dataset_name
stringclasses
4 values
dataset_version
timestamp[s]
qid
stringlengths
1
5
queId
stringlengths
32
32
competition_source_list
sequence
difficulty
stringclasses
5 values
qtype
stringclasses
1 value
problem
stringlengths
6
1.51k
answer_option_list
list
knowledge_point_routes
sequence
answer_analysis
sequence
answer_value
stringclasses
7 values
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
769
ff8080814518d52401451925caa804fc
[ "2014年全国迎春杯五年级竞赛初赛第12题" ]
2
single_choice
今天是$$2013$$年$$12$$月$$21$$日,七位数$$\overline{ABCDEFG}$$恰好满足:前五位数字组成的五位数$$\overline{ABCDE}$$是$$2013$$的倍数,后五位数字组成的五位数$$\overline{CDEFG}$$是$$1221$$的倍数.那么四位数$$\overline{ABFG}$$ 的最小值是(~~~~~~ ).
[ [ { "aoVal": "A", "content": "$$1034$$ " } ], [ { "aoVal": "B", "content": "$$2021$$ " } ], [ { "aoVal": "C", "content": "$$2815$$ " } ], [ { "aoVal": "D", "content": "$$3036$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "要求$$\\overline{ABFG}$$最小也就是要求$$\\overline{ABCDE}$$尽量小,$$\\overline{ABCDE}$$是$$2013$$的倍数, 把$$\\overline{ABCDE}$$看成$$\\overline{AB}\\left\\textbar{} \\overline{CDE} \\right.$$,则$$\\overline{CDE}$$是$$13$$的倍数,而$$\\overline{CDEFG}$$是$$1221$$的倍数, 把$$\\overline{CDEFG}$$看成$$\\overline{CDE}\\left\\textbar\\overline{FG} \\right.$$,从$$1$$倍、$$2$$倍、\\ldots\\ldots 变化的话,前段加$$12$$,后段加$$21$$, 则每$$5$$次,$$\\overline{FG}$$向$$\\overline{CDE}$$进$$1$$, $$12\\times n+1\\times \\left[ \\frac{n}{5} \\right]$$ 是$$13$$的倍数, $$12\\times n+1\\times \\left[ \\frac{n}{5} \\right]=13n-n+\\left[ \\frac{n}{5} \\right]$$, 不难看出$$n$$最小得$$16$$, $$1221\\times16=19536$$,$$195\\div 13=15$$,$$2013\\times 15=30195$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1428
55cc97d210094ea784b168a119f92ec1
[ "2019年第23届广东世界少年奥林匹克数学竞赛二年级竞赛初赛第3题5分" ]
1
single_choice
把一根木料截成$$4$$段用$$12$$分钟.照这样的速度,如果把同样的木料截成$$8$$段,要用分钟.
[ [ { "aoVal": "A", "content": "$$24$$ " } ], [ { "aoVal": "B", "content": "$$26$$ " } ], [ { "aoVal": "C", "content": "$$28$$ " } ], [ { "aoVal": "D", "content": "$$30$$ " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "从题干可以知道,把一根木料截成$$4$$段用$$12$$分钟; 我们要知道,锯一次可以把一根木料截成$$2$$段;锯二次可以把一根木料截成$$3$$段; 所以把一根木料截成$$4$$段需要锯三次,那么每次用时:$$12\\div3=4$$(分钟); 照这样的速度,如果把同样的木料截成$$8$$段,即需要锯$$8-1=7$$(次); 一共用时:$$7\\times4=28$$(分钟);所以选择$$\\text{C}$$选项. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2944
bb9158cadac44c9b97aaa7eafeab1d50
[ "2017年第17届湖北武汉世奥赛五年级竞赛决赛第7题" ]
2
single_choice
``黑洞''原指非常奇怪的天体,它的体积小,密度大,吸引力强,任何物体到了它那里都别想再出来.数字中也有类似的``黑洞'',将自然数经过某种数学运算之后陷入了一种循环的境况.例如,任选$$3$$个不同的数字,按从大到小的顺序排成一个数,再按从小到大的顺序排成一个数,用大数减去小数(如$$1$$,$$2$$,$$0$$,就用$$210-12=198$$),用所得结果的三位数重复上述过程,最后陷入的``数字黑洞''是(~ ~ ).
[ [ { "aoVal": "A", "content": "$$123$$ " } ], [ { "aoVal": "B", "content": "$$495$$ " } ], [ { "aoVal": "C", "content": "$$594$$ " } ], [ { "aoVal": "D", "content": "$$954$$ " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "$$123$$、$$198$$、$$792$$、$$693$$、$$594$$、$$495$$、$$495$$、$$495$$,可以发现选项的$$4$$个数字都会陷入$$495$$的数字黑洞,所以数字黑洞是$$495$$.故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
126
2b95568bb171467dacd1b8542d723b59
[ "2016年第14届全国创新杯小学高年级五年级竞赛复赛第7题" ]
2
single_choice
一个盒子里装有标号为$$1 \tilde{ } 24$$的$$24$$张卡片,要从盒子中任意抽取卡片,至少要抽出(~ )张卡片,才能保证抽出的卡片标号之差为$$4$$,(大标号减去小标号,卡片$$9$$只看作$$9$$,不能看成$$6$$只看作$$6$$,不能看成$$9$$).
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$13$$ " } ], [ { "aoVal": "C", "content": "$$14$$ " } ], [ { "aoVal": "D", "content": "$$15$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "根据最不利原则,刚开始可以抽到$$1$$,$$2$$,$$3$$,$$4$$;$$9$$,$$10$$,$$11$$,$$12$$;$$17$$,$$18$$,$$19$$,$$20$$;此时一共抽了$$12$$张,如果下一张不管抽到谁,必然会两个数相差$$4$$,则至少要$$13$$张. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1431
ff47a9f34a4d43ebb4aa769e75512540
[ "2004年第2届创新杯六年级竞赛初赛第2题", "2004年六年级竞赛创新杯" ]
0
single_choice
把$$100$$千克的盐溶于$$1$$吨的水中,盐与盐水的质量之比是( )。
[ [ { "aoVal": "A", "content": "$$\\frac{1}{9}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{1}{10}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{11}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{1}{12}$$ " } ] ]
[ "课内体系->知识点->应用题->比例应用题", "拓展思维->拓展思维->应用题模块->浓度问题->浓度基本题型->已知溶质溶液求浓度" ]
[ "盐的质量为$$100$$千克,盐水的质量为盐与水的质量之和,为$$100$$千克$$+1$$吨$$=100$$千克$$+1000$$千克$$=1100$$(千克),所以盐与盐水的质量比为$$100:1100=1:11$$,选C。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1720
df781301f134484db994adfdedbc7e08
[ "2013年IMAS小学中年级竞赛第一轮检测试题第12题4分" ]
3
single_choice
四位小朋友共有课外读物$$24$$本,甲给了乙$$3$$本,乙给了丙$$4$$本,丙给了丁$$5$$本,丁给了甲$$6$$本,这时他们$$4$$人课外读物的本数都相同.请问他们之中原来课外读物最少的人有多少本?
[ [ { "aoVal": "A", "content": "$$57$$ " } ], [ { "aoVal": "B", "content": "$$58$$ " } ], [ { "aoVal": "C", "content": "$$59$$ " } ], [ { "aoVal": "D", "content": "$$60$$ " } ], [ { "aoVal": "E", "content": "$$61$$ " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "可知这四位小朋友共有$$240$$本课外读物,所以当他们的书都相等时,每人各有$$24\\div 4=6$$(本). 而题意可知此时甲的书多了$$6-3=3$$(本)、乙的书少了$$4-3=1$$(本)、丙的书少了$$5-4=1$$(本)、丁的书少了$$6-5=1$$(本),因此甲原有$$57$$本书,而乙、丙、丁各原有$$61$$本书.故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1819
a925c323d54e4a018507e845a6074a50
[ "2016年全国华夏杯小学低年级一年级竞赛初赛香港賽區第9题5分" ]
1
single_choice
参考附图,观察图中规律,从左至右数,第$$13$$个图形是甚麽? $$\blacksquare$$、$$\blacktriangle$$、$$\bigstar$$、$$\blacksquare$$、$$\blacktriangle$$、$$\bigstar$$、$$\blacksquare$$、$$\blacktriangle$$、$$\bigstar$$、$$\cdots$$
[ [ { "aoVal": "A", "content": "$$\\blacksquare$$ " } ], [ { "aoVal": "B", "content": "$$\\blacktriangle$$ " } ], [ { "aoVal": "C", "content": "$$\\bigstar$$ " } ], [ { "aoVal": "D", "content": "无法确定 " } ] ]
[ "知识标签->数学思想->对应思想" ]
[ "根據規律,「$$\\blacksquare$$、$$\\blacktriangle$$、$$\\bigstar$$」為一個週期 他的順序是: $$\\blacksquare$$、$$\\blacktriangle$$、$$\\bigstar$$、$$\\blacksquare$$、$$\\blacktriangle$$、$$\\bigstar$$、$$\\blacksquare$$、$$\\blacktriangle$$、$$\\bigstar$$、$$\\blacksquare$$、$$\\blacktriangle$$、$$\\bigstar$$、$$\\blacksquare$$ 故答案為:$$\\blacksquare$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
919
e088c6efe05548f0ac5dc3b5e2f6ffe2
[ "2016年IMAS小学高年级竞赛第二轮检测试题第14题20分" ]
3
single_choice
已知$$n$$,$$k$$为正整数使得$${{n}^{2}}\textless{}4k\textless{}{{n}^{2}}+\frac{2016}{{{n}^{2}}}$$,请问$$n$$最大可能值是多少?
[ [ { "aoVal": "A", "content": "请将该小题的答案写在答题卡的指定答题区域,考试结束后上传至``本讲巩固'' " } ] ]
[ "知识标签->拓展思维->组合模块->组合模块最值问题->枚举型最值问题" ]
[ "该题为解答题,请将该小题的答案写在答题卡的指定答题区域,考试结束后上传至``本讲巩固'' " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
368
8545e9e6ba8541fd815a0f4a2a50cede
[ "2013年河南郑州中原网杯六年级竞赛初赛" ]
2
single_choice
甲、乙、丙、丁$$4$$人坐在$$1$$、$$2$$、$$3$$、$$4$$号椅子上,有人说:乙坐在丙旁边,甲坐在乙、丙中间,乙没有坐在$$3$$号椅子上.已知此人说的都是错的,则丁坐在(~ )号椅子上.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->条件型逻辑推理->连线法" ]
[ "首先,``乙没有坐在$$3$$号椅子上''是错的,就可以判断出乙在$$3$$号椅子上;再看,``乙坐在丙旁边''是错的,可以判断出丙不在$$2$$,$$4$$号椅子上,所以在$$1$$号椅子;最后,``甲坐在乙、丙中间''是错的,可以判断出甲在$$4$$号,故得出丁在$$2$$号椅子上. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1121
4ad1dd1cb29444d7a57081a28242cb2b
[ "2015年湖北武汉世奥赛五年级竞赛模拟训练题(三)第8题" ]
3
single_choice
刘老师买了一些苹果和梨,其中梨的数量是苹果的$$2$$倍,如果每名小朋友分$$2$$个苹果和$$3$$个梨,则苹果正好分完,而梨剩余$$23$$个,那么小朋友一共有~\uline{~~~~~~~~~~}~名.
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$17$$ " } ], [ { "aoVal": "C", "content": "$$23$$ " } ], [ { "aoVal": "D", "content": "$$25$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->鸡兔同笼问题->假设法解鸡兔同笼->基本型->变型题" ]
[ "假设按照$$2$$个苹果和$$4$$个梨进行分配,当苹果分完时,梨也正好分完,但实际梨还剩余$$23$$个,这是因为每名小朋友实际比假设少分$$43=1$$(个)梨,所以小朋友的人数为$$23\\div 1=23$$(人). " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
490
e1212d6044bb46d59d9e510da3586f44
[ "2017年全国美国数学大联盟杯五年级竞赛初赛第40题" ]
1
single_choice
汤姆建了两个塔.塔$$A$$发射$$5$$次能量波需要正好$$5$$秒.塔$$B$$发射$$10$$次能量波需要正好$$10$$秒.能量波是间隔发送的,并且任何两个连续的能量波之间的时间间隔是相同的.假设塔$$A$$发射$$12$$次能量波需要$${t}_{1}$$秒,假设塔$$B$$发射$$12$$次能量波需要$${t}_{2}$$秒.那么下面哪个判断是正确的?(~ ~)
[ [ { "aoVal": "A", "content": "$${t}_{1}\\textless{t}_{2}$$ " } ], [ { "aoVal": "B", "content": "$${t}_{1}={t}_{2}$$ " } ], [ { "aoVal": "C", "content": "$${t}_{1}\\textgreater{t}_{2}$$ " } ], [ { "aoVal": "D", "content": "无法判断 " } ] ]
[ "拓展思维->拓展思维->组合模块->时间问题->时间计算" ]
[ "两个塔发射每一个能量波的时间是相同的,但是他们发送能量波的间隔并不相同.塔$$A$$发射$$5$$次能量波需要正好$$5$$秒,即是$$5$$次发送能量波的时间加上$$4$$次塔$$A$$的发射时间间隔,塔$$B$$发射$$10$$次能量波需要正好$$10$$秒,即是$$10$$次发送能量波的时间加上$$9$$次塔$$B$$的发射时间间隔,而$$10$$秒的时间等于$$5$$次发送能量波的时间加上$$4$$次塔$$A$$的发射时间间隔的两倍即$$10$$次发送能量波的时间加上$$8$$次塔$$A$$的发射时间间隔,故塔$$A$$的发射时间间隔大于塔$$B$$的发射时间间隔.它们发射$$12$$次能量波的时间均为$$12$$次发射能量波的时间加上各自的$$11$$次的发射时间间隔,由于塔$$A$$的发射时间间隔大于塔$$B$$的发射时间间隔,故$${t}_{1}\\textgreater{t}_{2}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1387
5e7ff52da02943c38d1cf8af10c91f8e
[ "2017年河南郑州豫才杯六年级竞赛决赛4分" ]
1
single_choice
六一儿童节用彩色小灯泡布置教室,按``一蓝、三红、二黄、二绿''的规律连接起来,第$$99$$个小灯泡是(~ )色.
