Datasets:
Languages:
Indonesian
Tags:
summarization
Maryanto
commited on
Commit
•
0a2e187
1
Parent(s):
ad6c47e
first commit
Browse files- LICENSE +1 -0
- README.md +42 -0
- __init__.py +0 -0
- indosum.py +205 -0
LICENSE
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Apache License, Version 2.0
|
README.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- summarization
|
4 |
+
language:
|
5 |
+
- ind
|
6 |
+
---
|
7 |
+
|
8 |
+
# indosum
|
9 |
+
|
10 |
+
INDOSUM is a new benchmark dataset for Indonesian text summarization.
|
11 |
+
|
12 |
+
The dataset consists of news articles and manually constructed summaries.
|
13 |
+
|
14 |
+
## Dataset Usage
|
15 |
+
|
16 |
+
Run `pip install nusacrowd` before loading the dataset through HuggingFace's `load_dataset`.
|
17 |
+
|
18 |
+
## Citation
|
19 |
+
|
20 |
+
```
|
21 |
+
@INPROCEEDINGS{8629109,
|
22 |
+
author={Kurniawan, Kemal and Louvan, Samuel},
|
23 |
+
booktitle={2018 International Conference on Asian Language Processing (IALP)},
|
24 |
+
title={Indosum: A New Benchmark Dataset for Indonesian Text Summarization},
|
25 |
+
year={2018},
|
26 |
+
volume={},
|
27 |
+
number={},
|
28 |
+
pages={215-220},
|
29 |
+
doi={10.1109/IALP.2018.8629109}}
|
30 |
+
```
|
31 |
+
|
32 |
+
## License
|
33 |
+
|
34 |
+
Apache License, Version 2.0
|
35 |
+
|
36 |
+
## Homepage
|
37 |
+
|
38 |
+
[https://github.com/kata-ai/indosum](https://github.com/kata-ai/indosum)
|
39 |
+
|
40 |
+
### NusaCatalogue
|
41 |
+
|
42 |
+
For easy indexing and metadata: [https://indonlp.github.io/nusa-catalogue](https://indonlp.github.io/nusa-catalogue)
|
__init__.py
ADDED
File without changes
|
indosum.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Dict, List, Tuple
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
from nusacrowd.utils.configs import NusantaraConfig
|
8 |
+
from nusacrowd.utils.constants import Tasks
|
9 |
+
from nusacrowd.utils import schemas
|
10 |
+
import jsonlines
|
11 |
+
from nltk.tokenize.treebank import TreebankWordDetokenizer
|
12 |
+
|
13 |
+
_CITATION = """\
|
14 |
+
@INPROCEEDINGS{8629109,
|
15 |
+
author={Kurniawan, Kemal and Louvan, Samuel},
|
16 |
+
booktitle={2018 International Conference on Asian Language Processing (IALP)},
|
17 |
+
title={Indosum: A New Benchmark Dataset for Indonesian Text Summarization},
|
18 |
+
year={2018},
|
19 |
+
volume={},
|
20 |
+
number={},
|
21 |
+
pages={215-220},
|
22 |
+
doi={10.1109/IALP.2018.8629109}}
|
23 |
+
"""
|
24 |
+
|
25 |
+
_LOCAL = False
|
26 |
+
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
27 |
+
_DATASETNAME = "indosum"
|
28 |
+
|
29 |
+
_DESCRIPTION = """\
|
30 |
+
INDOSUM is a new benchmark dataset for Indonesian text summarization.
|
31 |
+
The dataset consists of news articles and manually constructed summaries.
