Davlan commited on
Commit
e8000ab
1 Parent(s): cad397b

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +271 -0
README.md ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ annotations_creators:
2
+ - expert-generated
3
+ language:
4
+ - en
5
+ - fr
6
+ - am
7
+ - bm
8
+ - bbj
9
+ - ee
10
+ - fon
11
+ - ha
12
+ - ig
13
+ - lg
14
+ - mos
15
+ - ny
16
+ - pcm
17
+ - rw
18
+ - sn
19
+ - sw
20
+ - tn
21
+ - tw
22
+ - wo
23
+ - xh
24
+ - yo
25
+ - zu
26
+ language_creators:
27
+ - expert-generated
28
+ license:
29
+ - cc-by-nc-4.0
30
+ multilinguality:
31
+ - translation
32
+ - multilingual
33
+ pretty_name: mafand
34
+ size_categories:
35
+ - 1K<n<10K
36
+ source_datasets:
37
+ - original
38
+ tags:
39
+ - news, mafand, masakhane
40
+ task_categories:
41
+ - translation
42
+ task_ids: []
43
+
44
+ # Dataset Card for [Needs More Information]
45
+
46
+ ## Table of Contents
47
+ - [Dataset Description](#dataset-description)
48
+ - [Dataset Summary](#dataset-summary)
49
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
50
+ - [Languages](#languages)
51
+ - [Dataset Structure](#dataset-structure)
52
+ - [Data Instances](#data-instances)
53
+ - [Data Fields](#data-instances)
54
+ - [Data Splits](#data-instances)
55
+ - [Dataset Creation](#dataset-creation)
56
+ - [Curation Rationale](#curation-rationale)
57
+ - [Source Data](#source-data)
58
+ - [Annotations](#annotations)
59
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
60
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
61
+ - [Social Impact of Dataset](#social-impact-of-dataset)
62
+ - [Discussion of Biases](#discussion-of-biases)
63
+ - [Other Known Limitations](#other-known-limitations)
64
+ - [Additional Information](#additional-information)
65
+ - [Dataset Curators](#dataset-curators)
66
+ - [Licensing Information](#licensing-information)
67
+ - [Citation Information](#citation-information)
68
+
69
+ ## Dataset Description
70
+
71
+ - **Homepage:** https://github.com/masakhane-io/lafand-mt
72
+ - **Repository:** https://github.com/masakhane-io/lafand-mt
73
+ - **Paper:** https://aclanthology.org/2022.naacl-main.223/
74
+ - **Leaderboard:** [Needs More Information]
75
+ - **Point of Contact:** David Adelani (didelani@lsv.uni-saarland.de)
76
+
77
+ ### Dataset Summary
78
+
79
+ MAFAND-MT is the largest MT benchmark for African languages in the news domain, covering 21 languages.
80
+
81
+ ### Supported Tasks and Leaderboards
82
+
83
+ Machine Translation
84
+
85
+ ### Languages
86
+
87
+ The languages covered are:
88
+ - Amharic
89
+ - Bambara
90
+ - Ghomala
91
+ - Ewe
92
+ - Fon
93
+ - Hausa
94
+ - Igbo
95
+ - Kinyarwanda
96
+ - Luganda
97
+ - Luo
98
+ - Mossi
99
+ - Nigerian-Pidgin
100
+ - Chichewa
101
+ - Shona
102
+ - Swahili
103
+ - Setswana
104
+ - Twi
105
+ - Wolof
106
+ - Xhosa
107
+ - Yoruba
108
+ - Zulu
109
+
110
+ ## Dataset Structure
111
+
112
+ ### Data Instances
113
+
114
+ {"translation": {"src": "--- President Buhari will determine when to lift lockdown  Minister", "tgt": "--- ��r� Buhari l� l� y�h�n pad� l�r� �t� k�n�l�gb�l�  M�n�s�t�"}}
115
+
116
+
117
+ {"translation": {"en": "--- President Buhari will determine when to lift lockdown  Minister", "yo": "--- ��r� Buhari l� l� y�h�n pad� l�r� �t� k�n�l�gb�l�  M�n�s�t�"}}
118
+
119
+
120
+ ### Data Fields
121
+
122
+ "translation": name of the task
123
+ "src" : source language e.g en
124
+ "tgt": target language e.g yo
125
+
126
+ ### Data Splits
127
+
128
+ Train/dev/test split
129
+
130
+ language| Train| Dev |Test
131
+ -|-|-|-
132
+ amh |-|899|1037
133
+ bam |3302|1484|1600
134
+ bbj |2232|1133|1430
135
+ ewe |2026|1414|1563
136
+ fon |2637|1227|1579
137
+ hau |5865|1300|1500
138
+ ibo |6998|1500|1500
139
+ kin |-|460|1006
140
+ lug |4075|1500|1500
141
+ luo |4262|1500|1500
142
+ mos |2287|1478|1574
143
+ nya |-|483|1004
144
+ pcm |4790|1484|1574
145
+ sna |-|556|1005
146
+ swa |30782|1791|1835
147
+ tsn |2100|1340|1835
148
+ twi |3337|1284|1500
149
+ wol |3360|1506|1500|
150
+ xho |-|486|1002|
151
+ yor |6644|1544|1558|
152
+ zul |3500|1239|998|
153
+
154
+
155
+ ## Dataset Creation
156
+
157
+ ### Curation Rationale
158
+
159
+ MAFAND was created from the news domain, translated from English or French to an African language
160
+
161
+ ### Source Data
162
+
163
+ #### Initial Data Collection and Normalization
164
+
165
+ [Needs More Information]
166
+
167
+ #### Who are the source language producers?