[ [ { "aoVal": "A", "content": "红 " } ], [ { "aoVal": "B", "content": "黄 " } ], [ { "aoVal": "C", "content": "绿 " } ], [ { "aoVal": "D", "content": "蓝 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$1+3+2+2=8$$(个)灯泡一个循环周期,$$99\\div 8=12$$(组)$$\\cdot \\cdot \\cdot 3$$(个),所以第$$99$$个小灯泡是红色. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3364
dfa2d6305a984fb68c5e1f1702d6c723
[ "2018年第21届世界少年奥林匹克数学竞赛四年级竞赛复赛(中国区)第4题5分" ]
1
single_choice
在$$1\sim 50$$各数中,数字$$4$$出现了次.
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$12$$ " } ], [ { "aoVal": "C", "content": "$$15$$ " } ] ]
[ "拓展思维->能力->推理推导->言语逻辑推理" ]
[ "在$$1\\sim 39$$里,有$$4$$个数字$$4$$,分别是$$4$$、$$14$$、$$24$$、$$34$$, 在$$40$$到$$50$$中,有十个数字$$4$$,分别是$$40$$、$$41$$、$$42$$、$$43$$、$$44$$、$$45$$、$$46$$、$$47$$、$$48$$、$$49$$, 一共出现了$$15$$次. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2627
29808b359ac64ef5960a3a9f5a69d46a
[ "2019年广东广州羊排赛六年级竞赛第6题3分" ]
0
single_choice
甲、乙都是非零的自然数,已知甲的$$\frac{2}{3}$$等于乙的$$\frac{6}{7}$$,则甲$$:$$乙$$=$$.
[ [ { "aoVal": "A", "content": "$$7:9$$ " } ], [ { "aoVal": "B", "content": "$$9:7$$ " } ], [ { "aoVal": "C", "content": "$$1:7$$ " } ], [ { "aoVal": "D", "content": "$$7:1$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "根据题意分析可知,求一个数的几分之几,用乘法所以甲乙两数之间的关系式为: 甲$$\\times \\frac{2}{3}=$$乙$$\\times \\frac{6}{7}$$, 则甲$$:$$乙$$=\\frac{6}{7}:\\frac{2}{3}$$ $$=\\frac{6}{7}\\times \\frac{3}{2}$$ $$=\\frac{9}{7}$$ $$=9:7$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
200
24d76b5a3e204121a1db0bc4859bec5d
[ "其它改编题", "2017年全国华杯赛小学中年级竞赛初赛模拟第5题" ]
2
single_choice
从$$1$$至$$11$$这$$11$$个自然数中至少选出~\uline{~~~~~~~~~~}~个不同的数,才能保证其中一定有两个数的和为$$12$$?
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "把和为$$12$$的两个数分成一组,这样就把这$$11$$个数分成$$6$$组:$$(1,11)$$,$$\\left( 2,10 \\right)$$,$$\\left( 3,9 \\right)$$,$$(4,8)$$,$$(5,7)$$,$$(6)$$.要保证一定有两个数的和为$$12$$,就要保证至少有两个数属于同一组. 根据最不利原则,如果我们从$$6$$组中各取一个数,则取出的这$$6$$个数中,没有两个数的和是$$12$$,因此再选一个数,一定会与前面的某数在同一组,即和为$$12$$.本题的答案就是至少选出$$7$$个不同的数. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1587
a35492cd5d2e45b0a611bb80f0197ee8
[ "2020年第23届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第8题3分" ]
2
single_choice
$$10 $$年前父亲的年龄是儿子的$$7$$倍,$$15$$年后父亲的年龄是儿子的$$2$$倍,今年父亲的年龄是儿子的倍。
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$2.5$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "Overseas Competition->知识点->应用题模块->列方程解应用题", "拓展思维->拓展思维->应用题模块->列方程解应用题->一元一次方程解应用题->方程法解倍数问题" ]
[ "设$$10$$年前儿子的年龄是$$x$$岁,那么父亲的年龄是$$7x$$; 根据题意可得: $$7x+10+15=\\left( x+10+15 \\right)\\times 2$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde7x+25=2x+50$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde5x=25$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde x=5$$ 现在儿子的年龄是:$$x+10=5+10=15$$(岁) 父亲的年龄是:$$7x+10=7\\times 5+10=45$$(岁) $$45\\div 15=3$$倍 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2459
193bc2e64e404efb9789e0843ad5a951
[ "2015年第27届广东广州五羊杯小学高年级竞赛第1题4分" ]
1
single_choice
将$$1$$至$$2015$$个连续自然数分别加上$$0.1$$,$$0.2$$、$$0.3$$、$$\cdots $$、$$201.4$$,$$201.5$$,得到$$2015$$个新数.那么这$$2015$$个新数的平均数是.
[ [ { "aoVal": "A", "content": "$$1108.8$$ " } ], [ { "aoVal": "B", "content": "$$1008.8$$ " } ], [ { "aoVal": "C", "content": "$$1018.8$$ " } ], [ { "aoVal": "D", "content": "$$1118.8$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->综合题->综合题普通型" ]
[ "$$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\frac{1}{2}\\times \\left( 1+2015+0.1+201.5 \\right)$$ $$=1008+100.8$$ $$=1108.8$$, 本题主要考察等差数列、平均数的概念及小数的基本计算方法和简单应用. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3331
4e77459d60fb444f80a66853afd08aaf
[ "2014年全国创新杯小学高年级五年级竞赛5分" ]
1
single_choice
国际数学奥林匹克每天考$$3$$道题,每题的评分是$$0$$,$$1$$,$$2$$,$$3$$,$$4$$,$$5$$,$$6$$或$$7$$.有一群学生每人得分的乘积都是$$36$$,而且任意两人各题得分不完全相同,那么这群学生最多有人.
[ [ { "aoVal": "A", "content": "$$16$$ " } ], [ { "aoVal": "B", "content": "$$14$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$10$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->枚举法综合->整数分拆->整数拆分应用->乘法拆数(应用)" ]
[ "$$36=2\\times 3\\times 6$$,$$\\text{A}_{3}^{3}=6$$,有$$6$$种 $$36=3\\times 3\\times 4$$,有$$3$$种 $$36=1\\times 6\\times 6$$,有$$3$$种 共$$6+3+3=12$$种不同的得分,最多有$$12$$人. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1699
65369155e75c4b2ba35360e38bddbf17
[ "2017年河南郑州豫才杯小学高年级六年级竞赛" ]
1
single_choice
小红每$$7$$天值日一次,小梅每$$9$$天值日一次,$$4$$月$$5$$日这一天两人都是值日生,则下次两人一起值日是(~ ~ ~ ).
[ [ { "aoVal": "A", "content": "$$6$$月$$5$$日 " } ], [ { "aoVal": "B", "content": "$$6$$月$$6$$日 " } ], [ { "aoVal": "C", "content": "$$6$$月$$7$$日 " } ], [ { "aoVal": "D", "content": "$$6$$月$$8$$日 " } ] ]
[ "拓展思维->能力->数感认知->数学概念理解(数)" ]
[ "再过$$\\left[ 7,9 \\right]=63$$天两人又一起值日,$$4$$月有$$30$$天,$$5$$月有$$31$$天,所以是$$6$$月$$7$$日. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
334
57ed0b9139244c77b9582438caf2f919
[ "2021年新希望杯三年级竞赛初赛第13题5分" ]
2
single_choice
【$$2021$$三年级卷第$$13$$题】五盘水果排成一排.苹果和橘子相邻,橘子和草莓相邻,苹果和香蕉不相邻,香蕉和芒果不相邻.那么一定和芒果相邻的是.
[ [ { "aoVal": "A", "content": "只有苹果 " } ], [ { "aoVal": "B", "content": "只有橘子 " } ], [ { "aoVal": "C", "content": "只有草莓 " } ], [ { "aoVal": "D", "content": "香蕉和草莓 " } ], [ { "aoVal": "E", "content": "橘子和香蕉 " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "根据题意分析可知,苹果和草莓都与橘子相邻, 所以可以确定橘子在苹果和草莓的中间, 假设苹果、橘子、草莓这样排列, 则香蕉在草莓的右边,芒果在苹果的左边, 即苹果与芒果一定相邻, 故选:$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3049
e5a41db6946146c6b1dab0d68bf61d7d
[ "2004年第2届创新杯六年级竞赛复赛第5题" ]
2
single_choice
在下面四个算式中,得数最大的是.
[ [ { "aoVal": "A", "content": "$$\\left( \\frac{1}{17}+\\frac{1}{19} \\right)\\times 20$$ " } ], [ { "aoVal": "B", "content": "$$\\left( \\frac{1}{24}+\\frac{1}{29} \\right)\\times30$$ " } ], [ { "aoVal": "C", "content": "$$\\left( \\frac{1}{31}+\\frac{1}{17} \\right)\\times40$$ " } ], [ { "aoVal": "D", "content": "$$\\left( \\frac{1}{41}+\\frac{1}{47} \\right)\\times50$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "$$\\left( \\frac{1}{17}-\\frac{1}{19} \\right)\\div 20=\\frac{2}{17\\times 19}\\div 20=\\frac{1}{17\\times 19}\\times \\frac{1}{10}$$;$$\\left( \\frac{1}{15}-\\frac{1}{21} \\right)\\div 60=\\frac{6}{15\\times 21}\\div 60=\\frac{1}{15\\times 21}\\times \\frac{1}{10}$$; $$\\left( \\frac{1}{13}-\\frac{1}{23} \\right)\\div 100=\\frac{10}{13\\times 23}\\div 100=\\frac{1}{13\\times 23}\\times \\frac{1}{10};$$$$\\left( \\frac{1}{11}-\\frac{1}{25} \\right)\\div 140=\\frac{14}{11\\times 25}\\div 140=\\frac{1}{11\\times 25}\\times \\frac{1}{10};$$ 只需比较$$\\frac{1}{17\\times 19}$$,$$\\frac{1}{15\\times 21}$$,$$\\frac{1}{13\\times 23}$$,$$\\frac{1}{11\\times 25}$$的大小,根据和一定,两数越接近乘 积越大,则$$11\\times 25 \\textless{} 13\\times 23 \\textless{} 15\\times 21 \\textless{} 17\\times 19$$,那么 $$\\frac{1}{11\\times 25}\\textgreater\\frac{1}{13\\times 23}\\textgreater\\frac{1}{15\\times 21}\\textgreater\\frac{1}{17\\times 19}$$,所以答案为$$D$$ " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1561
ff8080814502fa2401450bc687b31598
[ "2014年全国迎春杯四年级竞赛初赛第8题" ]
1
single_choice
有一种特殊的计算器,当输入一个$$10$ $49$$的自然数后,计算器会先将这个数乘$$2$$,然后将所得结果的十位和个位顺序颠倒,再加$$2$$后显示出最后的结果.那么,下列四个选项中,可能是最后显示的结果.
[ [ { "aoVal": "A", "content": "$$44$$ " } ], [ { "aoVal": "B", "content": "$$43$$ " } ], [ { "aoVal": "C", "content": "$$42$$ " } ], [ { "aoVal": "D", "content": "$$41$$ " } ] ]
[ "拓展思维->能力->逻辑分析->代数逻辑推理" ]
[ "倒推.$$44$$ 对应的是$$44-2=42$$,颠倒后是$$24$$,除以$$2$$ 为$$12$$.符合条件.其他的均不符合条件. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
61
6676c0c8079846989aa46779c916fcff
[ "2022年第9届广东深圳鹏程杯四年级竞赛初赛第30题5分" ]
2
single_choice
在某次田径比赛中,每个项目都只有甲、乙、丙三名运动员参加.比赛结果采用积分 制:第一名得$$A$$分,第二名得$$B$$分,第三名得$$C$$分(这里$$ A\textgreater B\textgreater C\textgreater0 $$,A,B,C都是正整数)。已知所有项目的比赛都没有出现名次并列的情况,且甲积分为$$22$$分,乙、丙积分都为$$9$$分.如果丙是短跑第一名,那么铅球第二名是.
