Emilio Marinone
commited on
Commit
·
0a5f8f6
1
Parent(s):
5101556
add loading script, dataset info
Browse files- .gitignore +2 -0
- data/train-00000-of-00001.parquet +0 -3
- nst_sv.py +240 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*venv/
|
2 |
+
create_dummy_datasets_for_preview.py
|
data/train-00000-of-00001.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:819e266d6630bc5159deac488172424889507700953b1d2e37cd471d4c43574e
|
3 |
-
size 74363964
|
|
|
|
|
|
|
|
nst_sv.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" Load swedish NST dataset provided by National Library of Norway | Språkbanken.
|
17 |
+
|
18 |
+
Documentation with full description of the data: https://www.nb.no/sbfil/talegjenkjenning/16kHz_2020/se_2020/se-16khz_reorganized.pdf
|
19 |
+
|
20 |
+
TODO:
|
21 |
+
* add multi channel option
|
22 |
+
* add train-validation-test split option
|
23 |
+
"""
|
24 |
+
|
25 |
+
import csv
|
26 |
+
import json
|
27 |
+
import os
|
28 |
+
|
29 |
+
import datasets
|
30 |
+
|
31 |
+
|
32 |
+
_DESCRIPTION = """\
|
33 |
+
This database was created by Nordic Language Technology for the development
|
34 |
+
of automatic speech recognition and dictation in Swedish.
|
35 |
+
In this updated version, the organization of the data have been altered to improve the usefulness of the database.
|
36 |
+
In the original version of the material,
|
37 |
+
the files were organized in a specific folder structure where the folder names were meaningful.
|
38 |
+
However, the file names were not meaningful, and there were also cases of files with identical names in different folders.
|
39 |
+
This proved to be impractical, since users had to keep the original folder structure in order to use the data.
|
40 |
+
The files have been renamed, such that the file names are unique and meaningful regardless of the folder structure.
|
41 |
+
The original metadata files were in spl format. These have been converted to JSON format.
|
42 |
+
The converted metadata files are also anonymized and the text encoding has been converted from ANSI to UTF-8.
|
43 |
+
See the documentation file for a full description of the data and the changes made to the database."""
|
44 |
+
|
45 |
+
_HOMEPAGE = "https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-56/"
|
46 |
+
|
47 |
+
_LICENSE = "CC0 1.0"
|
48 |
+
|
49 |
+
# TODO: Add link to the official dataset URLs here
|
50 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
51 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
52 |
+
_URLS = {
|
53 |
+
"close_channel": "https://www.nb.no/sbfil/talegjenkjenning/16kHz_2020/se_2020/lydfiler_16_1.tar.gz",
|
54 |
+
"distant_channel": "https://www.nb.no/sbfil/talegjenkjenning/16kHz_2020/se_2020/lydfiler_16_2.tar.gz",
|
55 |
+
# TODO: add handling of multi channel
|
56 |
+
# "multi_channel": "https://www.nb.no/sbfil/talegjenkjenning/16kHz_2020/se_2020/lydfiler_16_begge.tar.gz",
|
57 |
+
}
|
58 |
+
|
59 |
+
_ANNOTATIONS_URL = "https://www.nb.no/sbfil/talegjenkjenning/16kHz_2020/se_2020/ADB_SWE_0467.tar.gz"
|
60 |
+
|
61 |
+
|
62 |
+
class NstSV(datasets.GeneratorBasedBuilder):
|
63 |
+
"""Audio dataset for Swedish ASR provided by National Library of Norawy.
|
64 |
+
|
65 |
+
Originally, recordings have been made on two channels: a close one and a distant one.
|
66 |
+
Channels have been separated and can be loaded independently.
|
67 |
+
|
68 |
+
TODO: enable and validate multi_channel
|
69 |
+
Two configurations available:
|
70 |
+
- close_channel
|
71 |
+
- distant_channel
|
72 |
+
|
73 |
+
Main data and metadata available:
|
74 |
+
- audio file (bytes)
|
75 |
+
- manually annotated transcription (str)
|
76 |
+
- age (str)
|
77 |
+
- gender (str)
|
78 |
+
- region of birth (str)
|
79 |
+
- region of youth (str)
|
80 |
+
- recording session info (object)
|
81 |
+
- recording system (object)
|
82 |
+
- "type" of recording (see detailed documentatin)
|
83 |
+
- common_voice-like structured information
|
84 |
+
(info mentioned above with object structure like common voice dataset for ease of merging)
|
85 |
+
|
86 |
+
"""
|
87 |
+
|
88 |
+
VERSION = datasets.Version("1.1.0")
