", "content": "$$388$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "要使得除数最小,那么商就尽可能的大,因此商无限接近于$$2.54\\cdots $$;$$999$$除以$$2.54$$符合条件的结果是$$392$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2063
f8d61a430fae4b4b94a15ad2926fb62c
[ "2017年河南郑州东风杯竞赛初赛" ]
1
single_choice
一家商店将某种服装按成本价提高$$40 \% $$后标价,又以$$8$$折(即按标价的$$80 \% $$)优惠卖出,结果每件服装仍可获利$$15$$元,则这种服装每件的成本是(~ ).
[ [ { "aoVal": "A", "content": "$$120$$元 " } ], [ { "aoVal": "B", "content": "$$125$$元 " } ], [ { "aoVal": "C", "content": "$$135$$元~~~~~ " } ], [ { "aoVal": "D", "content": "$$140$$元 " } ] ]
[ "拓展思维->思想->方程思想" ]
[ "设这种服装每件的成本是$$x$$元.则有$$\\left( 1+40 \\% ~\\right)x\\times 80 \\%=x+15$$,解得$$x=125$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2027
b44f55e4c069493ab535accc2642a889
[ "走美杯三年级竞赛", "走美杯四年级竞赛" ]
1
single_choice
幼儿园买了$$8$$辆玩具车,每辆玩具车需要$$92$$元,李老师带了$$720$$元够吗?下面的解答比较合理的是.
[ [ { "aoVal": "A", "content": "因为$$92\\times 8\\approx$$ 720(元),$$92\\times$$ 8\\textgreater720,所以$$92\\times$$ 8\\textgreater720,够 " } ], [ { "aoVal": "B", "content": "因为$$92\\times 8\\approx$$ 800(元),$$92\\times$$ 8\\textless800,所以$$92\\times$$ 8\\textless720,够 " } ], [ { "aoVal": "C", "content": "因为$$92\\times 8\\approx$$ 720(元),$$92\\times$$ 8\\textgreater720,所以$$92\\times$$ 8\\textgreater720,不够 " } ], [ { "aoVal": "D", "content": "因为$$92\\times 8\\approx$$ 800(元),$$92\\times$$ 8\\textgreater800,所以$$92\\times$$ 8\\textgreater720,不够 " } ] ]
[ "拓展思维->拓展思维->应用题模块->年龄问题->年龄问题之差倍型" ]
[ "92\\textgreater90,总价大于$$720$$元,所以不够 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1366
fa86a48716fa4139aba8d18e03a1a18b
[ "2013年华杯赛五年级竞赛初赛", "2020年第24届YMO五年级竞赛决赛第8题3分", "2013年华杯赛六年级竞赛初赛" ]
1
single_choice
一个盒子里有黑棋子和白棋子若干粒,若取出一粒黑子,则余下的黑子数与白子数之比为$$9:7$$,若放回黑子,再取出一粒白子,则余下的黑子数与白子数之比为$$7:5$$,那么盒子里原有的黑子数比白子数多( )个。
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->比例应用题->按比分配" ]
[ "取出一粒黑子后,盒子内棋子的总数与取出一粒白子后,盒子内棋子的总数相等,$$\\left[ 9+7,7+5 \\right]=\\left[ 16,12 \\right]=48$$,因此,取出一粒黑子后,黑白子之比为$$9:7=27:21$$,取出一粒白子后,黑白子之比为$$7:5=28:20$$,黑子增加了$$1$$粒,从$$27$$份增加到$$28$$份,因此$$1$$份就是$$1$$粒,于是,盒子里原有$$28$$粒黑子、$$21$$粒白子,一开始黑子比白子多$$7$$个。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1962
ceaafad7c61d4c54a4a30b56a0fa4122
[ "2019年第23届广东世界少年奥林匹克数学竞赛四年级竞赛决赛第4题5分" ]
1
single_choice
毛毛用围棋子摆成一个三层空心方阵,最内一层每边有围棋子$$8$$个.毛毛摆这个方阵共用围棋子个.
[ [ { "aoVal": "A", "content": "$$96$$ " } ], [ { "aoVal": "B", "content": "$$108$$ " } ], [ { "aoVal": "C", "content": "$$120$$ " } ], [ { "aoVal": "D", "content": "$$132$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->方阵问题->空心方阵->空心方阵的增减" ]
[ "$$1$$、这是一道关于方阵的问题,考查的是方阵的知识; $$2$$、由题意知,用围棋子摆成一个三层空心方阵,最内一层每边有围棋子$$8$$个,由于相邻两层每边相差$$2$$个,则由里向外的两层每边分别是$$\\left( 8+2 \\right)$$个、$$(8+2\\times 2)$$个; $$3$$、根据``四周的个数$$=\\left( {} \\right.$$每边的个数$$\\left. -1 \\right)\\times 4$$''可分别求得这三层棋子的个数,再相加就是所用的总个数,据此解答. 根据题意分析可知:最内一层棋子个数为:$$\\left( 8-1 \\right)\\times 4=7\\times 4=28$$(个), 第二层棋子有:$$\\left( 8+2-1 \\right)\\times 4=9\\times 4=36$$(个), 第三层棋子有:$$\\left( 8+2\\times 2-1 \\right)\\times 4=11\\times 4=44$$(个), 所以三层一共有$$28+36+44=108$$(个). 故选:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2930
81c25d38ba2447f988dbf2b56cc1d18f
[ "2018年湖北武汉新希望杯小学高年级五年级竞赛训练题(三)第3题" ]
2
single_choice
有数组{$$1$$,$$2$$,$$3$$},{$$2$$,$$4$$,$$6$$},{$$3$$,$$6$$,$$9$$},$$\cdots \cdots $$根据规律,第$$100$$个数组的三个数的和是(~ ~ ~ ~).
[ [ { "aoVal": "A", "content": "$$600$$ " } ], [ { "aoVal": "B", "content": "$$603$$ " } ], [ { "aoVal": "C", "content": "$$606$$ " } ], [ { "aoVal": "D", "content": "$$609$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "第$$100$$个数组是{$$100$$,$$200$$,$$300$$},$$100+200+300=600$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
291
ff8080814518d52401451925eda00502
[ "2014年全国迎春杯五年级竞赛复赛第15题" ]
3
single_choice
老师把某两位数的六个不同因数分别告诉了$$A\sim F$$六个聪明诚实的同学. $$A$$和$$B$$同时说:我知道这个数是多少了. $$C$$和$$D$$同时说:听了他们的话,我也知道这个数是多少了. $$E$$:听了他们的话,我知道我的数一定比$$F$$的大. $$F$$:我拿的数的大小在$$C$$和$$D$$之间. 那么六个人拿的数之和是( ~ ~ ~ ).