[ [ { "aoVal": "A", "content": "甲 " } ], [ { "aoVal": "B", "content": "乙 " } ], [ { "aoVal": "C", "content": "丙 " } ], [ { "aoVal": "D", "content": "甲或丙 " } ], [ { "aoVal": "E", "content": "以上都不对 " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->体育比赛" ]
[ "无 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3447
f37c3cee00f14e4a85f38581e103bcf3
[ "2018年湖北武汉新希望杯五年级竞赛训练题(二)第3题" ]
1
single_choice
老师从小明和其他$$9$$名学生中随意抽取$$2$$人表演节目,小明被抽中的可能性是.
[ [ { "aoVal": "A", "content": "$$\\frac{1}{2}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{1}{5}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{9}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{1}{10}$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->统计与概率->概率->基本概率->可能性" ]
[ "假设分两次抽,第一次抽中小明的可能性是$$\\frac{1}{10}$$,第二次才抽中小明的可能性是$$\\frac{1}{10}$$,$$\\frac{1}{10}+\\frac{1}{10}=\\frac{1}{5}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2249
d5ed70f3b68d4bce919ca38d329f1ad9
[ "2017年河南郑州豫才杯六年级竞赛初赛第5题" ]
1
single_choice
同学甲、同学乙两人在游乐场的直行道上进行$$200$$米赛跑,当同学甲跑到终点时.同学乙还差$$40$$米,现在两人重新跑,而且速度和原来一样,要使两人同时到达终点,那么同学甲的起跑线应往后退(~ )米.
[ [ { "aoVal": "A", "content": "$$40$$ " } ], [ { "aoVal": "B", "content": "$$45$$ " } ], [ { "aoVal": "C", "content": "$$50$$ " } ], [ { "aoVal": "D", "content": "$$55$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "比例解行程;相等的时间内,甲跑了$$200$$米时,乙跑了$$160$$米,甲乙的速度比是$$200:160=5:4$$,要使两人同时到达终点,乙跑了$$200$$米的时间内甲要跑$$200\\div 4\\times 5=250$$米,所以同学甲的起跑线应后退$$250-200=50$$米. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
508
c20ab40a557e46b8b966439cc476a7c9
[ "2020年春蕾杯六年级竞赛第12题2分", "2021年春蕾杯六年级竞赛第7题2分" ]
2
single_choice
$$A$$,$$B$$,$$C$$,$$D$$四个队举行足球循环赛(即每两个队都要赛一场),胜一场得$$3$$分,平一场得$$1$$分,负一场得$$0$$分.已知: ($$1$$)比赛结束后四个队的得分都是奇数; ($$2$$)$$A$$队总分第一; ($$3$$)$$B$$队恰有两场平局,并且其中一场是与$$C$$队平局. 问:$$D$$队得分.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$3$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$5$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$B$$队两场平局,得$$2$$分,因得分为奇数,所以还有一场应胜,得$$3$$分,共得分$$5$$分. 那么$$A$$队虽是第一,也不可能全胜,则$$A$$队得$$7$$分, 其中平局只能是与$$B$$队了,则$$A$$队胜了$$C$$队和$$D$$队. 因此,$$B$$队胜的一场一定是与$$D$$队,与$$A$$和$$C$$队打平. 因为$$C$$队也必须是奇数,所以$$C$$队一定负于$$D$$队,积$$1$$分,$$D$$队得分$$3$$分. 故选:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1983
f7e89cf2aa714172a76dfd59b19ad9dd
[ "2018年第21届世界少年奥林匹克数学竞赛四年级竞赛复赛(中国区)第8题5分" ]
1
single_choice
把一根长$$20$$米的彩带剪成两段,要求较长的比较短的长$$4$$米,较短的长米.
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$12$$ " } ], [ { "aoVal": "C", "content": "$$16$$ " } ] ]
[ "拓展思维->思想->方程思想" ]
[ "因为通过题干可知,把这根长$$20$$米的彩带剪成两段,设较长的一段长$$x$$米,则较短的一段长$$(20-x)$$米,较长的比较短的长$$4$$米,则可列方程为:$$x-(20-x)=4$$,解得:$$x=12$$,所以较长的一段是$$12$$米,较短的一段是:$$20-12=8$$(米). 故选:$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1658
64e1aba2d0ad46258c16af661cb2735d
[ "2007年华杯赛六年级竞赛初赛", "2007年华杯赛五年级竞赛初赛" ]
1
single_choice
折叠一批纸鹤,甲同学单独折叠需要半小时,乙同学单独折叠需要$$45$$分钟,则甲、乙两名同学共同折叠需要( )。
[ [ { "aoVal": "A", "content": "$$12$$分钟 " } ], [ { "aoVal": "B", "content": "$$15$$分钟 " } ], [ { "aoVal": "C", "content": "$$18$$分钟 " } ], [ { "aoVal": "D", "content": "$$20$$分钟 " } ] ]
[ "拓展思维->拓展思维->应用题模块->工程问题->合作工程问题->已知工时反推->多人合作" ]
[ "解:$$\\frac{1}{\\frac{1}{30}+\\frac{1}{45}}=\\frac{1}{\\frac{5}{6\\times 15}}=18$$(分钟) " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2107
ebcac4d6338944dfa6047a70f0448f7f
[ "2015年湖北武汉世奥赛五年级竞赛模拟训练题(四)第5题" ]
2
single_choice
某年的二月份有$$4$$个星期一和$$5$$个星期二,则$$2$$月$$17$$号是星期.
[ [ { "aoVal": "A", "content": "一 " } ], [ { "aoVal": "B", "content": "二 " } ], [ { "aoVal": "C", "content": "三 " } ], [ { "aoVal": "D", "content": "四 " } ] ]
[ "拓展思维->拓展思维->应用题模块->周期问题->时间中的周期问题->日期中的周期" ]
[ "因为这年的二月份有$$5$$个星期二,说明这是一闰年,且$$2$$月$$1$$号是星期二,$$17\\div 7=2$$(周)$$\\ldots \\ldots 3$$(天),所以$$2$$月$$17$$号也是星期四. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3280
a2e78bb3720e4c0eb4a52e1973d92fed
[ "2012年全国创新杯五年级竞赛第4题5分" ]
2
single_choice
玛丽有$$6$$张卡片,每张卡片上都写有一个大于$$0$$的自然数.她选取了$$3$$张卡片后,算出了它的总和,他又选另外$$3$$张卡片上的总和,$$\cdot \cdot \cdot $$,她进行了可能的$$20$$种$$3$$张卡片的选择,然后计算,发现有$$10$$种总和等于$$16$$,另外$$10$$种总和等于$$18$$.那么这些卡片中最小的数是(~ ).
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$3$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$5$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->容斥原理->多量容斥的最值问题" ]
[ "每个数字用$$10$$次,故所有数字和为$$(16\\times 10+18\\times 10)\\div 10=34$$,而出现了$$10$$ 次$$16$$和$$10$$次$$18$$,故除了最小的,其他$$5$$个都相同,所以只能为$$4$$、$$6$$、$$6$$、$$6$$、$$6$$、$$6$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1991
f7f5fe5e76b94288920260d33424efa6
[ "2009年全国迎春杯小学中年级四年级竞赛初赛第2题" ]
2
single_choice
老师买了同样数目的田格本、横线本和练习本.他发给每个同学$$1$$个田格本、$$3$$个横线本和$$5$$个练习本.这时横线本还剩$$24$$个,那么田格本和练习本共剩了~\uline{~~~~~~~~~~}~个.
[ [ { "aoVal": "A", "content": "$$48$$ " } ], [ { "aoVal": "B", "content": "$$50$$ " } ], [ { "aoVal": "C", "content": "$$54$$ " } ], [ { "aoVal": "D", "content": "$$56$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "同倍数变化问题.把$$1$$个田格本和$$5$$个练习本捆绑成一组,那么每发$$3$$个横格本,就发一组田格本和练习本,田格本和练习本的总量是横线本的$$2$$倍,每次发的数量也是$$2$$倍,所以剩下的也是$$2$$倍,即$$48$$本. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
824
537dc2f02e254540a4cab6d2480956e0
[ "2015年全国华杯赛小学高年级竞赛复赛A卷第9题", "2015年北京华杯赛小学高年级竞赛复赛A卷第9题" ]
2
single_choice
两个自然数之和为$$667$$,它们的最小公倍数除以最大公约数所得的商等于$$120$$.求这两个数.
[ [ { "aoVal": "A", "content": "$$552$$,$$115$$ " } ], [ { "aoVal": "B", "content": "$$232$$,$$435$$ " } ], [ { "aoVal": "C", "content": "$$552$$,$$115$$或$$232$$,$$435$$ " } ] ]
[ "知识标签->学习能力->七大能力->运算求解" ]
[ "$$120={{2}^{3}}\\times 3\\times 5$$,$$667=23\\times 29$$.(*) 设这两个自然数是$$da$$和$$db$$,其中$$a$$和$$b$$是互质,$$d$$是这两个自然数的最大公约数,$$d$$是$$667$$的因子,且大于$$1$$,小于$$667$$.无妨设$$a\\textgreater b$$,则有: (1)当$$d=23$$时,由(*),$$a+b=29$$,$$ab={{2}^{3}}\\times 3\\times 5$$,此时易得:$$a=24$$,$$b=5$$,这两个自然数是$$435$$,$$232$$. (2)当$$d=29$$时,由(*),$$a+b=23$$,$$ab={{2}^{3}}\\times 3\\times 5$$,此时易得:$$a=15$$,$$b=8$$,这两个自然数是$$552$$,$$115$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2401
25c764a762284971b0654189b50b2486
[ "2003年六年级竞赛创新杯" ]
1
single_choice
$$2003+2002-2001-2000+1999+1998-1997-1996+ \cdots +7+6-5-4+3+2-1$$的计算结果是( )
[ [ { "aoVal": "A", "content": "$$2002$$ " } ], [ { "aoVal": "B", "content": "$$2003$$ " } ], [ { "aoVal": "C", "content": "$$2004$$ " } ], [ { "aoVal": "D", "content": "$$4005$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数加减->整数加减巧算之分组法" ]
[ "注意到$$2003+2002-2001-2000=4$$,$$1999+1998-1997-1996=4$$,$$7+6-5-4=4$$,如果把$$2003$$到$$4$$的$$2000$$个数依次$$4$$个分为一组共有$$(2000\\div 4)$$组,且每组的计算结果都为$$4$$,那么这$$2000\\div 4$$组的和是$$2000\\div 4\\times 4=2000$$,再加上最后的$$3$$个数,结果是:$$2000+3+2-1=2004$$。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1247
9da73342c2944461913254823d326e55
[ "2021年陕西西安六年级下学期小升初模拟分类专题五十七 (年龄问题 平均数问题)第26题", "2021年陕西西安雁塔区西安高新第一中学小升初(五)第6题3分", "2016年北京走美杯四年级竞赛冲刺讲义", "2019年重庆九龙坡区重庆市育才中学小升初(八)第1题3分", "2018年重庆九龙坡区重庆市育才中学小升初(三)第3题3分", "2014年陕西西安小升初高新一中入学真卷(二)第6题3分" ]
2
single_choice
六个自然数的平均数是$$7$$,其中前四个数的平均数是$$8$$,第$$4$$个数是$$11$$,求后三个数的平均数~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$7$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$9$$ " } ], [ { "aoVal": "E", "content": "$$10$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "$$(7\\times6+11-8\\times4)\\div3=7$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2724
ff8080814502fa2401450bc65c4a1591
[ "2014年全国迎春杯四年级竞赛复赛第1题" ]
1
single_choice
计算:$$2014\div (2\times 2+2\times 3+3\times 3)=$$(~~~~~~~ ).
[ [ { "aoVal": "A", "content": "$$53$$ " } ], [ { "aoVal": "B", "content": "$$56$$ " } ], [ { "aoVal": "C", "content": "$$103$$ " } ], [ { "aoVal": "D", "content": "$$106$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$2014\\div 19=106$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2218
4ca61b1457be420d87f8717aab557bc4
[ "2016年第12届全国新希望杯小学高年级六年级竞赛复赛第6题4分" ]
2
single_choice
战士小王从$$A$$地前往$$B$$地送信,他每走$$40$$分钟就休息$$10$$分钟,到达$$B$$地共需$$4$$小时$$20$$分,从$$B$$地原路返回的速度是去时的$$2$$倍,若他每走$$35$$分钟就休息$$15$$分钟.从$$B$$地返回到$$A$$地共需(~ )分钟.
