Asteri2themoon
commited on
Commit
•
e40b6e3
1
Parent(s):
fa6ee2d
can be used from materials-toolkit
Browse files- download-and-process.py +31 -91
- materials-project.tar.gz +2 -2
download-and-process.py
CHANGED
@@ -11,10 +11,17 @@ import multiprocessing as mp
|
|
11 |
import json
|
12 |
import re
|
13 |
import tarfile
|
|
|
|
|
|
|
|
|
14 |
|
15 |
from ase.io import read
|
16 |
import numpy as np
|
|
|
17 |
import h5py
|
|
|
|
|
18 |
|
19 |
zip_file = "mp.2019.04.01.json.zip"
|
20 |
url = "https://figshare.com/ndownloader/articles/8097992/versions/2"
|
@@ -97,108 +104,41 @@ def gen_structure_from_json(filename: str, chunksize: Optional[int] = 1 << 20):
|
|
97 |
yield "{" + stack + "}"
|
98 |
|
99 |
|
100 |
-
def parse_structure(json_str: str) ->
|
101 |
data = json.loads(json_str)
|
102 |
struct = read(io.StringIO(data["structure"]), format="cif")
|
103 |
|
104 |
-
cell = struct.cell.array
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
energy_pa = data["formation_energy_per_atom"]
|
112 |
-
return material_id, natoms, formula, cell, x, z, energy_pa
|
113 |
-
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
|
119 |
-
if job is None:
|
120 |
-
break
|
121 |
|
122 |
-
|
|
|
123 |
|
|
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
os.path.join(path, "data.hdf5")
|
128 |
):
|
129 |
return
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
for _ in range(workers):
|
137 |
-
p = mp.Process(target=process_job, args=(input_queue, output_queue))
|
138 |
-
p.start()
|
139 |
-
processes.append(p)
|
140 |
-
|
141 |
-
for elem in gen_structure_from_json(
|
142 |
-
os.path.join(path, "unzipped/mp.2019.04.01.json")
|
143 |
-
):
|
144 |
-
input_queue.put(elem)
|
145 |
-
|
146 |
-
if input_queue.qsize() > 2 * workers:
|
147 |
-
results.append(output_queue.get())
|
148 |
-
while not output_queue.empty():
|
149 |
-
results.append(output_queue.get())
|
150 |
-
|
151 |
-
for _ in range(workers):
|
152 |
-
input_queue.put(None)
|
153 |
-
|
154 |
-
for process in processes:
|
155 |
-
process.join()
|
156 |
-
|
157 |
-
while not output_queue.empty():
|
158 |
-
results.append(output_queue.get())
|
159 |
-
|
160 |
-
material_id = [material_id for material_id, _, _, _, _, _, _ in results]
|
161 |
-
formula = [formula for _, _, formula, _, _, _, _ in results]
|
162 |
-
|
163 |
-
natoms = np.array([natoms for _, natoms, _, _, _, _, _ in results], dtype=np.int64)
|
164 |
-
atoms_ptr = np.pad(natoms.cumsum(0), (1, 0)).astype(np.int64)
|
165 |
-
idx = np.arange(len(results), dtype=np.int64)
|
166 |
-
|
167 |
-
cell = np.stack(
|
168 |
-
[cell for _, _, _, cell, _, _, _ in results], axis=0, dtype=np.float32
|
169 |
-
)
|
170 |
-
x = np.concatenate([x for _, _, _, _, x, _, _ in results], axis=0, dtype=np.float32)
|
171 |
-
z = np.concatenate([z for _, _, _, _, _, z, _ in results], axis=0, dtype=np.int64)
|
172 |
-
energy_pa = np.array(
|
173 |
-
[energy_pa for _, _, _, _, _, _, energy_pa in results], dtype=np.float32
|
174 |
-
)
|
175 |
-
|
176 |
-
index = [
|
177 |
-
{
|
178 |
-
"index": int(i),
|
179 |
-
"id": str(m_id),
|
180 |
-
"formula": str(f),
|
181 |
-
"natoms": int(n),
|
182 |
-
"energy_pa": float(e),
|
183 |
-
}
|
184 |
-
for i, m_id, f, n, e in zip(idx, material_id, formula, natoms, energy_pa)
|
185 |
]
|
186 |
-
with open(os.path.join(path, "index.json"), "w") as fp:
|
187 |
-
json.dump(index, fp)
|
188 |
-
|
189 |
-
f = h5py.File("data.hdf5", "w")
|
190 |
-
|
191 |
-
structures = f.create_group("structures")
|
192 |