[ [ { "aoVal": "A", "content": "$$141$$ " } ], [ { "aoVal": "B", "content": "$$152$$ " } ], [ { "aoVal": "C", "content": "$$171$$ " } ], [ { "aoVal": "D", "content": "$$175$$ " } ] ]
[ "拓展思维->思想->枚举思想" ]
[ "(1)这个数的因数个数肯定不低于$$6$$个(假定这个数为$$N$$,且拿到的$$6$$个数从大到小分别是$$ABCDEF$$~) (2)有两个人同时第一时间知道结果,这说明以下几个问题: 第一种情况:有一个人知道了最后的结果,这个结果是怎么知道的呢?很简单,他拿到的因数在$$50\\sim 99$$之间(也就是说$$A$$ 的$$2$$倍是$$3$$位数,所以$$A$$其实就是$$N$$) 第二种情况:有一个人拿到的不是最后结果,但是具备以下条件: 这个数的约数少于$$6$$个,比如:有人拿到$$36$$,单他不能断定$$N$$究竟是$$36$$还是$$72$$. 这个数小于$$50$$,不然这个数就只能也是$$N$$了. 这个数大于$$33$$,比如:有人拿到$$29$$,那么他不能断定$$N$$ 是$$58$$还是$$87$$;(这里有个特例是$$27$$,因为$$27\\times 2=54$$,因数个数不少于$$6$$个;$$27\\times 3=81$$,因数个数少于$$6$$个,所以如果拿到$$27$$可以判断$$N$$只能为$$54$$) 这个数还不能是是质数,不然不存在含有这个因数的两位数. 最关键的是,这两人的数是$$2$$倍关系 但是上述内容并不完全正确,需要注意还有一些``奇葩''数:$$17$$、$$19$$、$$23$$也能顺利通过第一轮. 因此,这两个人拿到的数有如下可能: ($$54$$,$$27$$)($$68$$,$$34$$)($$70$$,$$35$$)($$76$$,$$38$$)($$78$$,$$39$$)($$92$$,$$46$$)($$98$$,$$49$$) (3)为了对比清晰,我们再来把上面所有的情况的因数都列举出来: ($$54$$,$$27$$,$$18$$,$$9$$,$$6$$,$$3$$,$$2$$,$$1$$) ($$68$$,$$34$$,$$17$$,$$4$$,$$2$$,$$1$$)($$\\times$$) ($$70$$,$$35$$,$$14$$,$$10$$,$$7$$,$$5$$,$$2$$,$$1$$) ($$76$$,$$38$$,$$19$$,$$4$$,$$2$$,$$1$$)($$\\times$$) ($$78$$,$$39$$,$$26$$,$$13$$,$$6$$,$$3$$,$$2$$,$$1$$) ($$92$$,$$46$$,$$23$$,$$4$$,$$2$$,$$1$$)($$\\times$$) ($$98$$,$$49$$,$$14$$,$$7$$,$$2$$,$$1$$) 对于第一轮通过的数,我们用红色标注,所以$$N$$不能是$$68$$、$$76$$、$$92$$中的任意一个. 之后在考虑第二轮需要通过的两个数. 用紫色标注的$$6$$、$$3$$、$$2$$、$$1$$,因为重复使用,如果出现了也不能判断$$N$$是多少,所以不能作为第二轮通过的数. 用绿色标注的$$14$$和$$7$$也不能作为第二轮通过的数,这样$$N$$也不是$$98$$. 那么通过第二轮的数只有黑色的数. 所以$$N$$ 只能是$$54$$、$$70$$、$$78$$中的一个. 我们再来观察可能满足$$E$$和$$F$$所说的内容: ($$54$$,$$27$$,$$18$$,$$9$$,$$6$$,$$3$$,$$2$$,$$1$$) ($$70$$,$$35$$,$$14$$,$$10$$,$$7$$,$$5$$,$$2$$,$$1$$) ($$78$$,$$39$$,$$26$$,$$13$$,$$6$$,$$3$$,$$2$$,$$1$$) 因为$$F$$说他的数在$$C$$和$$D$$之间,我们发现上面的数据只有当$$N=70$$的时候,$$F=7$$,在$$CD$$$$(10$$和$$5)$$之间,是唯一满足条件的一种情况. 又因为$$E$$ 确定自己比$$F$$的大,那么他拿到的数一定是该组中剩余数里最大的.所以$$E$$拿到的是$$14$$($$N=70$$~). 所以$$N=70$$,六个人拿的数之和为:$$70+35+14+10+7+5=141$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
476
b80ea67c12bb4ae4bd7d761822b5ea8b
[ "2017年第16届湖北武汉创新杯五年级竞赛邀请赛训练题(一)" ]
1
single_choice
警察厅坐着的$$5$$位偷盗嫌疑人正在接受警察的盘问,其中只有一名是真正小偷,在这$$5$$人的供述中,只有$$3$$句是正确的,请问小偷是~\uline{~~~~~~~~~~}~. A说:丁是小偷; B说:我不是小偷,我是无辜的; C说:我非常肯定戊不是小偷; D说:甲在撒谎; E说:乙说的是实话.
[ [ { "aoVal": "A", "content": "$$A$$ " } ], [ { "aoVal": "B", "content": "$$B$$ " } ], [ { "aoVal": "C", "content": "$$C$$ " } ], [ { "aoVal": "D", "content": "$$D$$ " } ], [ { "aoVal": "E", "content": "$$E$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->假设型逻辑推理->真假话->找一致(同伙)" ]
[ "简化这$$5$$人的供述为: 甲:是丁; 乙:不是乙; 丙:不是戊; 丁:不是丁; 戊:不是乙. 其中乙戊的判断是一样的,可能都对或都都错,经过分析知道乙戊是正确的,那么甲丙丁三人中还有一人是正确的,依次假设推理得甲错丙错丁正确,那么丙的供述''不是戊''就是错误的,小偷是戊. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
960
cba7b6f810d64771b91a7f338967e4e8
[ "2010年五年级竞赛明心奥数挑战赛" ]
1
single_choice
因为$$2003$$是一个质数,所以$$2003$$年是一个质数年。在$$2003$$年以后的十年中还有一个质数年,这个质数年的年份是下列选项中的~\uline{~~~~~~~~}~。
[ [ { "aoVal": "A", "content": "$$2005$$ " } ], [ { "aoVal": "B", "content": "$$2007$$ " } ], [ { "aoVal": "C", "content": "$$2009$$ " } ], [ { "aoVal": "D", "content": "$$2011$$ " } ], [ { "aoVal": "E", "content": "$$2013$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->质数与合数->质数与合数判定" ]
[ "$$2011$$是质数,所以选D。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3351
72cac4c3bd424244af3f6a375eff8b94
[ "2019年第24届YMO一年级竞赛决赛第6题3分" ]
1
single_choice
十位数字和个位数字相加的和是$$12$$,这样的两位数一共有个.
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->思想->枚举思想" ]
[ "两位数的十位数字与个位数字之和为$$12$$, 而数字均为$$0\\sim 9$$,故枚举得: $$93$$,$$84$$,$$75$$,$$66$$,$$57$$,$$48$$,$$39$$共$$7$$个. 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3027
f7aef31ff44c4f63aa0a52a73727cef9
[ "2004年第2届创新杯六年级竞赛复赛第5题" ]
2
single_choice
在下面四个算式中,得数最大的是.