168
+
169
+ [Masakhane](https://github.com/masakhane-io/lafand-mt)
170
+ [Igbo](https://github.com/IgnatiusEzeani/IGBONLP/tree/master/ig_en_mt)
171
+ [Swahili](https://opus.nlpl.eu/GlobalVoices.php)
172
+ [Hausa](https://www.statmt.org/wmt21/translation-task.html)
173
+ [Yoruba](https://github.com/uds-lsv/menyo-20k_MT)
174
+
175
+ ### Annotations
176
+
177
+ #### Annotation process
178
+
179
+ [Needs More Information]
180
+
181
+ #### Who are the annotators?
182
+
183
+ Masakhane members
184
+
185
+ ### Personal and Sensitive Information
186
+
187
+ [Needs More Information]
188
+
189
+ ## Considerations for Using the Data
190
+
191
+ ### Social Impact of Dataset
192
+
193
+ [Needs More Information]
194
+
195
+ ### Discussion of Biases
196
+
197
+ [Needs More Information]
198
+
199
+ ### Other Known Limitations
200
+
201
+ [Needs More Information]
202
+
203
+ ## Additional Information
204
+
205
+ ### Dataset Curators
206
+
207
+ [Needs More Information]
208
+
209
+ ### Licensing Information
210
+
211
+ [CC-BY-4.0-NC](https://creativecommons.org/licenses/by-nc/4.0/)
212
+
213
+ ### Citation Information
214
+
215
+ @inproceedings{adelani-etal-2022-thousand,
216
+ title = "A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for {A}frican News Translation",
217
+ author = "Adelani, David and
218
+ Alabi, Jesujoba and
219
+ Fan, Angela and
220
+ Kreutzer, Julia and
221
+ Shen, Xiaoyu and
222
+ Reid, Machel and
223
+ Ruiter, Dana and
224
+ Klakow, Dietrich and
225
+ Nabende, Peter and
226
+ Chang, Ernie and
227
+ Gwadabe, Tajuddeen and
228
+ Sackey, Freshia and
229
+ Dossou, Bonaventure F. P. and
230
+ Emezue, Chris and
231
+ Leong, Colin and
232
+ Beukman, Michael and
233
+ Muhammad, Shamsuddeen and
234
+ Jarso, Guyo and
235
+ Yousuf, Oreen and
236
+ Niyongabo Rubungo, Andre and
237
+ Hacheme, Gilles and
238
+ Wairagala, Eric Peter and
239
+ Nasir, Muhammad Umair and
240
+ Ajibade, Benjamin and
241
+ Ajayi, Tunde and
242
+ Gitau, Yvonne and
243
+ Abbott, Jade and
244
+ Ahmed, Mohamed and
245
+ Ochieng, Millicent and
246
+ Aremu, Anuoluwapo and
247
+ Ogayo, Perez and
248
+ Mukiibi, Jonathan and
249
+ Ouoba Kabore, Fatoumata and
250
+ Kalipe, Godson and
251
+ Mbaye, Derguene and
252
+ Tapo, Allahsera Auguste and
253
+ Memdjokam Koagne, Victoire and
254
+ Munkoh-Buabeng, Edwin and
255
+ Wagner, Valencia and
256
+ Abdulmumin, Idris and
257
+ Awokoya, Ayodele and
258
+ Buzaaba, Happy and
259
+ Sibanda, Blessing and
260
+ Bukula, Andiswa and
261
+ Manthalu, Sam",
262
+ booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
263
+ month = jul,
264
+ year = "2022",
265
+ address = "Seattle, United States",
266
+ publisher = "Association for Computational Linguistics",
267
+ url = "https://aclanthology.org/2022.naacl-main.223",
268
+ doi = "10.18653/v1/2022.naacl-main.223",
269
+ pages = "3053--3070",
270
+ abstract = "Recent advances in the pre-training for language models leverage large-scale datasets to create multilingual models. However, low-resource languages are mostly left out in these datasets. This is primarily because many widely spoken languages that are not well represented on the web and therefore excluded from the large-scale crawls for datasets. Furthermore, downstream users of these models are restricted to the selection of languages originally chosen for pre-training. This work investigates how to optimally leverage existing pre-trained models to create low-resource translation systems for 16 African languages. We focus on two questions: 1) How can pre-trained models be used for languages not included in the initial pretraining? and 2) How can the resulting translation models effectively transfer to new domains? To answer these questions, we create a novel African news corpus covering 16 languages, of which eight languages are not part of any existing evaluation dataset. We demonstrate that the most effective strategy for transferring both additional languages and additional domains is to leverage small quantities of high-quality translation data to fine-tune large pre-trained models.",
271
+ }