|
32 |
+
"""
|
33 |
+
|
34 |
+
_HOMEPAGE = "https://github.com/kata-ai/indosum"
|
35 |
+
|
36 |
+
_LICENSE = "Apache License, Version 2.0"
|
37 |
+
|
38 |
+
_URLS = {
|
39 |
+
_DATASETNAME: "https://drive.usercontent.google.com/download?id=1OgYbPfXFAv3TbwP1Qcwt_CC9cVWSJaco&authuser=0&confirm=t&uuid=c06409ed-183f-4fd6-b53a-5af1fd816974&at=APZUnTWG1XP0UrA0fEf4esj_6D-1%3A1705996572820",
|
40 |
+
}
|
41 |
+
|
42 |
+
_SUPPORTED_TASKS = [Tasks.SUMMARIZATION]
|
43 |
+
|
44 |
+
_SOURCE_VERSION = "1.0.0"
|
45 |
+
|
46 |
+
_NUSANTARA_VERSION = "1.0.0"
|
47 |
+
|
48 |
+
|
49 |
+
class IndoSUM(datasets.GeneratorBasedBuilder):
|
50 |
+
"""INDOSUM is a new benchmark dataset for Indonesian text summarization. The dataset consists of news articles and manually constructed summaries."""
|
51 |
+
|
52 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
53 |
+
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
|
54 |
+
|
55 |
+
BUILDER_CONFIGS = (
|
56 |
+
[
|
57 |
+
NusantaraConfig(
|
58 |
+
name="indosum_fold{fold_number}_source".format(fold_number=i),
|
59 |
+
version=_SOURCE_VERSION,
|
60 |
+
description="indosum source schema",
|
61 |
+
schema="source",
|
62 |
+
subset_id="indosum_fold{fold_number}".format(fold_number=i),
|
63 |
+
) for i in range(5)
|
64 |
+
]
|
65 |
+
+
|
66 |
+
[
|
67 |
+
NusantaraConfig(
|
68 |
+
name="indosum_fold{fold_number}_nusantara_t2t".format(fold_number=i),
|
69 |
+
version=_NUSANTARA_VERSION,
|
70 |
+
description="indosum Nusantara schema",
|
71 |
+
schema="nusantara_t2t",
|
72 |
+
subset_id="indosum_fold{fold_number}".format(fold_number=i),
|
73 |
+
) for i in range(5)
|
74 |
+
]
|
75 |
+
)
|
76 |
+
|
77 |
+
DEFAULT_CONFIG_NAME = "indosum_fold0_source"
|
78 |
+
|
79 |
+
def _info(self) -> datasets.DatasetInfo:
|
80 |
+
|
81 |
+
if self.config.schema == "source":
|
82 |
+
|
83 |
+
features = datasets.Features(
|
84 |
+
{
|
85 |
+
"document": datasets.Value("string"),
|
86 |
+
"id": datasets.Value("string"),
|
87 |
+
"summary": datasets.Value("string")
|
88 |
+
}
|
89 |
+
)
|
90 |
+
|
91 |
+
elif self.config.schema == "nusantara_t2t":
|
92 |
+
features = schemas.text2text_features
|
93 |
+
|
94 |
+
return datasets.DatasetInfo(
|
95 |
+
description=_DESCRIPTION,
|
96 |
+
features=features,
|
97 |
+
homepage=_HOMEPAGE,
|
98 |
+
license=_LICENSE,
|
99 |
+
citation=_CITATION,
|
100 |
+
)
|
101 |
+
|
102 |
+
def _get_fold_index(self):
|
103 |
+
try:
|
104 |
+
subset_id = self.config.subset_id
|
105 |
+
idx_fold = subset_id.index("_fold")
|
106 |
+
file_id = subset_id[(idx_fold + 5):]
|
107 |
+
return int(file_id)
|
108 |
+
except:
|
109 |
+
return 0
|
110 |
+
|
111 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
112 |
+
idx = self._get_fold_index()
|
113 |
+
|
114 |
+
urls = _URLS[_DATASETNAME]
|
115 |
+
|
116 |
+
data_dir = Path(dl_manager.download_and_extract(urls))
|
117 |
+
|
118 |
+
location = {
|
119 |
+
"train": "indosum/train.0{fold_number}.jsonl",