[ [ { "aoVal": "A", "content": "$$\\left( \\frac{1}{17}+\\frac{1}{19} \\right)\\times 20$$ " } ], [ { "aoVal": "B", "content": "$$\\left( \\frac{1}{24}+\\frac{1}{29} \\right)\\times30$$ " } ], [ { "aoVal": "C", "content": "$$\\left( \\frac{1}{31}+\\frac{1}{37} \\right)\\times40$$ " } ], [ { "aoVal": "D", "content": "$$\\left( \\frac{1}{41}+\\frac{1}{47} \\right)\\times50$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->裂项与通项归纳->分数裂项->分数裂差->两分数间接裂差" ]
[ "$$\\left( \\frac{1}{17}+\\frac{1}{19} \\right)\\times 20=(17+3)\\times\\frac{1}{17}+(19+1)\\times\\frac{1}{19}=2+\\frac{3}{17}+\\frac{1}{19}=2+\\frac{9}{51}+\\frac{3}{57}$$ $$\\left( \\frac{1}{24}+\\frac{1}{29} \\right)\\times30=(24+6)\\times\\frac{1}{24}+(29+1)\\times\\frac{1}{29}=2+\\frac{1}{4}+\\frac{1}{29}=2+\\frac{9}{36}+\\frac{3}{87}$$ $$\\left( \\frac{1}{31}+\\frac{1}{37} \\right)\\times40=(31+9)\\times\\frac{1}{31}+(37+3)\\times\\frac{1}{37}=2+\\frac{9}{31}+\\frac{3}{37}$$ $$\\left( \\frac{1}{41}+\\frac{1}{47} \\right)\\times50=(41+9)\\times \\frac{1}{41}+(47+3)\\times \\frac{1}{47}=2+ \\frac{9}{41}+ \\frac{3}{47}$$ 分子相同,分母越小,分数越大。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
392
a4796eace85240b4b0dfc9d8e2d0b497
[ "2013年华杯赛三年级竞赛决赛", "2013年华杯赛六年级竞赛决赛" ]
2
single_choice
从$$1$$,$$2$$,$$3$$,$$\cdots $$,$$7$$中选择若干个不同的数,使得其中偶数之和等于奇数之和,则符合条件的选法共有( )种。
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$7$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$9$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->组合模块最值问题->和一定型最值问题->多数之积的最值->拆分数的数目确定" ]
[ "偶数:$$2$$、$$4$$、$$6$$;奇数$$1$$、$$3$$、$$5$$、$$7$$;偶数少,所以看偶数和; 偶数和有:$$2$$(舍掉)、$$4$$、$$6$$、$$8$$、$$10$$、$$12$$; $$4$$:$$4=1+3$$,$$1$$组 $$6$$:$$6=2+4=1+5$$,$$2$$组 $$8$$:$$2+6=1+7=3+5$$,$$2$$组 $$10$$:$$4+6=3+7$$,$$1$$组 $$12$$:$$2+4+6=5+7$$,$$1$$组 所以共有$$1+2+2+1+1=7$$(组)。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
741
4d5953eb740a4e4fbf02ae88d3ccbd2b
[ "2014年希望杯五年级竞赛初赛" ]
2
single_choice
$$20140316\div 5$$的余数是( )。
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->余数问题->余数问题带余除法" ]
[ "$$20140316\\div 5=4028063\\cdots\\cdots 1$$; 答:余数是$$1$$. 故答案为:A. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1109
1ceac561ad4f44348a1769657239f7ad
[ "2015年第13届全国创新杯小学高年级五年级竞赛复赛第3题" ]
1
single_choice
三部同样的抽水机同时抽水,抽干一池水需用$$15$$小时,五部这样的抽水机抽干这一池子水需用小时.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$9$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ], [ { "aoVal": "E", "content": "$$15$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->工程问题->简单工程问题->基本工程问题", "Overseas Competition->知识点->应用题模块->工程问题" ]
[ "一台功效$$\\frac{1}{45}$$,五台需要$$9$$小时. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
814
6973a2eda3424d82b6da253b09844581
[ "2019年第23届广东世界少年奥林匹克数学竞赛五年级竞赛初赛第4题5分" ]
1
single_choice
定义$$n!=1\times 2\times 3\times \cdots \times \left( n-1 \right)\times n$$,在$$1!$$、$$2!$$、$$3!\cdots32!$$中划去一个,剩余的数的乘积是一个完全平方数,划掉的是.
[ [ { "aoVal": "A", "content": "$$14!$$ " } ], [ { "aoVal": "B", "content": "$$15!$$ " } ], [ { "aoVal": "C", "content": "$$16!$$ " } ], [ { "aoVal": "D", "content": "$$15!$$或$$16!$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->完全平方数->平方数的综合应用" ]
[ "$$1!\\times 2!\\times 3!\\times \\cdots 32!={{1}^{32}}\\times {{2}^{31}}\\times {{3}^{30}}\\times {{4}^{29}}\\times \\cdots \\times {{32}^{1}}$$, 则所有奇数均为偶次方, 偶数均为奇次方, 则$${{2}^{31}}\\times {{4}^{29}}\\times {{6}^{27}}\\times \\cdots {{32}^{1}}$$均去掉对应的最大偶数次方. 变成$$2\\times 4\\times 6\\times \\cdots \\times 32={{2}^{16}}\\times \\left( 1\\times 2\\times 3\\times \\cdots \\times 16 \\right)={{2}^{16}}\\times 16!={{2}^{16}}\\times 15!\\times16$$, 故去掉$$15!$$或$$16!$$. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
364
c41f6b0df3674fc991fbf759bc1ca242
[ "2014年世界少年奥林匹克数学竞赛六年级竞赛初赛B卷第2题5分" ]
1
single_choice
新学期开学,凯奥斯问艾迪坐在教室里的位置.艾迪神秘地说:``我们班有$$56$$人,从左向右数共$$8$$列,从前向后数共$$7$$行,每两列并成一组.由于我的个子比较高,我的位置可以用一种特殊的符号$$(3,6)$$表示 .''艾迪又说:``我的同桌前面隔一个人是薇儿 .''那么,薇儿的位置表示为~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "(2,4) " } ], [ { "aoVal": "B", "content": "(2,6) " } ], [ { "aoVal": "C", "content": "(4,4) " } ], [ { "aoVal": "D", "content": "(4,6) " } ] ]
[ "知识标签->拓展思维->组合模块->方向与坐标->坐标" ]
[ "(4,4) " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
739
5641119262844a56b6472cdc7aa3d8ba
[ "2017年全国美国数学大联盟杯小学中年级三年级竞赛初赛第37题" ]
1
single_choice
从$$1$$到$$20$$的$$20$$个整数,每个整数除以$$6$$,所得的余数的总和是多少?
[ [ { "aoVal": "A", "content": "$$48$$ " } ], [ { "aoVal": "B", "content": "$$47$$ " } ], [ { "aoVal": "C", "content": "$$46$$ " } ], [ { "aoVal": "D", "content": "$$45$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$1$ $5$$除以$$6$$的余数分别是$$1$$,$$2$$,$$3$$,$$4$$,$$5$$; $$7$ $11$$除以$$6$$的余数分别是$$1$$,$$2$$,$$3$$,$$4$$,$$5$$; $$13$ $17$$除以$$6$$的余数分别是$$1$$,$$2$$,$$3$$,$$4$$,$$5$$; $$19$$,$$20$$除以$$6$$的余数分别是$$1$$,$$2$$; 所以余数和为$$\\left(1+2+3+4+5\\right)\\times 3+3=48$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
10
37d96d620c744685be1ab31930c66bfd
[ "2003年第1届创新杯五年级竞赛复赛第9题", "2003年五年级竞赛创新杯" ]
2
single_choice
有一组自然数(数可以重复),其中包含2003,但不包含数0,这组自然数的平均数是572,如果把2003去掉,那么剩下的平均数就变为413,这组数中出现的数最大可以是( ).