[ [ { "aoVal": "A", "content": "$$125$$ " } ], [ { "aoVal": "B", "content": "$$130$$ " } ], [ { "aoVal": "C", "content": "$$135$$ " } ], [ { "aoVal": "D", "content": "$$140$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "去的过程中一共花了$$4\\times 60+20=260$$分钟,$$260\\div 50=5\\ldots \\ldots 10$$说明走路时间一共是$$5\\times 40+10=210$$分.回来过程中速度为原来的$$2$$倍,走路的时间则为原来的$$\\frac{1}{2}$$,即$$210\\times \\frac{1}{2}=105$$分钟$$105\\div 35=3$$,即一共走了$$3$$次,第$$3$$次走完之后不用休息,则一共花了$$\\left( 35+15 \\right)\\times 3-15=135$$分钟. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2658
99a96a4fd9fe41cb8e19d5b069ac4ab9
[ "2018年第22届广东世界少年奥林匹克数学竞赛四年级竞赛初赛第3题6分" ]
1
single_choice
已知等差数列$$13$$,$$18$$,$$23$$,$$28$$,$$\cdots $$,$$1003$$。这个等差数列共有项。
[ [ { "aoVal": "A", "content": "$$198$$ " } ], [ { "aoVal": "B", "content": "$$199$$ " } ], [ { "aoVal": "C", "content": "$$200$$ " } ] ]
[ "拓展思维->能力->公式记忆->符号化数学原理", "Overseas Competition->知识点->计算模块->数列与数表->等差数列" ]
[ "根据题意:公差为$$5$$, 所以项数:$$\\left( 1003-13 \\right)\\div 5+1=199$$。 故选:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1992
af7788f4e49b455496761de2dbcba851
[ "2015年湖北武汉世奥赛小学高年级六年级竞赛模拟训练题(三)第2题" ]
2
single_choice
一台新上市的手机,如果按原价的八五折出售可获利$$268$$元,如果按原价九五折出售可获利$$1276$$元,那么这台苹果$$\text{iphone6}$$的原价是.
[ [ { "aoVal": "A", "content": "$$8300$$ " } ], [ { "aoVal": "B", "content": "$$9300$$ " } ], [ { "aoVal": "C", "content": "$$10080$$ " } ], [ { "aoVal": "D", "content": "$$12080$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->经济问题->基本经济概念->折扣问题" ]
[ "$$\\left( 1276-268 \\right)\\div \\left( 95 \\%- 85 \\% \\right)=10080$$(元). " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1240
5492fef93b2442eca3624c33283c9c0d
[ "2018年第21届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第8题3分" ]
1
single_choice
一筐水果中,恰好有一半数量是苹果,如果吃掉苹果数量的一半,筐中还剩下$$90$$个.那么这时候筐中还有个苹果.
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$25$$ " } ], [ { "aoVal": "C", "content": "$$30$$ " } ], [ { "aoVal": "D", "content": "$$40$$ " } ] ]
[ "拓展思维->能力->逻辑分析->代数逻辑推理" ]
[ "$$90$$除以$$1+2$$的和,结果是$$30$$,从后向前推算,剩下的是$$1$$份,那么苹果就是$$2$$份, 其他水果也是$$2$$份,所以可以得到是$$30$$个苹果.故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1477
d5b08fba90ee4c81aa0beeb25d16be77
[ "2016年创新杯五年级竞赛训练题(二)第5题" ]
1
single_choice
``创新号''游轮在长江上航行时遇到龙卷风,船底破损开始进水,发现漏水时,已经进了一些水,水迅速进入船内.如果$$10$$台抽水机抽水,$$20$$分钟抽完,如果$$5$$台抽水机抽水,$$45$$分钟抽完.如果要求$$30$$分钟抽完,要安排(~ )台抽水机抽水.
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$7$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$9$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "设一台抽水机$$1$$分钟抽$$1$$份水,则每分钟的抽水量为$$\\left( 5\\times 45-10\\times 20 \\right)\\div \\left( 45-20 \\right)=1$$(份),船内原有水量为$$5\\times 45-1\\times 45=180$$(份),所以$$30$$分钟抽完需要$$180\\div 30+1=7$$(台). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1132
10a7399e7a9744569aef4c3d31875665
[ "2020年新希望杯六年级竞赛(2月)第13题" ]
1
single_choice
海尔兄弟被困在一个无人岛上,他们要做一个独木舟逃出这个无人岛,哥哥单独做要$$6$$小时完成,弟弟单独做要$$9$$小时完成.如果按照哥哥、弟弟、哥哥、弟弟$$\cdots \cdots $$的顺序交替工作,每人工作$$1$$小时后交换,那么需要~\uline{~~~~~~~~~~}~小时能做好独木舟.
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$7$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$9$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->工程问题->合作工程问题->接力施工问题" ]
[ "哥哥工效:$$\\frac{1}{6}$$,弟弟工效:$$\\frac{1}{9}$$, 则$$1\\div \\left( \\frac{1}{6}+\\frac{1}{9} \\right)=\\frac{18}{5}=3$$(周期)$$\\cdots \\cdots \\frac{3}{5}$$, $$1-3\\times \\left( \\frac{1}{6}+\\frac{1}{9} \\right)=\\frac{1}{6}$$, $$\\frac{1}{6}\\div\\frac{1}{6}=1$$(小时), 共$$3\\times 2+1=7$$(小时). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
417
81ad929ae007494e876679ca333d4f63
[ "2015年湖北武汉世奥赛六年级竞赛模拟训练题(二)第2题" ]
1
single_choice
有帽子三顶、衣服三件、鞋三双,各自分别是红、黑、蓝三种颜色.$$3$$名同学一起去郊游,他们每人戴的帽子,穿的衣服和鞋都是三种不同的颜色,如果戴黑色帽子的同学穿的不是红色的鞋,那么戴蓝色帽子的同学穿色的衣服.
[ [ { "aoVal": "A", "content": "红 " } ], [ { "aoVal": "B", "content": "黑 " } ], [ { "aoVal": "C", "content": "蓝 " } ], [ { "aoVal": "D", "content": "无法确定 " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->条件型逻辑推理->表格法" ]
[ "戴黑帽的同学穿的不是红鞋,只能穿蓝鞋,红衣服,所以戴蓝帽的同学不可能穿红衣服,只能穿黑衣服. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1286
239dab6e31f24ca58f94fa5bce0a6752
[ "2018年第6届湖北长江杯六年级竞赛初赛B卷第4题3分" ]
1
single_choice
两件衣服都按$$120$$元出售,其中一件赚了$$20 \%$$,另一件亏了$$20 \%$$,那么两件衣服合在一起算,结果是.
[ [ { "aoVal": "A", "content": "亏了 " } ], [ { "aoVal": "B", "content": "赚了 " } ], [ { "aoVal": "C", "content": "不赚不亏 " } ], [ { "aoVal": "D", "content": "无法比较 " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "从题目中我们知道,两件衣服都按$$120$$元出售, 也就是一共入账:$$120\\times2=240$$ (元); 其中一件赚了$$20 \\%$$,那么成本是:$$120\\div (1+20 \\%)=100$$(元), 另一件亏了$$20 \\%$$,那么成本是:$$120\\div (1-20 \\%)=150$$(元); 总成本是:$$100+150=250$$(元),也就是实际上还是亏了. 故选:$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2064
f8de4bdedcb44091bc0814ac41da130d
[ "2017年河南郑州豫才杯小学高年级五年级竞赛初赛第15题" ]
2
single_choice
游览景区期间,爸爸将车放在停车场,收费标准为:不超过$$1$$小时收费$$3$$元,超过$$1$$小时的部分每小时收费$$3$$元.爸爸最终一共交了$$13.5$$元的停车费,他们的车在停车场最多停了小时.
[ [ { "aoVal": "A", "content": "$$4$$小时 " } ], [ { "aoVal": "B", "content": "$$4.5$$小时 " } ], [ { "aoVal": "C", "content": "$$5$$小时 " } ], [ { "aoVal": "D", "content": "$$8$$小时 " } ] ]
[ "知识标签->学习能力->七大能力->实践应用" ]
[ "设最多在停车场停了$$x$$小时,$$3+\\left( x-1 \\right)\\times 3=13.5$$,解得$$x=4.5$$,所以他们的车在停车场最多停$$4.5$$小时. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1125
18b332d2291c4392b95643d47e7c44bd
[ "2015年第11届全国新希望杯小学高年级六年级竞赛复赛第4题" ]
2
single_choice
甲、乙、丙三名化妆师单独为一名新娘化妆所需时间之比为$$2$$:$$3$$:$$4$$(假设给所有新娘的化妆量都相同),某天他们同时为两名新娘化妆,其中甲负责为新娘$$A$$化妆,乙负责为新娘$$B$$化妆,丙先帮甲为新娘$$A$$化妆,然后紧接着又帮乙为新娘$$B$$化妆,$$72$$分钟后,两名新娘同时化妆完毕,其中丙为新娘$$A$$化妆所用的时间为(~ ).
[ [ { "aoVal": "A", "content": "$$18$$分钟 " } ], [ { "aoVal": "B", "content": "$$12$$分钟 " } ], [ { "aoVal": "C", "content": "$$9$$分钟 " } ], [ { "aoVal": "D", "content": "$$6$$分钟 " } ] ]
[ "拓展思维->拓展思维->应用题模块->列方程解应用题->一元一次方程解应用题" ]
[ "设三人的时间分别为$$2x$$,$$3x$$,$$4x$$,那么有$$2\\div \\left( \\frac{1}{2x}+\\frac{1}{3x}+\\frac{1}{4x} \\right)=72$$,解得$$x=39$$,那么甲的效率是$$\\frac{1}{78}$$,丙的效率是$$\\frac{1}{156}$$,那么丙帮$$A$$的时间是$$\\left( 1-\\frac{72}{78} \\right)\\div \\frac{1}{156}=12$$分钟. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2790
604688042b864dddab0b8d7f1fec905c
[ "2006年第4届创新杯六年级竞赛初赛A卷第2题" ]
1
single_choice
在下面四个算式中,最大的数应是( ). (1) $$(\frac{1}{17}-\frac{1}{19})\times 20$$ (2) $$(\frac{1}{24}+\frac{1}{29})\times 30$$ (3)$$(\frac{1}{31}+\frac{1}{37})\times 40$$ (4) $$(\frac{1}{41}+\frac{1}{47})\times 50$$
[ [ { "aoVal": "A", "content": "($$1$$) " } ], [ { "aoVal": "B", "content": "($$2$$) " } ], [ { "aoVal": "C", "content": "($$3$$) " } ], [ { "aoVal": "D", "content": "($$4$$) " } ] ]
[ "拓展思维->拓展思维->计算模块->比较与估算->比较大小综合->算式比较大小" ]
[ "$$(1)1\\frac{3}{17}-1\\frac{1}{19},(2)1\\frac{1}{4}+1\\frac{1}{29},(3)1\\frac{9}{31}+1\\frac{3}{37},(4)1\\frac{9}{41}+1\\frac{3}{47}$$,显然($$3$$)最大. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2689
51d483c6a7064e8f8a933c520a609612
[ "2003年第1届创新杯五年级竞赛复赛第1题", "2003年五年级竞赛创新杯" ]
1
single_choice
将一个数的小数点向右移动三位,再向左移动两位,这时所得到的数是$$4.13$$,那么原来的数是( )。
[ [ { "aoVal": "A", "content": "$$0.413$$ " } ], [ { "aoVal": "B", "content": "$$4.13$$ " } ], [ { "aoVal": "C", "content": "$$41.3$$ " } ], [ { "aoVal": "D", "content": "$$413$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->小数->小数基础->小数点的移动规律" ]
[ "小数点向右移动三位再向左移动两位,实际上是向右移动了一位,向右移动一位后得到的数是$$4.13$$,那么把小数点往左移动一位即得原数,故原数是$$0.413$$。 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1537
3c3cfe635ce84575b9578d3059f75a0a
[ "2019年第22届世界少年奥林匹克数学竞赛四年级竞赛复赛(中国区)第1题3分" ]
1
single_choice
如果把一根木料锯成$$3$$段要用$$6$$分钟,那么用同样的速度把这根木料锯成$$6$$段要用分钟.
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$12$$ " } ], [ { "aoVal": "C", "content": "$$15$$ " } ], [ { "aoVal": "D", "content": "$$24$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "把一根木料锯成$$3$$段,需要锯$$3-1=2$$(次),要用$$6$$分钟,每次需要$$6\\div 2=3$$(分钟),用同样的速度把这根木料锯成$$6$$段,需要锯$$6-1=5$$(次),需要$$5\\times 3=15$$(分钟). 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
140
501279c398054846a2edeb144cb27111
[ "2014年中环杯五年级竞赛初赛" ]
2
single_choice
黑箱中有$$60$$块大小、形状都相同的木块,每$$15$$块涂上相同的颜色,一次至少取出( )块才能保证其中至少有$$2$$块木块颜色相同。
[ [ { "aoVal": "A", "content": "$$7$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->抽屉原理->最不利原则" ]
[ "$$60\\div 15=4$$(种) $$4+1=5$$(块) 答:一次至少取出$$5$$块才能保证其中至少有$$2$$块木块颜色相同。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2812
6974730a76bb4568a48836ba9f103760
[ "2013年全国希望杯五年级竞赛初赛第9题" ]
2
single_choice
有$$26$$个连续的自然数,如果前$$13$$个数的和是$$247$$,那么,后$$13$$个数的和是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$392$$ " } ], [ { "aoVal": "B", "content": "$$416$$ " } ], [ { "aoVal": "C", "content": "$$420$$ " } ], [ { "aoVal": "D", "content": "$$445$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->等差数列->等差数列截断求和" ]
[ "方法一:求前$$13$$个数中间数:$$247\\div13=19$$,则后$$13$$个数的第一个数为$$19+6+1=26$$,最后一个数为$$26+12=38$$,所以后$$13$$个数的和是$$(26+38)\\times13\\div2=416$$. 方法二:后$$13$$个数比前$$13$$个数按顺序一一对应,后$$13$$个数的每个数比前$$13$$个数的每个数都多$$13$$. 所以后$$13$$个数的和是$$247+13\\times13=416$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1488
90a38f5ece81474282ead00bc5287d01
[ "2019年广东广州学而思综合能力诊断五年级竞赛第11题12分" ]
2
single_choice
$$A+B+C=2021$$,$$A$$、$$B$$、$$C$$分别有$$8$$、$$10$$、$$11$$个因数,并且$$B$$与$$C$$互质,那么$$A$$是.