-
structures.create_dataset("cell", data=cell, dtype=np.float32)
|
193 |
-
structures.create_dataset("natoms", data=natoms, dtype=np.int32)
|
194 |
-
structures.create_dataset("energy_pa", data=energy_pa, dtype=np.float32)
|
195 |
-
structures.create_dataset("atoms_ptr", data=atoms_ptr, dtype=np.int64)
|
196 |
-
|
197 |
-
atoms = f.create_group("atoms")
|
198 |
-
atoms.create_dataset("positions", data=x, dtype=np.float32)
|
199 |
-
atoms.create_dataset("atomic_number", data=z, dtype=np.uint8)
|
200 |
|
201 |
-
|
202 |
|
203 |
|
204 |
def compress(path: Optional[str] = "."):
|
@@ -209,8 +149,8 @@ def compress(path: Optional[str] = "."):
|
|
209 |
|
210 |
print("compress into materials-project.tar.gz")
|
211 |
with tarfile.open(output_file, "w:gz") as tar:
|
212 |
-
tar.add(os.path.join(path, "
|
213 |
-
tar.add(os.path.join(path, "data.hdf5"))
|
214 |
|
215 |
|
216 |
download_raw_mp()
|
|
|
11 |
import json
|
12 |
import re
|
13 |
import tarfile
|
14 |
+
import resource
|
15 |
+
|
16 |
+
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
|
17 |
+
resource.setrlimit(resource.RLIMIT_NOFILE, (1 << 16, rlimit[1]))
|
18 |
|
19 |
from ase.io import read
|
20 |
import numpy as np
|
21 |
+
import torch
|
22 |
import h5py
|
23 |
+
from materials_toolkit.data import HDF5Dataset, StructureData
|
24 |
+
from materials_toolkit.data.datasets import MaterialsProjectData
|
25 |
|
26 |
zip_file = "mp.2019.04.01.json.zip"
|
27 |
url = "https://figshare.com/ndownloader/articles/8097992/versions/2"
|
|
|
104 |
yield "{" + stack + "}"
|
105 |
|
106 |
|
107 |
+
def parse_structure(json_str: str) -> MaterialsProjectData:
|
108 |
data = json.loads(json_str)
|
109 |
struct = read(io.StringIO(data["structure"]), format="cif")
|
110 |
|
111 |
+
cell = torch.from_numpy(struct.cell.array).unsqueeze(0).float()
|
112 |
+
x = torch.from_numpy(struct.get_scaled_positions()).float()
|
113 |
+
z = torch.from_numpy(struct.get_atomic_numbers()).int()
|
114 |
+
material_id = torch.tensor(
|
115 |
+
[int(data["material_id"].split("-")[1])], dtype=torch.long
|
116 |
+
)
|
117 |
+
energy_pa = torch.tensor([data["formation_energy_per_atom"]], dtype=torch.float)
|
|
|
|
|
|
|
118 |
|
119 |
+
return MaterialsProjectData(
|
120 |
+
pos=x, z=z, cell=cell, material_id=material_id, energy_pa=energy_pa
|
121 |
+
)
|
122 |
|
|
|
|
|
123 |
|
124 |
+
def process(path: Optional[str] = "."):
|
125 |
+
mp_dir = os.path.join(path, "materials-project")
|
126 |
|
127 |
+
os.makedirs(mp_dir, exist_ok=True)
|
128 |
|
129 |
+
if os.path.exists(os.path.join(mp_dir, "batching.json")) and os.path.exists(
|
130 |
+
os.path.join(mp_dir, "data.hdf5")
|
|
|
131 |
):
|
132 |
return
|
133 |
|
134 |
+
results = [
|
135 |
+
parse_structure(elem)
|
136 |
+
for elem in gen_structure_from_json(
|
137 |
+
os.path.join(path, "unzipped/mp.2019.04.01.json")
|
138 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
HDF5Dataset.create_dataset(mp_dir, results)
|
142 |
|
143 |
|
144 |
def compress(path: Optional[str] = "."):
|
|
|
149 |
|
150 |
print("compress into materials-project.tar.gz")
|
151 |
with tarfile.open(output_file, "w:gz") as tar:
|
152 |
+
tar.add(os.path.join(path, "materials-project/batching.json"))
|
153 |
+
tar.add(os.path.join(path, "materials-project/data.hdf5"))
|
154 |
|
155 |
|
156 |
download_raw_mp()
|
materials-project.tar.gz
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d27d6d4570823fff5a2482ff1e33df223dcffe33a550a0facbd7a4878ad2d37e
|
3 |
+
size 38793411
|