[ [ { "aoVal": "A", "content": "2003 " } ], [ { "aoVal": "B", "content": "3708 " } ], [ { "aoVal": "C", "content": "3709 " } ], [ { "aoVal": "D", "content": "3717 " } ] ]
[ "拓展思维->拓展思维->组合模块->数字谜->竖式数字谜->竖式数字谜的最值" ]
[ "设这组数中共有$$n$$个数,则$$572n-2003=413\\times \\left( n-1 \\right)$$,所以$$n=10$$,去掉2003 后,九个数的和为$$572\\times 10-2003=3717$$,故九个数中的八个数为1时,另一个数的值最大,故最大的数就可以是$$3717-8=3709$$ " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1872
8e9c99e537f54151ae65931c0cf68ec8
[ "2004年六年级竞赛创新杯" ]
1
single_choice
某商场的营业额2000年和2001年连续两年平均每年比上一年上升10\%,而2002年和2003年连续两年平均每年比上一年下降10\%.那么2003年的营业额与1999年的营业额相比较,( )
[ [ { "aoVal": "A", "content": "下降了$$2 \\%$$ " } ], [ { "aoVal": "B", "content": "下降了$$1.99 \\%$$ " } ], [ { "aoVal": "C", "content": "上升了$$2 \\%$$ " } ], [ { "aoVal": "D", "content": "没有变化 " } ] ]
[ "拓展思维->拓展思维->应用题模块->分百应用题->认识单位1" ]
[ "$$\\left( 1+10 \\% \\right)\\times \\left( 1+10 \\% \\right)\\times \\left( 1-10 \\% \\right)\\times \\left( 1-10 \\% \\right)=98.01 \\%$$,下降$$1.99 \\%$$,选B " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2475
b9512ca7bc10490c80d04a262938f531
[ "2011年全国世奥赛五年级竞赛第8题" ]
1
single_choice
在循环小数$$9.617628\dot{1}$$的某一位上再添上一个循环点,使所产生的循环小数尽可能大,新的循环小数是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$9.617\\dot{6}28\\dot{1}$$ " } ], [ { "aoVal": "B", "content": "$$9.61\\dot{7}628\\dot{1}$$ " } ], [ { "aoVal": "C", "content": "$$9.61762\\dot{8}\\dot{1}$$ " } ], [ { "aoVal": "D", "content": "$$9.\\dot{6}17628\\dot{1}$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->小数->循环小数->循环小数的概念" ]
[ "无论在何处添循环节,前八位不变,为$$9.6176281$$. 从下一位开始最大即可,因此在$$8$$上方添循环点. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2154
d071d7d80b404df3882e935fceb1653d
[ "2005年第3届创新杯五年级竞赛初赛第6题", "2005年五年级竞赛创新杯" ]
2
single_choice
在12时50分,时钟的分针与时针所形成的夹角的大小为( ).
[ [ { "aoVal": "A", "content": "$${{85}^{\\circ }}$$ " } ], [ { "aoVal": "B", "content": "$${{90}^{\\circ }}$$ " } ], [ { "aoVal": "C", "content": "$${{105}^{\\circ }}$$ " } ], [ { "aoVal": "D", "content": "$${{115}^{\\circ }}$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->时钟问题->时钟上的追及问题->已知时间求角度" ]
[ "时针的速度为每分钟$${{0.5}^{\\circ }}$$,分针的速度为每分钟$${{6}^{\\circ }}$$.在12点整时,时针和分针重合,那么50分钟后时针和分针之间顺时针的路程差为$$50\\times \\left( {{6}^{\\circ }}-{{0.5}^{\\circ }} \\right)={{275}^{\\circ }}$$,即此时时针和分针的夹角为$${{360}^{\\circ }}-{{275}^{\\circ }}={{85}^{\\circ }}$$,选A. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1339
24554023339d463198a753d1251002b6
[ "2014年广东广州羊排赛六年级竞赛第6题1分" ]
1
single_choice
一个三角形的三个内角度数比为$$2:4:3$$,这个三角形是.
[ [ { "aoVal": "A", "content": "钝角三角形 " } ], [ { "aoVal": "B", "content": "锐角三角形 " } ], [ { "aoVal": "C", "content": "直角三角形 " } ], [ { "aoVal": "D", "content": "不能确定 " } ] ]
[ "拓展思维->拓展思维->应用题模块->比例应用题->按比分配" ]
[ "三角形内角和为$$180$$度,这个三角形最大的角为$$180\\times \\frac{4}{2+4+3}=80$$(度),为锐角三角形. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
160
2c34d35e6e08400b987861cf258bd011
[ "2017年第16届湖北武汉创新杯小学高年级五年级竞赛邀请赛训练题(二)" ]
1
single_choice
天气炎热,四$$\left( 1 \right)$$班的班长小明要去给全班$$23$$人(包括自己)买饮料,商店老板告诉他现在只有可乐,雪碧和王老吉三种饮料了,那么其中买得最多的饮料于少需要买(~ )瓶.
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$7$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$9$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->抽屉原理->最不利原则" ]
[ "$$23÷3=7\\ldots \\ldots 2$$,$$7+1=8$$(瓶). " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1068
0861a7b3cc2541d6a12b22d91afa656e
[ "2011年第9届全国创新杯小学高年级六年级竞赛第1题" ]
1
single_choice
某人年初买了一种股票,该股票当年下跌了$$20 \%$$,第二年应上涨(~ )$$ \%$$才能保持原值.
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$25$$ " } ], [ { "aoVal": "C", "content": "$$30$$ " } ], [ { "aoVal": "D", "content": "$$35$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->分百应用题->求分率" ]
[ "$$1\\div \\left( 1-20 \\% \\right)-1=25 \\%$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1326
f5d6ce75f0f2469399c08396f8d1e7e2
[ "2019年第23届广东世界少年奥林匹克数学竞赛二年级竞赛初赛第2题5分" ]
1
single_choice
两人共有钱$$200$$元,如果甲借给乙$$30$$元,那么甲、乙两人的钱数相等.那么甲原来有元.
[ [ { "aoVal": "A", "content": "$$100$$ " } ], [ { "aoVal": "B", "content": "$$110$$ " } ], [ { "aoVal": "C", "content": "$$120$$ " } ], [ { "aoVal": "D", "content": "$$130$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "从题干可以知道,两人共有钱$$200$$元,如果甲借给乙$$30$$元,那么甲、乙两人的钱数相等; 即此时每个人有钱:$$200\\div 2=100$$(元), 那么甲原来有:$$100+30=130$$(元), 那么乙原来有:$$100-30=70$$(元). 故选:$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1304
505af15f476d4d269f3ba1da895838c9
[ "2016年IMAS小学高年级竞赛第一轮检测试题第18题4分" ]
3
single_choice
食米分三种包装出售:$$5\operatorname{kg}$$装的,每包售价$$48$$元;$$10\operatorname{kg}$$装的,每包售价为$$92$$元;$$25\operatorname{kg}$$装的,每包售价为$$210$$元.若要使得每$$\operatorname{kg}$$食米的平均售价恰好为$$9$$元,请问至少需购买食米多少包?
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ], [ { "aoVal": "E", "content": "$$8$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->列方程解应用题->多元一次方程解应用题->小数系数方程(组)解题" ]
[ "设$$5\\text{kg}$$装的$$a$$包,$$10\\text{kg}$$装的$$b$$包,$$25\\text{kg}$$装的$$c$$包,使平均价格为$$9$$元,可列方程:$$4.8a+92b+210c=9(5a+10b+25c)$$,化简$$3a+2b=15c$$,讨论,当$$c=1$$时,有$$a=3$$,$$b=3$$;$$a=5$$,$$b=0$$;$$a=1$$,$$b=6$$,要最少包,则$$a=5$$,$$b=0$$,$$c=1$$,共$$6$$包. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2080
cb87d0a590204e9b9b264574e8b5fe63
[ "2017年第16届湖北武汉创新杯五年级竞赛邀请赛训练题(二)" ]
0
single_choice
一个数,它减去$$2$$,然后除以$$2$$,再加上$$2$$,最后乘$$2$$,得到的结果是$$2014$$.这个数原来是.
[ [ { "aoVal": "A", "content": "$$2011$$ " } ], [ { "aoVal": "B", "content": "$$2012$$ " } ], [ { "aoVal": "C", "content": "$$2013$$ " } ], [ { "aoVal": "D", "content": "$$2014$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "$$( 2014\\div 2-2 )\\times 2+2=2012$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
344
8962c5fdc79e481b9a96ae25e6a56a7e
[ "2014年第26届广东广州五羊杯六年级竞赛第3题4分" ]
2
single_choice
甲、乙、丙三人在讨论他们的数学成绩,丙给甲和乙看了他自己的数学成绩,但是甲、乙没给任何人看他俩的数学成绩.乙说:``我不是我们班的最低分'',甲补充说:``我不是最高分''.这三名学生成绩从高到低的顺序是.