[ [ { "aoVal": "A", "content": "$$360$$ " } ], [ { "aoVal": "B", "content": "$$380$$ " } ], [ { "aoVal": "C", "content": "$$390$$ " } ], [ { "aoVal": "D", "content": "$$420$$ " } ], [ { "aoVal": "E", "content": "$$430$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->因数与倍数->因数个数定理->因数个数定理逆应用", "Overseas Competition->知识点->应用题模块->分百应用题->认识单位1" ]
[ "本题是因数个数定理的逆应用,先从$$A$$、$$B$$、$$C$$三个的因数个数开始讨论:$$C$$有$$11$$个因数,$$11$$是质数,所以$$C$$一定是一个质数的$$10$$次方,又因为三个数的和为$$2021$$,小于$$3$$的$$10$$次方,所以$$C$$只能是$$2$$的$$10$$次方,等于$$1024$$,则$$A+B=2021-1024=997$$,$$A$$有$$8$$个因数,则$$A$$的分解质因数形式可以是$$a$$的$$7$$次方、$$a$$的$$1$$次方乘$$b$$的$$3$$次方、$$a\\times b\\times c$$这$$3$$种可能,$$B$$的分解质因数形式可以是$$c$$的$$9$$次方、$$c$$的$$1$$次方乘$$d$$的$$4$$次方,因为$$B$$和$$C$$互质,所以$$B$$不含质因数$$2$$,根据和的大小可以确定$$B$$不等于$$c$$的$$9$$次方,又$$5$$的$$4$$次方等于$$625$$,$$625$$乘$$3$$等于$$1275$$大于$$997$$,所以$$d$$只能等于$$3$$,$$3$$的$$4$$次方等于$$81$$,$$81$$乘$$5$$等于$$405$$,$$997-405=592$$不符合$$A$$的分解质因数条件,$$81$$乘$$7$$等于$$567$$,$$997-567=430$$符合条件,则$$A$$等于$$430$$. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2699
3bff0c002ee543e4af321dfe28392028
[ "2006年第4届创新杯六年级竞赛初赛B卷第10题" ]
1
single_choice
从$$\frac{1}{2}$$,$$\frac{1}{3}$$,$$\frac{1}{4}$$,$$\frac{1}{5}$$,$$\frac{1}{6}$$中去掉两个分数,使得剩下的三个分数的和与$$\frac{6}{7}$$最接近,那么去掉的两个分数是.
[ [ { "aoVal": "A", "content": "$$\\frac{1}{2}$$,$$\\frac{1}{5}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{1}{2}$$,$$\\frac{1}{6}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{3}$$,$$\\frac{1}{4}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{1}{3}$$,$$\\frac{1}{5}$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "$$\\frac{1}{2}+\\frac{1}{3}+\\frac{1}{4}+\\frac{1}{5}+\\frac{1}{6}=\\frac{5}{6}+\\frac{9}{20}+\\frac{1}{6}=1\\frac{9}{20}=1.45$$, $$\\frac{6}{7}\\approx 0.857$$, $$1.45-0.857=0.593$$, 所以题目即需要从五个分数中选出两个,使他们的和最接近$$0.593$$,比较后可得应选$$\\frac{1}{3}$$和$$\\frac{1}{4}$$,故$$\\text{C}$$正确. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2238
6cf17e89d33f42e2ac460d6c68eed87f
[ "2017年第16届湖北武汉创新杯五年级竞赛邀请赛训练题(三)" ]
1
single_choice
【拓4】一列火车通过一座长$$320$$米的桥用了$$21$$秒,当它通过$$860$$米的隧道时,速度是过桥速度的$$2$$倍,结果用了$$24$$秒,火车通过大桥时的速度是每秒米;火车的车身长度为米.
[ [ { "aoVal": "A", "content": "$$10$$;$$100$$ " } ], [ { "aoVal": "B", "content": "$$20$$;$$100$$ " } ], [ { "aoVal": "C", "content": "$$40$$;$$100$$ " } ], [ { "aoVal": "D", "content": "$$80$$;$$200$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "若通过$$860$$米隧道时速度不变则需要$$24\\times 2=48$$(秒),火车过桥速度:$$\\left( 860-320 \\right)\\div \\left( 48-21 \\right)=20$$(米/秒):火车车身长:$$21\\times 20-320=100$$(米). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
978
0df1ea89e25d4b4ebec1251a51744b5b
[ "2007年四年级竞赛创新杯", "2007年第5届创新杯四年级竞赛第4题5分" ]
1
single_choice
一条绳子,折成相等的3段后,再折成相等的两段,然后从中间剪开,一共可以剪成~\uline{~~~~~~~~}~段.
[ [ { "aoVal": "A", "content": "7 " } ], [ { "aoVal": "B", "content": "8 " } ], [ { "aoVal": "C", "content": "9 " } ], [ { "aoVal": "D", "content": "10 " } ] ]
[ "拓展思维->拓展思维->应用题模块->间隔问题->直线型两端都没有->剪绳子" ]
[ "将绳折成3段再对折,相当于折成6段,一刀与这6段共有6个交点,所以将绳剪成7段 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1622
bf05389469a54b98a997dcc309ad6e02
[ "2006年第4届创新杯四年级竞赛初赛A卷第3题", "2006年四年级竞赛创新杯", "2006年三年级竞赛创新杯" ]
1
single_choice
大家都知道,一只正常的猫有$$18$$个爪,每条前腿有$$5$$个爪,每条后腿有$$4$$个爪。在某市的``保护伤残动物之家''收养了$$4$$只伤残猫,每只猫都失去了一条腿,但是每只猫失去的腿都不相同,这$$4$$只伤残猫共有( )个爪。
[ [ { "aoVal": "A", "content": "$$68$$ " } ], [ { "aoVal": "B", "content": "$$64$$ " } ], [ { "aoVal": "C", "content": "$$54$$ " } ], [ { "aoVal": "D", "content": "$$52$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->鸡兔同笼问题" ]
[ "$$4$$只正常猫一共有$$18\\times 4=72$$(个)爪,$$4$$只伤残猫失去的腿都不同,一共失去$$5\\times 2+4\\times 2=18$$(个)爪,现在$$4$$只伤残猫一共有$$72-18=54$$(个)爪。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1193
15b9feba11a2484f9e15baa074a7c534
[ "2020年四川绵阳涪城区绵阳东辰国际学校超越杯四年级竞赛第10题2分" ]
1
single_choice
下面说法正确的有. ①陈小强是$$2009$$年$$2$$月$$29$$日出生的. ②$$21$$时用普通计时法表示是晚上$$10$$时. ③东西相对,南北相对. ④小数$$1.6$$和$$1.8$$之间只有$$1.7$$这一个数.
[ [ { "aoVal": "A", "content": "$$1$$个 " } ], [ { "aoVal": "B", "content": "$$2$$个 " } ], [ { "aoVal": "C", "content": "$$3$$个 " } ] ]
[ "拓展思维->拓展思维->应用题模块->周期问题->时间中的周期问题->日期中的周期" ]
[ "①$$2009$$年是平年,平年$$2$$月只有$$28$$天. ②$$21$$时用普通计时法表示是晚上$$9$$点. ③东西相对南北相对,正确. ④小数$$1.6$$和$$1.8$$之间有无数个数. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1558
ff8080814502fa24014507b662ee0b9a
[ "2014年全国迎春杯五年级竞赛复赛第3题" ]
1
single_choice
过年的时候,球球给客人倒啤酒,一瓶啤酒可以倒满$$4$$杯,球球倒酒的时候总是每杯中有半杯泡沫,啤酒倒成泡沫的体积会涨成原来的$$3$$倍,那么球球倒啤酒时,一瓶酒可以倒(~~ )杯.
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "根据题意可知,$$1$$份的啤酒可以变成$$3$$份的泡沫.球球倒的啤酒一半是泡沫,那么我们可以把球球倒的每杯酒分成$$6$$份,那么每倒一杯酒只有$$4$$份.而一瓶啤酒可以倒$$4$$杯共有$$4\\times6=24$$份.球球倒的每杯酒为$$4$$份,她共可以倒的杯数为:$$24\\div4=6$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1289
1f77d69d07704ed89bf1190388e0304e
[ "2004年希望杯三年级竞赛复赛", "2004年第2届希望杯五年级竞赛复赛第3题", "2004年希望杯四年级竞赛复赛", "2004年希望杯六年级竞赛复赛", "2004年希望杯二年级竞赛复赛", "2004年希望杯一年级竞赛复赛", "2004年希望杯五年级竞赛复赛" ]
1
single_choice
在一列数$$8$$、$$6$$、$$4$$、$$2$$、$$6$$、\ldots 中,从第$$3$$个数开始,每个数都是它前面两个数的和的个位数字.在这串数中,有个数在重复循环.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->周期问题->基本排列的周期问题" ]
[ "$$2$$、$$2$$、$$4$$、$$8$$、$$2$$、$$6$$、$$2$$、$$2$$、$$4$$、$$8$$\\ldots 发现$$6$$个一循环,$$2004\\div 6=334$$(组),所以第$$2004$$个数和第$$6$$个相同为$$6$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1275
1f511cabba434c53af9c2f14a65385ae
[ "2019年第23届广东世界少年奥林匹克数学竞赛一年级竞赛决赛第6题5分" ]
1
single_choice
按规律画图:$$\bigcirc \triangle \square \square $$☆$$\bigcirc \triangle \square \square $$☆$$\bigcirc \triangle \square \square $$☆$$\cdots \cdots $$第$$30$$个是图形.
[ [ { "aoVal": "A", "content": "$$\\bigcirc $$ " } ], [ { "aoVal": "B", "content": "$$\\triangle $$ " } ], [ { "aoVal": "C", "content": "$$\\square $$ " } ], [ { "aoVal": "D", "content": "☆ " } ] ]
[ "拓展思维->拓展思维->应用题模块->周期问题->基本排列的周期问题" ]
[ "从图中可知五个一循环,$$30\\div 5=6\\cdots \\cdots 0$$,所以第三十个与第五个相同. 故选:$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3127
e789f89b75ab4b61aa1da941365a3a56
[ "2021年第8届鹏程杯五年级竞赛初赛第24题4分" ]
1
single_choice
(5分)分数$$A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots +\frac{1}{16}$$的整数部分是.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$3$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$5$$ " } ], [ { "aoVal": "E", "content": "以上都不对 " } ] ]
[ "拓展思维->拓展思维->计算模块->比较与估算->放缩法->首尾放缩法" ]
[ "$$A\\textgreater1+\\frac{1}{2}+\\frac{1}{4}\\times 2+\\frac{1}{8}\\times 4+\\frac{1}{16}\\times 8=3$$, $$A\\textless{}1+\\frac{1}{2}+\\frac{1}{3}+\\frac{1}{4}\\times 4+\\frac{1}{8}\\times 8+\\frac{1}{16}\\textless{}4$$, ∴$$\\left[ A \\right]=3$$. 答:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
48
07f2e89632cb4258aae0367923b1de2d
[ "2011年全国学而思杯五年级竞赛第10题" ]
2
single_choice
在足球场上,甲、乙、丙每人都擅长踢以下六个位置中的两个:``前锋''、``前卫''、``前腰''、``后腰''、``后卫''、``守门员'',而且每个位置都只有一个人擅长.此外: (1)前锋夸前腰传球传的好 (2)前腰和后卫常去与甲一起去看电影 (3)前卫请后腰喝过汽水 (4)前锋和后腰很要好 (5)乙不擅长后卫 (6)丙在场上的作用常强于乙和后腰 那么甲擅长的位置是~\uline{~~~~~~~~~~}~和~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "前锋、前卫 " } ], [ { "aoVal": "B", "content": "前卫、后腰 " } ], [ { "aoVal": "C", "content": "守门员、前锋 " } ], [ { "aoVal": "D", "content": "后腰、守门员 " } ] ]
[ "课内体系->能力->实践应用", "拓展思维->能力->实践应用" ]
[ "甲不是前腰和后卫,前腰和后卫是两个人,乙不是后卫,那么丙是后卫,根据$$6$$可知道甲是后腰,那么根据$$2$$可知道,乙是前腰,根据$$1$$,则乙不是前锋,根据$$4$$,甲也不能是前锋,所以丙是前锋,根据$$3$$,前卫只能是乙,那么剩下的守门员只能是甲,所以甲的位置是后腰和守门员. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2373
1c400e6190b44bc090224384c9b260f9
[ "2018年湖北武汉新希望杯六年级竞赛训练题(一)第4题", "2017年新希望杯六年级竞赛训练题(一)第4题" ]
1
single_choice
1.将四个分数按从小到大的顺序排列,正确的是.