|
120 |
+
"test": "indosum/test.0{fold_number}.jsonl",
|
121 |
+
"dev": "indosum/dev.0{fold_number}.jsonl"
|
122 |
+
}
|
123 |
+
|
124 |
+
data_dir = dl_manager.download_and_extract(urls)
|
125 |
+
|
126 |
+
return [
|
127 |
+
datasets.SplitGenerator(
|
128 |
+
name=datasets.Split.TRAIN,
|
129 |
+
|
130 |
+
gen_kwargs={
|
131 |
+
"filepath": os.path.join(data_dir, location["train"].format(fold_number=idx+1)),
|
132 |
+
"split": "train",
|
133 |
+
},
|
134 |
+
),
|
135 |
+
datasets.SplitGenerator(
|
136 |
+
name=datasets.Split.TEST,
|
137 |
+
gen_kwargs={
|
138 |
+
"filepath": os.path.join(data_dir, location["test"].format(fold_number=idx+1)),
|
139 |
+
"split": "test",
|
140 |
+
},
|
141 |
+
),
|
142 |
+
datasets.SplitGenerator(
|
143 |
+
name=datasets.Split.VALIDATION,
|
144 |
+
gen_kwargs={
|
145 |
+
"filepath": os.path.join(data_dir, location["dev"].format(fold_number=idx+1)),
|
146 |
+
"split": "dev",
|
147 |
+
},
|
148 |
+
),
|
149 |
+
]
|
150 |
+
|
151 |
+
def _get_full_paragraph_and_summary(self, data: Dict) -> Tuple[str, str]:
|
152 |
+
detokenizer = TreebankWordDetokenizer()
|
153 |
+
paragraph = ""
|
154 |
+
summary = ""
|
155 |
+
begin_paragraph = True
|
156 |
+
begin_summary = True
|
157 |
+
|
158 |
+
for each_paragraph in data["paragraphs"]:
|
159 |
+
for each_sentence in each_paragraph:
|
160 |
+
detokenized_sentence = detokenizer.detokenize(each_sentence)
|
161 |
+
if begin_paragraph:
|
162 |
+
paragraph+=detokenized_sentence
|
163 |
+
begin_paragraph = False
|
164 |
+
else:
|
165 |
+
paragraph = "{} {}".format(paragraph, detokenized_sentence)
|
166 |
+
|
167 |
+
for each_summary in data["summary"]:
|
168 |
+
detokenized_sentence = detokenizer.detokenize(each_summary)
|
169 |
+
if begin_summary:
|
170 |
+
summary+=detokenized_sentence
|
171 |
+
begin_summary = False
|
172 |
+
else:
|
173 |
+
summary = "{} {}".format(summary, detokenized_sentence)
|
174 |
+
|
175 |
+
return paragraph, summary
|
176 |
+
|
177 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
178 |
+
|
179 |
+
if self.config.schema == "source":
|
180 |
+
i = 0
|
181 |
+
with jsonlines.open(filepath) as f:
|
182 |
+
for each_data in f.iter():
|
183 |
+
full_paragraph, full_summary = self._get_full_paragraph_and_summary(each_data)
|
184 |
+
ex = {
|
185 |
+
"id": each_data["id"],
|
186 |
+
"document": full_paragraph,
|
187 |
+
"summary": full_summary
|
188 |
+
}
|
189 |
+
yield i, ex
|
190 |
+
i+=1
|
191 |
+
|
192 |
+
elif self.config.schema == "nusantara_t2t":
|
193 |
+
i = 0
|
194 |
+
with jsonlines.open(filepath) as f:
|
195 |
+
for each_data in f.iter():
|
196 |
+
full_paragraph, full_summary = self._get_full_paragraph_and_summary(each_data)
|
197 |
+
ex = {
|
198 |
+
"id": each_data["id"],
|
199 |
+
"text_1": full_paragraph,
|
200 |
+
"text_2": full_summary,
|
201 |
+
"text_1_name": "document",
|
202 |
+
"text_2_name": "summary"
|
203 |
+
}
|
204 |
+
yield i, ex
|
205 |
+
i+=1
|