[ [ { "aoVal": "A", "content": "丙乙甲 " } ], [ { "aoVal": "B", "content": "丙甲乙 " } ], [ { "aoVal": "C", "content": "乙甲丙 " } ], [ { "aoVal": "D", "content": "乙丙甲 " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->比较型逻辑推理" ]
[ "由乙说的话,得乙$$\\textgreater$$丙;由甲说的话,得丙$$\\textgreater$$甲. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1079
0f73bc2ac3f14560ba177088f6a19a45
[ "2017年河南郑州豫才杯六年级竞赛" ]
1
single_choice
某学校准备购买$$30$$个篮球,三家商店每个篮球的售价都是$$25$$元,但优惠方法不同,$$A$$店``买九赠一'',$$B$$店``打八八折'';$$C$$店``满$$100$$元减现金$$10$$元'',为节约资金,应该到店购买. A school is going to buy 30 basketballs. The price of each basketball in the three stores is 25 yuan, but the preferential methods are different. Store A "buy nine and get one free", store B "give a 20\% discount";~Store C ~"full 100 yuan minus 10 yuan in cash", in order to save money, should go to store to buy.
[ [ { "aoVal": "A", "content": "甲 " } ], [ { "aoVal": "B", "content": "乙 " } ], [ { "aoVal": "C", "content": "丙 " } ], [ { "aoVal": "D", "content": "任意一个店皆可 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "甲店:只需付$$27$$个篮球的钱即可买到$$30$$个篮球,要$$27\\times 25=675$$元; 乙店:$$30\\times 25\\times 88 \\% =660$$元; 丙店:$$25\\times 30=750$$元,减$$7\\times 10=70$$元,花费$$750-70=680$$元. 因为$$660\\textless{}675\\textless{}680$$,所以应到乙店购买. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2461
2af3fe6a13974a0e9e890b7e05dc2a6f
[ "2015年湖北武汉世奥赛六年级竞赛模拟训练题(一)第4题" ]
2
single_choice
观察下列数表: $$\frac{1}{1}$$; $$\frac{2}{1}$$,$$\frac{1}{2}$$; $$\frac{3}{1}$$,$$\frac{2}{2}$$,$$\frac{1}{3}$$; $$\frac{4}{1}$$,$$\frac{3}{2}$$,$$\frac{2}{3}$$,$$\frac{1}{4}$$; $$\cdots\cdots$$ $$\frac{2014}{2015}$$这个数位于第行第列.
[ [ { "aoVal": "A", "content": "$$2014$$,$$2015$$ " } ], [ { "aoVal": "B", "content": "$$2015$$,$$2014$$ " } ], [ { "aoVal": "C", "content": "$$4028$$,$$2015$$ " } ], [ { "aoVal": "D", "content": "$$2015$$,$$4028$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "观察发现,这些分数的分母等于它们所在的列数.每行中各分数的分子与分母的和分别相等,且这个和与$$1$$的差等于该分数所在的行数. 因为$$\\frac{2014}{2015}$$的分母是$$2015$$,且$$2014+20151=4028$$,所以这个数位于第$$4028$$行,第$$2015$$列. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
917
93d8504afaec45e5b6a9ecb5e39e5b98
[ "2017年全国美国数学大联盟杯小学高年级六年级竞赛初赛第40题5分" ]
2
single_choice
取出$$100$$至$$999$$之间所有这样的整数,这些整数的个位数、十位数、百位数各不相同,而且都不是$$0$$.这些整数的和是多少?
[ [ { "aoVal": "A", "content": "$$226800$$ " } ], [ { "aoVal": "B", "content": "$$251748$$ " } ], [ { "aoVal": "C", "content": "$$279720$$ " } ], [ { "aoVal": "D", "content": "$$282840$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "百位数字的和是$$(100+200+...+900)\\times 56=252000$$,十位和个位上的和是$$(1+2+...+9)\\times 8\\times 77=27720$$,所以总和是$$279720$$,选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2805
f673d0ae5c9643f78e31fbd2db01179d
[ "2017年河南郑州K6联赛竞赛模拟第6题", "2017年河南郑州模拟考试k6考试第6题" ]
1
single_choice
把$$20$$米长的铁丝平均截成$$5$$段,在下面的各种说法中,错误的是.
[ [ { "aoVal": "A", "content": "每段长$$4$$米 " } ], [ { "aoVal": "B", "content": "每段长度是全长的$$4$$倍 " } ], [ { "aoVal": "C", "content": "每段长度是全长的$$\\frac{1}{5}$$ " } ], [ { "aoVal": "D", "content": "两段长$$8$$米 " } ] ]
[ "知识标签->课内知识点->数的认识->认、读、写数->分数->分数的意义" ]
[ "每段长$$20\\div 5=4\\text{m}$$,两段长$$2\\times 4=8\\text{m}$$,每段长度是全长的$$\\frac{1}{5}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
554
29e48de3257a4e858d745d760b1495bd
[ "2016年北京华杯赛小学中年级竞赛复赛A卷第11题15分" ]
3
single_choice
在$$1$$到$$200$$这$$200$$个自然数中任意选数,至少要选出~\uline{~~~~~~~~~~}~个才能确保其中必有$$2$$个数的乘积等于$$238$$.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$100$$ " } ], [ { "aoVal": "E", "content": "$$198$$ " } ], [ { "aoVal": "F", "content": "$$199$$ " } ], [ { "aoVal": "G", "content": "$$235$$ " } ], [ { "aoVal": "H", "content": "$$237$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "$$238=2\\times 7\\times 17$$,如果两个小于等于$$200$$的整数的乘积为$$238$$,那么只有可能为$$2\\times 119$$、$$7\\times 34$$、$$14\\times 17$$,那么$$(2,119)$$、$$(7,34)$$、$$(14,17)$$这三组数中至少要有一组全取,至少要取出$$200-6+3+1=198$$(个). " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2826
c3d4ab061a4f408385146463218175d6
[ "2019年广东广州羊排赛六年级竞赛第8题3分" ]
1
single_choice
如果$$a=\frac{19}{27}$$,$$b=\frac{13}{21}$$,$$c=\frac{17}{25}$$,则$$a$$、$$b$$、$$c$$的大小顺序是.
[ [ { "aoVal": "A", "content": "$$a ~\\textless{} ~b ~\\textless{} ~c$$ " } ], [ { "aoVal": "B", "content": "$$a ~\\textgreater{} ~b ~\\textgreater{} ~c$$ " } ], [ { "aoVal": "C", "content": "$$b ~\\textless{} ~c ~\\textless{} ~a$$ " } ], [ { "aoVal": "D", "content": "$$b~ \\textgreater~ c ~\\textgreater{} ~a$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->比较与估算->比较大小综合->分数基准数法" ]
[ "三个分数的分子都比分母少$$8$$,$$\\frac{19}{27}=1-\\frac{8}{27}$$,$$\\frac{13}{21}=1-\\frac{8}{21}$$,$$\\frac{17}{25}=1-\\frac{8}{25}$$, 分子相同,分母越大,分数值越小,$$\\frac{8}{27} ~\\textless{} ~\\frac{8}{25} ~\\textless{} ~\\frac{8}{21}$$,所以$$\\frac{19}{27}\\textgreater\\frac{17}{25}\\textgreater\\frac{13}{21}$$,即$$a\\textgreater c\\textgreater b$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2986
9383875647aa4bdca61863d4de467d23
[ "2018年福建福州河仁杯五年级竞赛第4题4分" ]
2
single_choice
若三角形的三边长为$$a$$、$$b$$、$$c$$,且满足$$\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=\frac{1}{a+b-c}$$,则该三角形一定是.