[ [ { "aoVal": "A", "content": "$$\\frac{5}{14}\\textless{}\\frac{10}{27}\\textless{}\\frac{12}{31}\\textless{}\\frac{20}{53}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{5}{14}\\textless{}\\frac{10}{27}\\textless{}\\frac{20}{53}\\textless{}\\frac{12}{31}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{10}{27}\\textless{}\\frac{5}{14}\\textless{}\\frac{12}{31}\\textless{}\\frac{20}{53}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{10}{27}\\textless{}\\frac{5}{14}\\textless{}\\frac{20}{53}\\textless{}\\frac{12}{31}$$ " } ] ]
[ "知识标签->数学思想->转化与化归的思想" ]
[ "通分子$$\\frac{5}{14}=\\frac{60}{168}$$, $$\\frac{10}{27}=\\frac{60}{162}$$, $$\\frac{12}{31}=\\frac{60}{155}$$, $$\\frac{20}{53}=\\frac{60}{159}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
888
cda5764b9bce420fa323864c97695496
[ "2011年北京五年级竞赛" ]
2
single_choice
在$$7$$进制中有三位数$$\overline{abc}$$,化为$$9$$进制为$$\overline{cba}$$,求这个三位数在十进制中为.
[ [ { "aoVal": "A", "content": "$$148$$ " } ], [ { "aoVal": "B", "content": "$$248$$ " } ], [ { "aoVal": "C", "content": "$$348$$ " } ], [ { "aoVal": "D", "content": "$$648$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "首先还原为十进制: $${{(\\overline{abc})}_{7}}=a\\times{{7}^{2}}+b\\times {{7}^{1}}+c\\times {{7}^{0}}=49a+7b+c$$;$${{(\\overline{cba})}_{9}}=c\\times{{9}^{2}}+b\\times {{9}^{1}}+a\\times {{9}^{0}}=81c+9b+a$$. 于是$$49a+7b+c=81c+9b+a$$;得到$$48a=80c+2b$$,即$$24a=40c+b$$. 因为$$24a$$是$$8$$的倍数,$$40c$$也是$$8$$的倍数,所以$$b$$也应该是$$8$$的倍数,于是$$b=0$$或$$8$$. 但是在$$7$$进制下,不可能有$$8$$这个数字.于是$$b=0$$,$$24a=40c$$,则$$3a=5c$$. 所以$$a$$为$$5$$的倍数,$$c$$为$$3$$的倍数. 所以,$$a=0$$或$$5$$,但是,首位不可以是$$0$$,于是$$a=5$$,$$c=3$$; 所以$${{(\\overline{abc})}_{7}}={{(503)}_{7}}=5\\times 49+3=248$$ . 于是,这个三位数在十进制中为$$248$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3260
2daa93c673454fd690475d88045e7d2a
[ "2017年第16届湖北武汉创新杯小学高年级五年级竞赛邀请赛训练题(一)" ]
1
single_choice
由$$1$$.$$2$$.$$3$$.$$4$$.$$5$$五个数字组成没有重复数字的三位数,各个数字之和为偶数的有.
[ [ { "aoVal": "A", "content": "$$6$$个 " } ], [ { "aoVal": "B", "content": "$$30$$个 " } ], [ { "aoVal": "C", "content": "$$36$$个 " } ], [ { "aoVal": "D", "content": "$$42$$个 " } ] ]
[ "拓展思维->拓展思维->计数模块->加乘原理->组数问题->有特殊要求的组数问题" ]
[ "数字之和为偶数的数有$$123$$、$$125$$、$$134$$、$$145$$、$$235$$、$$345$$,而每种选法又可以有五种不同三位数,所以$$6\\times 6=36$$个不同的三位数. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1115
0cb3c9d98ece42c3a9bf637a0da03234
[ "2004年六年级竞赛创新杯", "2004年第2届创新杯六年级竞赛初赛第9题" ]
1
single_choice
两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的体积比是$$3:1$$,另一个瓶子中酒精与水的体积比是$$4:1$$。如果把这两瓶酒精溶液混合,那么混合溶液中酒精与水的体积比是( )
[ [ { "aoVal": "A", "content": "$$7:1$$ " } ], [ { "aoVal": "B", "content": "$$7:2$$ " } ], [ { "aoVal": "C", "content": "$$24:7$$ " } ], [ { "aoVal": "D", "content": "$$31:9$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->比例应用题->按比分配" ]
[ "两个相同的瓶子装满酒精溶液,设一个瓶子装溶液的体积是单位``$$1$$'',那么第一个瓶子中酒精体积是$$3\\div (1+3)=\\frac{3}{4}$$,第二个瓶子中酒精体积是$$4\\div (1+4)=\\frac{4}{5}$$,把两瓶酒精溶液混合,两个瓶子的酒精体积和是$$\\frac{3}{4}+\\frac{4}{5}=\\frac{31}{20}$$, 水体积和$$=1+1-\\frac{31}{20}=\\frac{9}{20}$$, 那么酒精与水的体积比是$$\\frac{31}{20}:\\frac{9}{20}=31:9$$. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2962
9c03594ba02a4efd9e1a1633b92dd574
[ "2020年广东广州羊排赛四年级竞赛第16题5分" ]
1
single_choice
简易方程. $$10+2x+3=19$$.
[ [ { "aoVal": "A", "content": "$$x=4$$. " } ], [ { "aoVal": "B", "content": "$$x=3$$. " } ], [ { "aoVal": "C", "content": "$$x=2$$. " } ], [ { "aoVal": "D", "content": "$$x=5$$. " } ] ]
[ "课内体系->思想->方程思想", "拓展思维->拓展思维->计算模块->方程基础->一元一次方程" ]
[ "$$\\begin{eqnarray}10+2x+3\\&=\\&19 2x\\&=\\&19-3-10 2x\\&=\\&6 x\\&=\\&3.\\end{eqnarray}$$ " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3011
dbfe7dc8fd074e1caefab22504de71dc
[ "2022年第九届鹏程杯四年级竞赛初赛第20题5分" ]
2
single_choice
若1※4=1+2+3+4,6※5=6+7+8+9+10,按照这种规则,(4※4)$\times$5-(5※5)=().
[ [ { "aoVal": "A", "content": "$$50$$ " } ], [ { "aoVal": "B", "content": "$$55$$ " } ], [ { "aoVal": "C", "content": "$$60$$ " } ], [ { "aoVal": "D", "content": "\\[70\\] " } ], [ { "aoVal": "E", "content": "\\[75\\] " } ] ]
[ "拓展思维->拓展思维->计算模块->定义新运算" ]
[ "无 " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1111
afee1c54792d4e8f9df06db4b552c4b7
[ "2014年迎春杯三年级竞赛" ]
2
single_choice
长方形的周长是$$48$$厘米,已知长是宽的$$2$$倍,那么长方形的长是。
[ [ { "aoVal": "A", "content": "$$8$$厘米 " } ], [ { "aoVal": "B", "content": "$$16$$厘米 " } ], [ { "aoVal": "C", "content": "$$24$$厘米 " } ] ]
[ "拓展思维->拓展思维->应用题模块->和差倍问题->和倍问题->二量和倍问题->两量和倍" ]
[ "暗和型: 周长是$$48$$厘米,那么长$$+$$宽的和:$$48\\div$$ 2=24(厘米) 宽:$$24\\div$$ (2+1)=8(厘米) 长:$$8\\times$$ 2=16(厘米) " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2186
2be293f2ad30406fb6c5bfd0feba8e4a
[ "2019年广东深圳全国小学生数学学习能力测评四年级竞赛初赛第7题3分" ]
1
single_choice
在$$9$$点至$$10$$点之间的某个时刻,$$5$$分钟前分针的位置和$$5$$分钟后时针的位置相同,此时刻是.
[ [ { "aoVal": "A", "content": "$$9:05$$ " } ], [ { "aoVal": "B", "content": "$$9:35$$ " } ], [ { "aoVal": "C", "content": "$$9:55$$ " } ] ]
[ "拓展思维->能力->实践应用->度量单位认知" ]
[ "根据选项$$\\text{C}$$,现在是$$9:55$$,那么$$5$$分钟前分针的位置是指向$$10$$,$$5$$分钟后时针也是指向$$10$$.所以$$\\text{C}$$选项答案是满足题目要求的,所以选择$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2252
722e110a727e43d3956c3ec8ec53f368
[ "2018年全国小学生数学学习能力测评五年级竞赛初赛第10题3分" ]
1
single_choice
科学家进行一项实验,每隔$$5$$小时做一次记录,做第十二次记录时,钟表时针恰好指向$$9$$,做第一次记录时,时针指向.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$9$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->时间问题->认识钟表" ]
[ "先算出从第一次记录到第十二次记录中间经过的时间是多少,第$$1$$次到第$$12$$次之间有个$$11$$间隔:$$5\\times11=55$$(小时). 时针每过$$12$$小时就会转一圈回到原来的状态,$$55\\div12=4$$(圈)$$\\cdots \\cdots 7$$(小时). 即时针转了$$4$$圈以后,又经过了$$7$$个小时,时针指向$$9$$, 所以原来第一次时针指向:$$9-7=2$$. 因此,选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2053
cb31acc21b824ba99ddd01eaa20f2c0d
[ "2018年湖北武汉新希望杯六年级竞赛训练题(一)第6题", "2017年新希望杯六年级竞赛训练题(一)第6题" ]
3
single_choice
将四位数$$12472$$重复写$$100$$次组成一个$$500$$位数$$1247212472\cdots 12472$$,先删去这个数中所有位于奇数位(从左往右数)上的数字,剩下的数字(顺序不变)组成一个新数:再删去新数中所有位于奇数位上的数字,剩下的数字组成一个新数:$$\cdots \cdots $$按上述方法一直删除下去,直到剩下一个数字为止,则最后剩下的数字是.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "将这个$$500$$位数从左到右依次编号第$$1$$位、第$$2$$位、第$$3$$位、$$\\cdots $$、第$$500$$位,且编号不变. 第$$1$$次删数后剩下$$2$$的倍数,第$$2$$次删数后剩下$$22$$的倍数,第$$3$$次删数后剩下$$23$$的倍数,$$\\cdots \\cdots $$,因为$$256\\textless{}500\\textless{}512$$,所以最后剩下的数字在第$$256$$位,$$256\\div 5=51$$(组)$$\\cdots \\cdots 1$$(个),第$$1$$位上的数字是$$1$$,所以最后剩下的数字是$$1$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
87
58c06befe3f04c48ac51c1ea4bc3fb9c
[ "2017年第22届全国华杯赛小学中年级竞赛初赛第2题10分" ]
2
single_choice
从$$1$$至$$10$$这$$10$$个整数中.至少取个数,才能保证其中有两个数的和等于$$10$$.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "知识标签->数学思想->枚举思想" ]
[ "将和为$$10$$的两个数作为一组,有$$\\left( 1,9 \\right)$$,$$\\left( 2,8 \\right)$$,$$\\left( 3,7 \\right)$$,$$\\left( 4,6 \\right)$$,另外$$\\left( 5\\right)$$,$$\\left(10 \\right)$$单独一组,考虑极端情况,若在$$6$$组中每组各取一个数字,也没有两数和为$$10$$,然后在剩下的数中取任何一个,都会有两数能凑成$$10$$.所以至少需要取$$7$$个数. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
447
8f04cbdca66748ffaf762af7cd75b86c
[ "2012年第10届创新杯四年级竞赛初赛第5题6分" ]
1
single_choice
显示在电子钟上的时间是$$5:55$$,下一次电子钟上显示的时间又是全部相同的数字,还要过分钟.
[ [ { "aoVal": "A", "content": "$$71$$ " } ], [ { "aoVal": "B", "content": "$$255$$ " } ], [ { "aoVal": "C", "content": "$$316$$ " } ], [ { "aoVal": "D", "content": "$$377$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "因为分钟的十位最大为$$5$$,所以下一次数字相同的时刻为$$11:11$$,$$11:11$$距$$5:55$$有$$5$$小时$$16$$分,即$$316$$分钟.所以选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1352
5e525e19afa041a6b5942939088b4837
[ "2006年第4届创新杯四年级竞赛初赛B卷第2题" ]
1
single_choice
一个数加上$$8$$的和,再乘$$8$$的积,再减去$$8$$的差,再除以$$8$$的商,等于$$80$$,那么,这个数是.
[ [ { "aoVal": "A", "content": "$$37$$ " } ], [ { "aoVal": "B", "content": "$$59$$ " } ], [ { "aoVal": "C", "content": "$$73$$ " } ], [ { "aoVal": "D", "content": "$$86$$ " } ] ]
[ "拓展思维->思想->逆向思想" ]
[ "从最后一步推起,``除以$$8$$,其结果等于$$80$$''可以求出被除数:$$80\\times 8=640$$;再看倒数第$$2$$步,``减去$$8$$''得$$640$$,可以求出被减数:$$640+8=648$$;然后看倒数第$$3$$步,``乘$$8$$''得$$648$$,可以求出另一个因数:$$648\\div 8=81$$;最后看第$$1$$步,``某数加上$$8$$''得$$81$$,某数为$$81-8=73$$,由此即可解决问题. $$(80\\times 8+8)\\div 8-8=648\\div 8-8=81-8=73$$. 答:这个数是$$73$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1021
1c1784982f274501901989a50424d39c
[ "2019年第23届广东世界少年奥林匹克数学竞赛二年级竞赛决赛第3题5分" ]
1
single_choice
小帅第一天写$$5$$个大字,以后每一天都比前一天多写$$2$$个大字,$$6$$天后小帅一共写了个大字.