[ [ { "aoVal": "A", "content": "直角三角形 " } ], [ { "aoVal": "B", "content": "等腰三角形 " } ], [ { "aoVal": "C", "content": "等边三角形 " } ], [ { "aoVal": "D", "content": "等腰直角三角形 " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "因为$$\\frac{1}{a}+\\frac{1}{b}-\\frac{1}{c}=\\frac{1}{a+b-c}$$ , 所以$$\\frac{1}{a}-\\frac{1}{a+b-c}=\\frac{1}{c}-\\frac{1}{b}$$ 所以$$\\frac{b-c}{a\\left( a+b-c \\right)}=\\frac{b-c}{bc}$$ , 所以$$\\left( b-c \\right)\\frac{bc-a\\left( a+b-c \\right)}{abc\\left( a+b-c \\right)}=0$$, 由于分母恒大于$$0$$, 所以$$b-c=0$$ 或 $$bc-a\\left( a+b-c \\right)=0$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde bc+ac={{a}^{2}}+ab$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\left( b+a \\right)c=a\\left( a+b \\right)$$ 所以$$b=c$$ 或$$a=c$$ , 所以这个三角形一定是等腰三角形. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1227
1a55f9974ac540a793f4ae74cf60ffe9
[ "2018年第22届广东世界少年奥林匹克数学竞赛六年级竞赛决赛第5题5分" ]
1
single_choice
小明带着一些钱去买钢笔,如果钢笔降价$$10 \%$$,则可以比原来多买$$30$$支.那么降价$$10 \%$$后,小明带的钱可以买支钢笔.
[ [ { "aoVal": "A", "content": "$$260$$ " } ], [ { "aoVal": "B", "content": "$$300$$ " } ], [ { "aoVal": "C", "content": "$$320$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "设钢笔价格为$$a$$元/支, 原来可以买$$x$$支, 则总钱数为$$ax$$, 所以有:$$ax=(1-10 \\%)a\\times (x+30)$$ $$x=270$$, 所以降价$$10 \\%$$后,可买:$$270+30=300$$(支). 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
676
24136235039c4e24a27a61919f865dd1
[ "2018年IMAS小学高年级竞赛(第一轮)第19题4分" ]
1
single_choice
已知正整数$$n$$与$$24$$的最大公因数为$$2$$,且$$n+1$$与$$24$$的最大公因数为$$3$$.请问$$n$$不能取下面哪个值?
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$14$$ " } ], [ { "aoVal": "C", "content": "$$20$$ " } ], [ { "aoVal": "D", "content": "$$38$$ " } ], [ { "aoVal": "E", "content": "$$50$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->因数与倍数->公因数与公倍数->公因数与最大公因数->两数的最大公因数" ]
[ "由题意可知,$$n$$可被$$2$$整数,但不可被$$4$$整数,只有选项$$\\text{C}$$符合; 由$$n+1$$有因数$$3$$知$$n$$被$$3$$之后的余数为$$2$$,知其余的选项均符合此条件. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3376
b215955a042543a0b05371c46e7eb8c9
[ "2019年第24届YMO二年级竞赛决赛第4题3分" ]
1
single_choice
把$$15$$个玻璃球分成数量不同的$$4$$堆,共有种不同的分法.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "根据题意可得: $$15=1+2+3+9$$;$$15=1+2+4+8$$; $$15=1+2+5+7$$;$$15=1+3+4+7$$; $$15=1+3+5+6$$;$$15=2+3+4+6$$; 一共有$$6$$种. 答:共有$$6$$种不同的分法. 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
289
ff8080814518d52401451919f1a60385
[ "2014年全国迎春杯三年级竞赛初赛第15题" ]
2
single_choice
一次考试有三道题,四个好朋友考完后互相交流了成绩.发现四人各对了$$3$$、$$2$$、$$1$$、$$0$$题.这时一个路人问:你们考的怎么样啊? 甲:``我对了两道题,而且比乙对的多,丙考的不如丁.'' 乙:``我全对了,丙全错了,甲考的不如丁.'' 丙:``我对了一道,丁对了两道,乙考的不如甲.'' 丁:``我全对了,丙考的不如我,甲考的不如乙.'' 已知大家都是对了几道题就说几句真话,那么对了$$2$$题的人是(~~~~~ ).
[ [ { "aoVal": "A", "content": "甲 " } ], [ { "aoVal": "B", "content": "乙 " } ], [ { "aoVal": "C", "content": "丙 " } ], [ { "aoVal": "D", "content": "丁 " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "全对的人不会说自己对的题少于$$3$$,故只有乙、丁可能全对.若乙全对,则排名是乙、丁、甲、丙,与丙所说的``丁对了$$2$$道''是假话相矛盾;若丁全对,则丙的后两句是假话,不可能是第二名,又由丁的``甲考得不如乙''能知道第二名是乙,故丙全错,甲只有``丙考得不如丁''是真话,排名是丁、乙、甲、丙且$$4$$人的话没有矛盾.综上,答案是B. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
778
ccbbb86cfcea4e44807f1f3eaae40b25
[ "2011年全国美国数学大联盟杯小学高年级五年级竞赛初赛第27题" ]
1
single_choice
$$12$$和$$45$$的最小公倍数是?
[ [ { "aoVal": "A", "content": "$$57$$ " } ], [ { "aoVal": "B", "content": "$$90$$ " } ], [ { "aoVal": "C", "content": "$$180$$ " } ], [ { "aoVal": "D", "content": "$$540$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "$$12=2^{2}\\times3$$ $$45=3^{2}\\times5$$ $$[12,45]=2^{2}\\times3^{2}\\times5=180$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3266
55a71b1b0f5449c4b0a61ac26a302d95
[ "2011年国奥赛竞赛决赛第6题" ]
3
single_choice
已知$$a$$、$$b$$的最小公倍数是$$60$$;$$b$$、$$c$$的最小公倍数是$$36$$;$$c$$、$$a$$的最小公倍数是$$90$$,那么满足这些条件的不同数组($$a$$,$$b$$,$$c$$)共有~\uline{~~~~~~~~~~}~个.
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ], [ { "aoVal": "E", "content": "$$9$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->枚举法综合->枚举法->有序枚举", "Overseas Competition->知识点->计数模块" ]
[ "$$60=2\\times 2\\times 3\\times 5$$,$$36=2\\times 2\\times 3\\times 3$$,$$90=2\\times 3\\times 3\\times 5$$. 因为$$36$$中不含有因数$$5$$,所以$$b$$,$$c$$中不含有因数$$5$$,则$$a$$中必含有$$1$$个$$5$$.$$a$$,$$b$$中有且只有一个能被$$3$$整除且不能被$$9$$整除. $$a$$,$$c$$不能被$$4$$整除,$$b$$可被$$4$$整除,$$c$$能被$$9$$整除. 然后枚举:①$$a=5$$,$$b=12$$,$$c=18$$.②$$a=10$$,$$b=12$$,$$c=9$$.③$$a=10$$,$$b=12$$,$$c=18$$.④$$a=15$$,$$b=4$$,$$c=18$$.⑤$$a=15$$,$$b=12$$,$$c=18$$.⑥$$a=30$$,$$b=4$$,$$c=9$$.⑦$$a=30$$,$$b=4$$,$$c=18$$.⑧$$a=30$$,$$b=12$$,$$c=9$$.⑨$$a=30$$,$$b=12$$,$$c=18$$. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1328
39edc3cb27c34661b5c62abbe665fe8b
[ "2016年新希望杯小学高年级六年级竞赛训练题(三)第4题" ]
2
single_choice
将$$1$$千克浓度为$$x$$的酒精,与$$2$$千克浓度为$$20 \% $$的酒精混合后,浓度变为$$0.6x$$,则$$x$$的值为(~ ).