[ [ { "aoVal": "A", "content": "$$30$$ " } ], [ { "aoVal": "B", "content": "$$40$$ " } ], [ { "aoVal": "C", "content": "$$60$$ " } ], [ { "aoVal": "D", "content": "$$66$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "第一天$$5$$个大字, 第二天$$5+2=7$$个大字, 第三天$$7+2=9$$个大字, 第四天$$9+2=11$$个大字, 第五天$$11+2=13$$个大字, 第六天$$13+2=15$$个大字, 六天共写了$$5+7+9+11+13+15=60$$个大字. 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3080
ef4669edaa5c4ba6a9251ef3ec1ab7c0
[ "2018年IMAS小学中年级竞赛(第一轮)第2题3分" ]
1
single_choice
若$$\left( \Delta \times 2-1 \right)\times 2=2018$$,请问$$\Delta $$代表的数是.
[ [ { "aoVal": "A", "content": "$$503$$ " } ], [ { "aoVal": "B", "content": "$$504$$ " } ], [ { "aoVal": "C", "content": "$$505$$ " } ], [ { "aoVal": "D", "content": "$$506$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->方程基础->一元一次方程->整数系数方程" ]
[ "$$\\left( \\Delta \\times 2-1 \\right)\\times 2=2018$$, $$\\Delta \\times 2-1=2018\\div 2=1009$$, $$\\Delta \\times 2=1009+1=1010$$, $$\\Delta =1010\\div 2=505$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1123
6b376f4c8d3c4b7eb49fd6b293fcfab6
[ "2015年湖北武汉世奥赛六年级竞赛模拟训练题(二)第3题" ]
2
single_choice
有$$A$$、$$B$$瓶浓度不同的盐水,小泉从两瓶中各取$$1$$升混合在一起,得到一份浓度为$$30 \% $$的盐水;他又将这份盐水与$$1$$升$$A$$瓶盐水混合在一起,最终浓度为$$32 \% $$,那么$$B$$瓶盐水的浓度是.
[ [ { "aoVal": "A", "content": "$$24 \\% $$ " } ], [ { "aoVal": "B", "content": "$$36 \\% $$ " } ], [ { "aoVal": "C", "content": "$$42 \\% $$ " } ], [ { "aoVal": "D", "content": "$$44 \\% $$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "设$$A$$瓶盐水的浓度是$$x \\%$$,$$B$$瓶盐水的浓度是$$y \\%$$. $$1\\centerdot x \\%+1\\centerdot y \\%=2\\centerdot 30 \\%$$ ① $$2\\centerdot 30 \\% +1\\centerdot x \\%=3\\centerdot 32 \\%$$ ② 解得$$x=36$$,$$y=24$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1407
abf5c232a853439481d1dc98f1b1140d
[ "2019年第24届YMO三年级竞赛决赛第5题3分", "2020年第24届YMO三年级竞赛决赛第5题3分" ]
1
single_choice
有一个正方形的操场,在它的外面一圈插上小红旗,四个角上都插一面小红旗,每边都插$$16$$面,一共插了面小红旗.
[ [ { "aoVal": "A", "content": "$$56$$ " } ], [ { "aoVal": "B", "content": "$$58$$ " } ], [ { "aoVal": "C", "content": "$$60$$ " } ], [ { "aoVal": "D", "content": "$$62$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->间隔问题->封闭型->封闭型植树问题->封闭植树类型问题(段数大于10)" ]
[ "根据题意分析可知,四个角都插上一面小红旗,每边都插$$26$$面, 所以每一边有小红旗:$$26-1=25$$(面), 因为是正方形,每边都有$$25$$面,那么一共插了:$$25\\times4=100$$(面)红旗, 故答案为:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1693
536ebf5e511e40a5b2fafe4fea833f85
[ "2016年陕西西安小升初工大附中入学真题2第3题", "2017年全国小学生数学学习能力测评五年级竞赛初赛第10题3分", "2016年陕西西安小升初某工大附中", "2018年陕西西安小升初分类卷13第14题" ]
1
single_choice
把一条细绳先对折,再把它折成相等的三折,接着再对折,然后用剪刀在折过三次的绳中间剪一刀,那么这条绳被剪成(~ )段.
[ [ { "aoVal": "A", "content": "$$12$$ " } ], [ { "aoVal": "B", "content": "$$13$$ " } ], [ { "aoVal": "C", "content": "$$14$$ " } ], [ { "aoVal": "D", "content": "$$15$$ " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "对折一次剪一刀是三段$$(2+1)$$, 再把它折成相等的三折,是$$(2\\times 3+1)$$, 接着再对折剪一刀是$$2\\times 3\\times 2+1=13$$(段). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2836
5c6ec2c951854df58174ee65981e169b
[ "2020年四川绵阳涪城区绵阳东辰国际学校超越杯四年级竞赛第2题2分" ]
1
single_choice
爸爸带了$$269$$元钱,要买$$8$$元一个的笔记本,最多能买个.
[ [ { "aoVal": "A", "content": "$$32$$ " } ], [ { "aoVal": "B", "content": "$$33$$ " } ], [ { "aoVal": "C", "content": "$$34$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "根据题意分析可知,利用关系式:数量$$=$$总价$$\\div $$单价,用爸爸带的钱除以每个笔记本的单价即可得到最多能买多少个笔记本,列式为:$$269\\div 8=33$$(个)$$\\cdots \\cdots 5$$(元),剩下的$$5$$元不足以再买一个笔记本, 所以最多能买$$33$$个, 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2449
3880d235991640788f6c7d078645d524
[ "2021年鹏程杯六年级竞赛初赛第5题" ]
1
single_choice
把一个自然数$$n$$的数位上的偶数数字相加所得的和记为$$E(n)$$,例如:$$E\left( 1999 \right)=0$$,$$E\left( 2000 \right)=2$$,$$E\left( 2021 \right)=2+2=4$$.则$$E\left( 1 \right)+E\left( 2 \right)+E\left( 3 \right)+\cdots +E\left( 100 \right)=$$.
[ [ { "aoVal": "A", "content": "$$50$$ " } ], [ { "aoVal": "B", "content": "$$100$$ " } ], [ { "aoVal": "C", "content": "$$400$$ " } ], [ { "aoVal": "D", "content": "$$2020$$ " } ], [ { "aoVal": "E", "content": "以上都不对 " } ] ]
[ "拓展思维->能力->符号代换->代数运算" ]
[ "$$2$$,$$4$$,$$6$$,$$8$$这$$4$$个数字,每个在个位出现$$10$$次,在十位出现$$10$$次, 所以$$E(1)+E(2)+···+E(100)=(2+4+6+8)\\times (10+10)=400$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3426
e0ad94ad5dd743aca886531b06a6c1a0
[ "2019年第22届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第14题2分" ]
1
single_choice
由数字$$0$$,$$1$$,$$2$$,$$3$$,$$4$$组成三位数,可以组成个不同的三位数.
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$25$$ " } ], [ { "aoVal": "C", "content": "$$80$$ " } ], [ { "aoVal": "D", "content": "$$100$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "暂无 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1948
d79cf47016534dfd8d6d941542133537
[ "2016年第6届广东广州羊排赛六年级竞赛第9题1分" ]
1
single_choice
琦琦跳绳$$3$$次,平均每次跳$$156$$下,要想跳$$4$$次后达到``平均每次跳$$160$$下'',他第$$4$$次要跳下.
[ [ { "aoVal": "A", "content": "$$164$$ " } ], [ { "aoVal": "B", "content": "$$168$$ " } ], [ { "aoVal": "C", "content": "$$172$$ " } ], [ { "aoVal": "D", "content": "$$176$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->综合题->容斥求平均数" ]
[ "琦琦$$3$$次共跳$$156\\times 3=468$$(下), 要想跳$$4$$次后达到平均每次跳$$160$$下,$$4$$次一共跳$$4\\times 160=640$$(下), 他第$$4$$次要跳$$640-468=172$$(下). 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3152
3ca27c0ca9524b95a5848bd957764e93
[ "2003年第1届创新杯六年级竞赛初赛第5题", "六年级竞赛创新杯", "2003年六年级竞赛创新杯" ]
1
single_choice
有一个骰子(小正方体)的六个面上分别写有数字1、2、2、3、3、3,当投掷这个骰子时,数字``2''朝上的可能性是( ).
[ [ { "aoVal": "A", "content": "$$\\frac{1}{3}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{2}{3}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{2}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{1}{6}$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->统计与概率->概率->基本概率" ]
[ "投掷这个骰子时,6个面都有可能朝上,每个面朝上的可能性是$$\\frac{1}{6}$$,有两个面上写着数字2,数字2朝上的可能性为$$2\\times \\frac{1}{6}=\\frac{1}{3}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1513
83d1987763c94bb7b7409bc637365aa9
[ "2017年第16届湖北武汉创新杯六年级竞赛邀请赛训练题(一)" ]
1
single_choice
甲用$$1000$$元购买了一些股票,随即他将这些股票转卖给了乙,获利$$10 \% $$,而后乙又将这些股票反 卖给了甲,但乙损失了$$10 \% $$,最后甲按乙卖给甲价格的九折将这些股票卖给了乙,如果在上述的交易过程中其他费用忽略不计,那么甲(~ ).
[ [ { "aoVal": "A", "content": "亏欠了 $$3$$元 " } ], [ { "aoVal": "B", "content": "赠了$$3$$元 " } ], [ { "aoVal": "C", "content": "亏了$$1$$元 " } ], [ { "aoVal": "D", "content": "赚了$$1$$元 " } ] ]
[ "拓展思维->拓展思维->应用题模块->经济问题->基本经济概念->折扣问题" ]
[ "甲第一次卖给乙价格为:$$1000\\times \\left( 1+10 \\% ~\\right)=1100$$元,甲盈利了$$100$$元; 乙转卖给甲价格:$$1100\\times \\left( 110 \\% ~\\right)=99$$元 综上,甲在此次交易过程中盈利了$$1$$元. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1609
95a7b48dae824034806bc203ca1f8aa3
[ "2008年第6届创新杯四年级竞赛初赛B卷第2题5分" ]
2
single_choice
两根电线杆之间相隔$$115$$米,在它们之间等距离增加$$22$$根电线杆后,第$$2$$根和第$$16$$根电线杆之间相隔.
[ [ { "aoVal": "A", "content": "$$68$$米 " } ], [ { "aoVal": "B", "content": "$$70$$米 " } ], [ { "aoVal": "C", "content": "$$71$$米 " } ], [ { "aoVal": "D", "content": "$$72$$米 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "在两根电线杆中间等距加$$22$$根电线杆, 有$$22+1=23$$(个)间隔, 那么$$115\\div 23=5$$(米)一个间隔, 从第$$2$$根到第$$16$$根共有$$16-2=14$$(个)间隔, $$14\\times 5=70$$(米). 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3294
48f07999e6f14e9696eaba9a89727e01
[ "2020年第24届YMO四年级竞赛决赛第4题3分", "2019年第24届YMO四年级竞赛决赛第4题3分", "2021年第24届世界少年奥林匹克数学竞赛四年级竞赛决赛第4题3分" ]
1
single_choice
现在有六种不同颜色的笔,把``$$\text{YMO}$$''三个字母写成三种不同颜色,共有种写法.
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$100$$ " } ], [ { "aoVal": "C", "content": "$$120$$ " } ], [ { "aoVal": "D", "content": "$$216$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "依次填涂, $$\\text{Y}$$有$$6$$中颜色可选, 则$$\\text{M}$$有$$6-1=5$$(种)颜色可选, 则$$\\text{O}$$有$$6-1-1=4$$(种)颜色可选, 则有$$6\\times 5\\times 4=120$$(种)涂法. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1250
d099fd921cfd4e09b623888d49526f87
[ "2018年全国小学生数学学习能力测评五年级竞赛复赛第8题3分" ]
1
single_choice
有四个不同的整数,它们的平均数是$$13.75$$,三个大数的平均数是$$15$$,三个小数的平均数是$$12$$,如果第二大的数是奇数,那么它是.
[ [ { "aoVal": "A", "content": "$$17$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$13$$ " } ], [ { "aoVal": "D", "content": "$$11$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->综合题->综合题普通型" ]
[ "四个数之和为$$13.75\\times 4=55$$,三个大数之和为$$15\\times 3=45$$,最小数为$$55-45=10$$,三个小数之和为$$12\\times 3=36$$,最大数为$$55-36=19$$.中间两数之和为$$45-19=26$$,中间两数平均数为$$26\\div 2=13$$.第二大数是奇数且比$$13$$大比$$19$$小,只有$$15$$和$$17$$两种可能.若第二大数为$$17$$,则第三大数为$$26-17=9$$,比最小数$$10$$小,不成立;所以第二大数为$$15$$,此时第三大数为$$26-15=11$$,成立. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1408
296c470ee8ef4ff1b9b5ec932fe6ef68
[ "2019年第7届湖北长江杯五年级竞赛复赛A卷第5题3分" ]
1
single_choice
小明爷爷今年的年龄减去$$15$$后,缩小到原来的$$\frac{1}{4}$$,再减去$$6$$之后扩大到原来的$$10$$倍,恰好是$$100$$岁,请你算一算,小明的爷爷今年是.