[ [ { "aoVal": "A", "content": "$$50 \\% $$ " } ], [ { "aoVal": "B", "content": "$$48 \\% $$ " } ], [ { "aoVal": "C", "content": "$$45 \\% $$ " } ], [ { "aoVal": "D", "content": "$$40 \\% $$ " } ] ]
[ "拓展思维->思想->方程思想" ]
[ "$$\\frac{x\\times 1+2\\times 20 \\% }{1+2}=0.6x$$,$$x=0.5$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2009
f37c3382c00d4665ac1e61eb1897dc72
[ "2015年第13届全国创新杯五年级竞赛初赛第4题" ]
1
single_choice
小刚进阅览室看书,当天所看内容占连续$$5$$个整页,页码和为$$600$$,他下次来接着看,起始的页码是(~ ).
[ [ { "aoVal": "A", "content": "$$118$$ " } ], [ { "aoVal": "B", "content": "$$120$$ " } ], [ { "aoVal": "C", "content": "$$122$$ " } ], [ { "aoVal": "D", "content": "$$123$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "起始为$$x$$,有$$x+(x+1)+(x+2)+(x+3)+(x+4)=600$$.$$5x=590$$,$$x=118$$.下次看起始为$$118+5=123$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
595
588fc36eea9e4186937f37a9b2a0eccb
[ "2017年第16届湖北武汉创新杯小学高年级六年级竞赛邀请赛训练题(四)" ]
1
single_choice
如果$$n$$是正整数,记$$1\times 2\times 3\times \cdots \times n=n!$$,比如$$1!=1$$,$$4=1\times 2\times 3\times 4=24$$等,如果$$M=1!\times 2!\times 3!\times 4!\times 5!\times 6!\times 7!\times 8!\times 9!$$,则$$M$$的所有因数中,是完全平方数一共有(~ ~ ~ )个.
[ [ { "aoVal": "A", "content": "$$112$$ " } ], [ { "aoVal": "B", "content": "$$336$$ " } ], [ { "aoVal": "C", "content": "$$448$$ " } ], [ { "aoVal": "D", "content": "$$672$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->分解质因数->分解质因数(式)" ]
[ "将$$M$$分解质因数后,$$M={{2}^{31}}\\times {{3}^{13}}\\times {{5}^{5}}\\times {{7}^{3}}$$,因为完全平方数中质因数成对出现,按乘法原理,其中完全平方数的因数可以搭配出: 一共有:$$16\\times 7\\times 3\\times 2=672$$(个). 质因数$$2$$可以取$$0$$、$$2$$、$$4$$、$$6$$、$$\\ldots \\ldots $$、$$30$$一共$$16$$种,同理质因数$$3$$、$$5$$、$$7$$依次有$$7$$、$$3$$、$$2$$种选择法.选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2148
13e3bfbcb6ad41c3b6d5c05c2c1e9552
[ "2020年第1届广东深圳超常思维竞赛四年级竞赛初赛第13题4分" ]
1
single_choice
摩托车骑手甲和自行车骑手乙同时由$$A$$地去$$B$$地.走过全程的$$\frac{1}{3}$$时,乙停下来休息,当他休息完准备继续出发时,发现甲距$$B$$地还有全程的 $$\frac{1}{3}$$.甲到达$$B$$地后一刻也不停留,马上向$$A$$地返回.究竟是甲先到达$$A$$地,还是乙先到达$$B$$地,以下正确的说法是.
[ [ { "aoVal": "A", "content": "谁先到取决于两人的速度 " } ], [ { "aoVal": "B", "content": "谁先到取决于$$A$$,$$B$$之间的距离 " } ], [ { "aoVal": "C", "content": "两人同时到达 " } ], [ { "aoVal": "D", "content": "甲先到$$A$$地 " } ], [ { "aoVal": "E", "content": "乙先到$$B$$地 " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "乙先到达$$B$$地,选$$\\text{E}$$. 这是因为乙在行完全程的$$\\frac{1}{3}$$时停下来休息,而当他休息后离开时,发现甲距$$B$$地还有全程的$$\\frac{1}{3}$$,这时甲已行驶了全程的$$\\frac{2}{3}$$.也就是说,乙走完全程的$$\\frac{1}{3}$$比甲走完全程的$$\\frac{2}{3}$$要快, 因为甲行驶全程的$$\\frac{2}{3}$$所花的时间是乙行驶全程$$\\frac{1}{3}$$所花的时间再加上乙停下来休息的时间.接下来乙将继续向前行驶的路程是全程的$$\\frac{2}{3}$$,而甲则要行驶全程的$$\\frac{1}{3}+\\frac{3}{3}=\\frac{4}{3}$$.由于乙行驶全程的$$\\frac{1}{3}$$比甲行驶全程的$$\\frac{2}{3}$$快一些,那么乙行驶全程的$$\\frac{2}{3}$$就比甲行驶全程的$$\\frac{4}{3}$$要快一些.故选$$\\text{E}$$. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1398
632c47cdf0f048b78c8a43db775249d2
[ "2018年四川成都锦江区四川师范大学附属第一实验中学小升初(五)第5~0题3分", "2014年全国迎春杯四年级竞赛初赛第5题", "2019年四川成都锦江区四川师范大学附属第一实验中学小升初(八)第6题3分" ]
2
single_choice
皮皮去动物园参观,动物园的饲养员把一堆桃子分给若干只猴子,如果每只猴子分$$6$$个,剩$$57$$个桃子;如果每只猴子分$$9$$个,就有$$5$$只猴子一个也分不到,还有一只猴子只分到$$3$$个.那么,有个桃子.
[ [ { "aoVal": "A", "content": "$$216$$ " } ], [ { "aoVal": "B", "content": "$$324$$ " } ], [ { "aoVal": "C", "content": "$$273$$ " } ], [ { "aoVal": "D", "content": "$$301$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "每只猴子多分了$$3$$个,分了$$5\\times 9+(9-3)+57=108$$ (个),那么共$$108\\div 3=36$$(只)猴子.共$$36\\times6+57=273$$(个)桃子. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2868
80b230d06a78427ab826aa6c4f43c0e7
[ "2020年希望杯二年级竞赛模拟第29题" ]
1
single_choice
计算:$$79-67+121-33=$$~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$100$$ " } ], [ { "aoVal": "B", "content": "$$200$$ " } ], [ { "aoVal": "C", "content": "$$300$$ " } ], [ { "aoVal": "D", "content": "$$400$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数加减->整数加减巧算之凑整法->加减法凑整综合", "Overseas Competition->知识点->应用题模块->加减法应用" ]
[ "$$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde79-67+121-33$$ $$=79+121-\\left( 67+33 \\right)$$ $$=200-100$$ $$=100$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3022
b7f83fc9ea96422aa39cd1ae5c8476a7
[ "2019年第23届广东世界少年奥林匹克数学竞赛三年级竞赛初赛第10题5分" ]
1
single_choice
已知$$\triangle +\triangle =\bigcirc +\bigcirc +\bigcirc $$,$$\bigcirc +\bigcirc +\bigcirc =\square +\square +\square $$,$$\bigcirc +\square +\triangle +\triangle =100$$,则$$\triangle =$$.
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$25$$ " } ], [ { "aoVal": "C", "content": "$$30$$ " } ], [ { "aoVal": "D", "content": "$$36$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->方程基础->等量代换->不可直接计算的算式代换" ]
[ "因为$$\\triangle +\\triangle =\\bigcirc +\\bigcirc +\\bigcirc $$即$$2\\triangle =3\\bigcirc $$; $$\\bigcirc +\\bigcirc +\\bigcirc =\\square +\\square +\\square $$即$$3\\bigcirc =3\\square $$,则$$\\bigcirc =\\square $$; $$\\bigcirc +\\square +\\triangle +\\triangle =\\bigcirc +\\bigcirc +3\\bigcirc =5\\bigcirc =100$$, 所以$$\\bigcirc =20$$,则$$\\square =20$$,$$\\triangle =30$$. 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2295
9799b1ae43db4f2da1f2c51e8ca13eae
[ "2003年第1届创新杯五年级竞赛复赛第6题", "2003年五年级竞赛创新杯" ]
1
single_choice
一艘轮船从甲港开往乙港,由于顺水,每小时可以航行28千米,3小时到达,这艘轮船从乙港返回甲港时,由于逆水,每小时只能航行21千米.这艘轮船往返一次每小时的平均速度是( ).
[ [ { "aoVal": "A", "content": "12千米 " } ], [ { "aoVal": "B", "content": "24千米 " } ], [ { "aoVal": "C", "content": "24.5千米 " } ], [ { "aoVal": "D", "content": "25千米 " } ] ]
[ "拓展思维->拓展思维->行程模块->直线型行程问题->路程速度时间->平均速度->公式法" ]
[ "甲乙两港之间的距离为:$$28\\times 3=84$$千米,从乙返回甲逆水所用的时间为$$84\\div 21=4$$小时,往返一次的平均速度为:$$84\\times 2\\div \\left( 3+4 \\right)=24$$千米/小时 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2266
a8883f7f3f7b451297012ec44d8440b6
[ "2015年第11届全国新希望杯小学高年级六年级竞赛复赛第2题" ]
1
single_choice
小宇的手表每小时慢$$3$$分钟,如果他在早晨$$6$$:$$30$$将手表与准确时间对准,那么当天小宇手表显示$$12$$:$$50$$的时候,准确时间是.
[ [ { "aoVal": "A", "content": "$$13$$:$$00$$ " } ], [ { "aoVal": "B", "content": "$$13$$:$$09$$ " } ], [ { "aoVal": "C", "content": "$$13$$:$$10$$ " } ], [ { "aoVal": "D", "content": "$$13$$:$$15$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->时钟问题->坏钟问题" ]
[ "手表走$$57$$分钟,正常钟走$$60$$分钟,现在手表走$$6$$小时$$20$$分钟,为$$380$$分钟,那么正常钟应该走$$380\\div 57\\times 60=400$$.为$$6$$小时$$40$$分,此时为$$13$$:$$10$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2001
b885fcdf3aa144f6b4bab55ec295920a
[ "2020年春蕾杯六年级竞赛第9题2分", "2021年春蕾杯六年级竞赛第4题2分" ]
1
single_choice
一杯$$100$$克盐水,盐和水的比是$$1:4$$,商家为了降低成本,往里面加了水,现在盐和盐水的比为$$1:10$$.加了~\uline{~~~~~~~~~~}~克的水.
[ [ { "aoVal": "A", "content": "$$25$$ " } ], [ { "aoVal": "B", "content": "$$100$$ " } ], [ { "aoVal": "C", "content": "$$40$$ " } ], [ { "aoVal": "D", "content": "$$90$$ " } ], [ { "aoVal": "E", "content": "以上都不对 " } ] ]
[ "拓展思维->拓展思维->应用题模块->比例应用题->单量不变" ]
[ "$$100$$克盐水,盐比水为$$1:4$$,则盐的含量为:$$100\\times \\frac{1}{5} =20$$ (克). 加水后,盐的含量不变,而盐比盐水为$$1:10$$,则盐水的总质量为$$20\\times 10=200$$(克),增加的水为:$$200-100=100$$(克). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
389
73adad28be26461199da819b83eb91b8
[ "2017年第16届湖北武汉创新杯五年级竞赛邀请赛训练题(三)" ]
2
single_choice
口袋中有红、黑、白、黄四种球,个数分别为$$7$$,$$9$$,$$11$$,$$13$$个,它们的外形和重量都一样,至少摸出(~ )个球才能保证有$$9$$个颜色相同的球.
[ [ { "aoVal": "A", "content": "$$28$$ " } ], [ { "aoVal": "B", "content": "$$29$$ " } ], [ { "aoVal": "C", "content": "$$32$$ " } ], [ { "aoVal": "D", "content": "$$33$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->抽屉原理->简单抽屉原理" ]
[ "从最倒霉的情况着手,把红色取完也到不了$$9$$个同色,所以先把红色取完.然后最倒霉是另外三种颜色每种取$$8$$个,最后加$$1$$,得到最不利情况$$7+8\\times 3+1=32$$(个). " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2972
a52bc95987e042ab8d8d75968cc70464
[ "2004年六年级竞赛创新杯" ]
1
single_choice
古代埃及时,人们最喜欢的是分子为$$1$$的分数,如$$\frac{1}{2}$$,$$\frac{1}{3}$$,$$\frac{1}{4}$$,$$\cdots $$,$$\frac{1}{n}$$等,我们不妨称这些分数为单位分数,其他的分数,只有它能写成若干个不同的单位分数之和时,人们才承认它是分数,例如,由于$$\frac{3}{4}=\frac{1}{2}+\frac{1}{4}$$,所以他们承认$$\frac{3}{4}$$是分数。如果当时只有四个单位分数:$$\frac{1}{2}$$,$$\frac{1}{3}$$,$$\frac{1}{4}$$,$$\frac{1}{5}$$,那么下列四个分数中,不能承认的分数是( )
[ [ { "aoVal": "A", "content": "$$\\frac{5}{6}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{7}{12}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{9}{20}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{9}{10}$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->裂项与通项归纳->分数裂项->分数裂和之基础" ]
[ "选项A的$$\\frac{5}{6}=\\frac{1}{2}+\\frac{1}{3}$$,选项B的$$\\frac{7}{12}=\\frac{1}{3}+\\frac{1}{4}$$,选项C的$$\\frac{9}{20}=\\frac{1}{5}+\\frac{1}{4}$$,选D。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1977
d35eaeeb6e4740639ca9d2383b393d9a
[ "2018年第22届广东世界少年奥林匹克数学竞赛三年级竞赛初赛第4题6分" ]
1
single_choice
有一列数:$$3$$,$$1$$,$$2$$,$$3$$,$$1$$,$$2$$,$$\cdots \cdots $$那么第$$53$$个数是.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$2$$ " } ] ]
[ "拓展思维->能力->归纳总结->归纳推理" ]
[ "这列数按照``$$3$$,$$1$$,$$2$$''的周期排列,则,$$53\\div 3=17$$(组)$$\\cdots \\cdots 2$$(个), 所以第$$53$$个数位这个周期的第$$2$$个数,即为$$1$$. 故选择$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2605
24d29e37cd4f45c6857a6eca1d23d368
[ "2020年北京迎春杯六年级竞赛模拟初赛第1题7分" ]
2
single_choice
计算:$$\left( 7\frac{4}{25}+8.6 \right)\div \left[ \left( 4\frac{5}{7}-0.005\times 900 \right)\div \frac{6}{7} \right]=$$~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$63.04$$ " } ], [ { "aoVal": "B", "content": "$$634$$ " } ], [ { "aoVal": "C", "content": "$$620$$ " } ], [ { "aoVal": "D", "content": "$$6304$$ " } ] ]
[ "知识标签->数学思想->转化与化归的思想" ]
[ "$$\\left( 7\\frac{4}{25}+8.6 \\right)\\div \\left[ \\left( 4\\frac{5}{7}-0.005\\times 900 \\right)\\div \\frac{6}{7} \\right]$$ $$=\\left( 7.16+8.6 \\right)\\div \\left[ \\left( 4\\frac{5}{7}-4.5 \\right)\\div \\frac{6}{7} \\right]$$ $$=15.76\\div \\left( \\frac{3}{14}\\times \\frac{7}{6} \\right)$$ $$=15.76\\div \\frac{1}{4}$$ $$=15.76\\times 4$$ $$=63.04$$ 故答案为:$$63.04$$. " ]
A