[ [ { "aoVal": "A", "content": "$$77$$ " } ], [ { "aoVal": "B", "content": "$$80$$ " } ], [ { "aoVal": "C", "content": "$$83$$ " } ], [ { "aoVal": "D", "content": "$$79$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "设爷爷今年$$x$$岁, $$\\left[ \\left( x-15 \\right)\\times \\frac{1}{4}-6 \\right]\\times 10=100$$ $$\\left( x-15 \\right)\\times \\frac{1}{4}-6=100\\div 10$$ $$\\left( x-15 \\right)\\times \\frac{1}{4}-6=10$$ $$\\frac{1}{4}\\left( x-15 \\right)=10+6$$ $$\\frac{1}{4}\\left( x-15 \\right)=16$$ $$x-15=16\\div \\frac{1}{4}$$ $$x-15=64$$ $$x=64+15$$ $$x=79$$. 所以小明的爷爷今年$$79$$岁,故选:$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3308
4dd922b2b2b34ce99d2259edb9b7eedb
[ "2010年第8届创新杯五年级竞赛初赛第8题4分" ]
1
single_choice
十位数字等于百位数字与个位数字之和的三位数共有.
[ [ { "aoVal": "A", "content": "$$28$$个 " } ], [ { "aoVal": "B", "content": "$$36$$个 " } ], [ { "aoVal": "C", "content": "$$45$$个 " } ], [ { "aoVal": "D", "content": "$$55$$个 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "设三位数为$$\\overline{abc}$$,则$$b=a+c$$, $$a=1$$时,$$c=0$$,$$1$$,$$2$$,$$\\ldots 8$$,共$$9$$个; $$a=2$$时,$$c=0$$,$$1$$,$$2$$,$$\\ldots 7$$,共$$8$$个; $$a=3$$时,$$c=0$$,$$1$$,$$2$$,$$\\ldots 6$$,共$$7$$个; $$a=4$$时,$$c=0$$,$$1$$,$$2$$,$$\\ldots 5$$,共$$6$$个; $$a=5$$时,$$c=0$$,$$1$$,$$2$$,$$3$$,$$4$$,共$$5$$个; $$a=6$$时,$$c=0$$,$$1$$,$$2$$,$$3$$,共$$4$$个; $$a=7$$时,$$c=0$$,$$1$$,$$2$$,共$$3$$个; $$a=8$$时,$$c=0$$,$$1$$,共$$2$$个; $$a=9$$时,$$c=0$$,共$$1$$个; 一共有$$1+ 2+ \\ldots 9= \\frac{9 \\times(1+9)}{2}=45$$个, 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1063
082ced4b92e4473691fa7693c9365ba3
[ "2018年美国数学大联盟杯五年级竞赛初赛第34题5分" ]
1
single_choice
$$2$$ liter of $$2 \%$$ fat milk $$+3$$ liter of $$3 \%$$ fat milk$$=5$$ liter of fat milk. $$2$$升$$2 \%$$浓度的脂肪乳$$+3$$升$$3 \%$$浓度的脂肪乳$$=5$$升浓度为的脂肪乳.
[ [ { "aoVal": "A", "content": "$$2.5 \\%$$ " } ], [ { "aoVal": "B", "content": "$$2.6 \\%$$ " } ], [ { "aoVal": "C", "content": "$$5 \\%$$ " } ], [ { "aoVal": "D", "content": "$$6 \\%$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "$$2$$升$$2 \\%$$浓度的脂肪乳$$+3$$升$$3 \\%$$浓度的脂肪乳$$=5$$升浓度的脂肪乳. $$\\frac{总含量}{总体积}\\times 100 \\%$$, 即$$\\frac{2\\times 2 \\%+3\\times 3 \\%}{2+3}\\times 100 \\%=2.6 \\%$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
578
74521a22ce334b41809d59bd985bfbcb
[ "2018年湖北武汉新希望杯六年级竞赛训练题(五)第4题" ]
2
single_choice
十进制数$$25$$转换成二进制数是.
[ [ { "aoVal": "A", "content": "$$11101$$ " } ], [ { "aoVal": "B", "content": "$$1011$$ " } ], [ { "aoVal": "C", "content": "$$10101$$ " } ], [ { "aoVal": "D", "content": "$$11001$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "25$\\div$2=12\\ldots\\ldots1 12$\\div$2=6\\ldots\\ldots0 6$\\div$2=3\\ldots\\ldots0 3$\\div$2=1\\ldots\\ldots1 1$\\div$2=0\\ldots\\ldots1 倒取余数,结果为(11001)\\textsubscript{2} 知识来源------四年级春季第二讲《机器人的聊天记录》 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
894
b6e769b14d1346dd9ec9373ae0fd9b27
[ "2017年全国希望杯小学高年级五年级竞赛初赛考前100题" ]
3
single_choice
三个质数的平方和是$$390$$,这三个质数的和是.
[ [ { "aoVal": "A", "content": "$$19$$ " } ], [ { "aoVal": "B", "content": "$$21$$ " } ], [ { "aoVal": "C", "content": "$$23$$ " } ], [ { "aoVal": "D", "content": "$$26$$ " } ] ]
[ "知识标签->数学思想->整体思想" ]
[ "因为奇数的平方还是奇数,所以这三个数中有一个是$$2$$.因为$$390-{{2}^{2}}=386$$, 所以,通过质数平方的个位特点,判断得还有一个质数应该是$$5$$. 又$$386-{{5}^{2}}=361$$,且$$361={{19}^{2}}$$. 所以这三个质数分别是$$2$$,$$5$$,$$19$$,和是$$26$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3356
b64bafe77a3e4ae485f343a5c7caad6b
[ "2020年第24届YMO三年级竞赛决赛第3题3分", "2019年第24届YMO三年级竞赛决赛第3题3分" ]
1
single_choice
$$10$$本相同的笔记本分给$$3$$个人,每人至少一本,共有种不同的分配方案.
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$28$$ " } ], [ { "aoVal": "C", "content": "$$36$$ " } ], [ { "aoVal": "D", "content": "$$45$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "根据题意,$$10$$个相同的小球分给$$3$$个人,每人至少$$1$$个,就是将$$10$$个球分成$$3$$组, 一个人最多分:$$10-1-1=8$$(支), $$8+7+6+5+4+3+2+1=36$$(种), 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
573
073546842f084705b3a8c9fcdd2dcd72
[ "2007年第5届创新杯五年级竞赛第2题5分", "2007年第5届创新杯五年级竞赛第2题5分", "2007年五年级竞赛创新杯" ]
1
single_choice
有分别写着$$1$$、$$2$$、$$3$$、$$\cdots$$、$$13$$的卡片各两张,任意抽出两张,计算这两张卡片上的数的积。这样得到许多不相等的积中,最多有( )个能被$$6$$整除。
[ [ { "aoVal": "A", "content": "$$18$$ " } ], [ { "aoVal": "B", "content": "$$20$$ " } ], [ { "aoVal": "C", "content": "$$21$$ " } ], [ { "aoVal": "D", "content": "$$26$$ " } ] ]
[ "拓展思维->能力->公式记忆->符号化数学原理" ]
[ "不超过$${{13}^{2}}=169$$的$$6$$的倍数是$$1\\times 6$$,$$2\\times 6$$,$$\\cdots $$,$$28\\times 6$$有$$28$$个,其中不能写成$$a\\times b\\left( 1\\leqslant a\\leqslant b\\leqslant 13 \\right)$$形式的数是:$$17\\times 6$$,$$19\\times 6$$,$$21\\times 6$$,$$23\\times 6$$,$$25\\times 6$$,$$27\\times 6$$,$$28\\times 6$$,共有$$7$$个。因此,符合要求的整数共有$$28-7=21$$(个)。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2476
19a090a80fe34d779854ef4f3520f6a5
[ "2019年第7届湖北长江杯五年级竞赛复赛A卷第4题3分" ]
2
single_choice
算式$$1\div \left( 2\div 3 \right)\div \left( 3\div 4 \right)\div \left( 4\div 5 \right)\div \left( 5\div 6 \right)$$的结果是.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$1$$ " } ], [ { "aoVal": "D", "content": "$$55$$ " } ] ]
[ "拓展思维->能力->运算求解->程序性计算" ]
[ "$$1\\div \\left( 2\\div 3 \\right)\\div \\left( 3\\div 4 \\right)\\div \\left( 4\\div 5 \\right)\\div \\left( 5\\div 6 \\right)$$ $$=1\\div 2\\times 3\\div 3\\times 4\\div 4\\times 5\\div 5\\times 6$$ $$=1\\div 2\\times 6$$ $$=3$$. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
863
a8f35f0ccdef45f5992c447c99d64e2f
[ "2004年四年级竞赛创新杯", "2004年第2届创新杯六年级竞赛初赛第8题", "2004年五年级竞赛创新杯", "2004年六年级竞赛创新杯" ]
0
single_choice
在大于$$2004$$的自然数中,有些数除以$$69$$的商和余数相等,这样的自然数的个数是( )
[ [ { "aoVal": "A", "content": "$$28$$个 " } ], [ { "aoVal": "B", "content": "$$40$$个 " } ], [ { "aoVal": "C", "content": "$$68$$个 " } ], [ { "aoVal": "D", "content": "无穷多个 " } ] ]
[ "拓展思维->拓展思维->数论模块->余数问题->同余->同余定理" ]
[ "设符合要求的自然数为$$n$$,则$$n\\textgreater2004$$,且$$n=69q+q$$,$$0\\leqslant q\\leqslant 68$$。故而$$n=70q\\textgreater2004$$得$$q\\geqslant 29$$,因此$$29\\leqslant q\\leqslant 68$$,即$$q$$有$$68-29+1=40$$个,符合要求的自然数有$$40$$个,选B。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3166
2173c507beb74f588af2e88fcfe71cd7
[ "2006年第11届全国华杯赛竞赛初赛第6题" ]
2
single_choice
五位同学扮成奥运会吉祥物福娃贝贝、晶晶、欢欢、迎迎和妮妮,排成一排表演节目.如果贝贝和妮妮不相邻,共有(~~~~~~~ )种不同的排法.
[ [ { "aoVal": "A", "content": "$$48$$ " } ], [ { "aoVal": "B", "content": "$$72$$ " } ], [ { "aoVal": "C", "content": "$$96$$ " } ], [ { "aoVal": "D", "content": "$$120$$ " } ] ]
[ "拓展思维->思想->分类讨论思想" ]
[ "贝贝在左、妮妮在右相邻的排法有$$4\\times 3\\times 2\\times 1=24$$(种),贝贝在右、妮妮在左相邻的排法也有$$4\\times 3\\times 2\\times 1=24$$(种),总的排法$$5\\times 4\\times 3\\times 2\\times 1=120$$(种).所以贝贝和妮妮不相邻的排法是$$120-2\\times 24=72$$(种). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
998
45c7d7b6c08747c19be185cb569e5f7b
[ "2015年华杯赛四年级竞赛初赛" ]
2
single_choice
新生入校后,合唱队、田径队和舞蹈队共招收学员$$100$$人。如果合唱队招收的人数比田径队多一倍,舞蹈队比合唱队多$$10$$人。那么,舞蹈队招收( )人。(注:每人限加入一个队)
[ [ { "aoVal": "A", "content": "$$30$$ " } ], [ { "aoVal": "B", "content": "$$42$$ " } ], [ { "aoVal": "C", "content": "$$46$$ " } ], [ { "aoVal": "D", "content": "$$52$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->归一归总问题->乘除法应用->除法应用" ]
[ "$$\\left( 100-10 \\right)\\div \\left( 2+2+1 \\right)$$ $$=90\\div 5$$ $$=18$$(人) $$18\\times 2+10$$ $$=36+10$$ $$=46$$(人) 答:舞蹈队招收$$46$$人。 故选:$$C$$。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2223
e3764053ef43442a9d7ec7e432afce55
[ "2015年湖北武汉世奥赛六年级竞赛模拟训练题(三)第6题" ]
2
single_choice
欧欧从$$A$$地前往$$B$$地办事,他每走$$40$$分钟就休息$$10$$分钟,到达$$B$$地共需$$4$$小时$$20$$分钟,从$$B$$地原路返回的速度是去时的$$2$$倍,若他每走$$35$$分钟就休息$$15$$分钟,则到达$$A$$地共需.
[ [ { "aoVal": "A", "content": "$$105$$分钟 " } ], [ { "aoVal": "B", "content": "$$130$$分钟 " } ], [ { "aoVal": "C", "content": "$$135$$分钟 " } ], [ { "aoVal": "D", "content": "$$150$$分钟 " } ] ]
[ "拓展思维->拓展思维->行程模块->直线型行程问题->路程速度时间->单人简单行程问题" ]
[ "$$60\\times 4+20=50\\times 5+10$$,去时共走了$$40\\times 5+10=210$$(分钟),则返回时共需走$$210\\div 2=105$$(分钟),$$105\\div 35=3$$,加上休息的时间共需要$$105+15\\times \\left( 31 \\right)=135$$(分钟). " ]
C