|
89 |
+
|
90 |
+
# This is an example of a dataset with multiple configurations.
|
91 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
92 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
93 |
+
|
94 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
95 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
96 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
97 |
+
|
98 |
+
# You will be able to load one or the other configurations in the following list with
|
99 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
100 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
101 |
+
BUILDER_CONFIGS = [
|
102 |
+
datasets.BuilderConfig(name="close_channel", version=VERSION, description="Close channel recordings"),
|
103 |
+
datasets.BuilderConfig(name="distant_channel", version=VERSION, description="Distant channel recordings"),
|
104 |
+
]
|
105 |
+
|
106 |
+
DEFAULT_CONFIG_NAME = "close_channel" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
107 |
+
|
108 |
+
def _info(self):
|
109 |
+
features_dict = {
|
110 |
+
"info": dict,
|
111 |
+
"metadata": dict,
|
112 |
+
"pid": datasets.Value("string"),
|
113 |
+
"session": dict,
|
114 |
+
"system": dict,
|
115 |
+
"val_recordings": list,
|
116 |
+
"audio": datasets.features.Audio(sampling_rate=16000),
|
117 |
+
'client_id': datasets.Value("string"),
|
118 |
+
'path': datasets.Value("string"),
|
119 |
+
'sentence': datasets.Value("string"),
|
120 |
+
'up_votes': datasets.Value("int32"),
|
121 |
+
'down_votes': datasets.Value("int32"),
|
122 |
+
'age': datasets.Value("string"),
|
123 |
+
'gender': datasets.Value("string"),
|
124 |
+
'accent': datasets.Value("string"),
|
125 |
+
'locale': datasets.Value("string"),
|
126 |
+
'segment': datasets.Value("string"),
|
127 |
+
'channel': datasets.Value("string")
|
128 |
+
}
|
129 |
+
return datasets.DatasetInfo(
|
130 |
+
# This is the description that will appear on the datasets page.
|
131 |
+
description=_DESCRIPTION,
|
132 |
+
# This defines the different columns of the dataset and their types
|
133 |
+
features=datasets.Features(features_dict),
|
134 |
+
# Here we define them above because they are different between the two configurations
|
135 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
136 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
137 |
+
# supervised_keys=("sentence", "label"),
|
138 |
+
# Homepage of the dataset for documentation
|
139 |
+
homepage=_HOMEPAGE,
|
140 |
+
# License for the dataset if available
|
141 |
+
license=_LICENSE,
|
142 |
+
)
|
143 |
+
|
144 |
+
def _split_generators(self, dl_manager):
|
145 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
146 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
147 |
+
|
148 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
149 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
150 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
151 |
+
urls = _URLS[self.config.name]
|
152 |
+
data_dir = dl_manager.download_and_extract(urls)
|
153 |
+
annotations_dir = dl_manager.download_and_extract(_ANNOTATIONS_URL)
|
154 |
+
|
155 |
+
return [
|
156 |
+
datasets.SplitGenerator(
|
157 |
+
name="all",
|
158 |
+
# These kwargs will be passed to _generate_examples
|
159 |
+
gen_kwargs={
|
160 |
+
"data_dir": data_dir,
|
161 |
+
"annotations_dir": annotations_dir
|
162 |
+
},
|
163 |
+
),
|
164 |
+
# TODO: add split handling
|
165 |
+
# datasets.SplitGenerator(
|
166 |
+
# name=datasets.Split.TRAIN,
|
167 |
+
# # These kwargs will be passed to _generate_examples
|
168 |
+
# gen_kwargs={
|
169 |
+
# "filepath": os.path.join(data_dir, "test.jsonl"),
|
170 |
+
# "split": "test"
|
171 |
+
# },
|
172 |
+
# ),
|
173 |
+
# datasets.SplitGenerator(
|
174 |
+
# name=datasets.Split.TEST,
|
175 |
+
# # These kwargs will be passed to _generate_examples
|
176 |
+
# gen_kwargs={
|
177 |
+
# "filepath": os.path.join(data_dir, "test.jsonl"),
|
178 |
+
# "split": "test"
|
179 |
+
# },
|
180 |
+
# ),
|
181 |
+
# datasets.SplitGenerator(
|
182 |
+
# name=datasets.Split.VALIDATION,
|
183 |
+
# # These kwargs will be passed to _generate_examples
|
184 |
+
# gen_kwargs={
|
185 |
+
# "filepath": os.path.join(data_dir, "dev.jsonl"),
|
186 |
+
# "split": "dev",
|
187 |
+
# },
|
188 |
+
# ),
|
189 |
+
]
|
190 |
+
|
191 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
192 |
+
def _generate_examples(self, data_dir, annotations_dir):
|
193 |
+
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
194 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
195 |
+
|
196 |
+
if self.config.name == "close_channel":
|
197 |
+
channel_ext = "-1"
|
198 |
+
else:
|
199 |
+
channel_ext = "-2"
|
200 |
+
|
201 |
+
for annotation_filename in os.listdir(annotations_dir):
|
202 |
+
|
203 |
+
annotations_filepath = os.path.join(annotations_dir, annotation_filename)
|
204 |
+
with open(annotations_filepath, "r") as f:
|
205 |
+
annotation = json.load(f)
|
206 |
+
|
207 |
+
for recording in annotation["val_recordings"]:
|
208 |
+
# channel_ext in can either be "-1" "-2"
|
209 |
+
# so if file is "123456.wav"
|
210 |
+
# close channel file is "123456-1.wav"
|
211 |
+
# distant channel file is "123456-2.wav"
|
212 |
+
rel_filepath = f'se/{annotation["pid"]}/{annotation["pid"]}_{recording["file"]}'.replace(".wav", f"{channel_ext}.wav")
|
213 |
+
audio_filepath = f"{data_dir}/{rel_filepath}"
|
214 |
+
if os.path.exists(audio_filepath):
|
215 |
+
with open(audio_filepath, "rb") as f:
|
216 |
+
audio_bytes = f.read()
|
217 |
+
result = {
|
218 |
+
"info": annotation["info"],
|
219 |
+
"metadata": annotation["metadata"],
|
220 |
+
"pid": annotation["pid"],
|
221 |
+
"session": annotation["session"],
|
222 |
+
"system": annotation["system"],
|
223 |
+
"val_recordings": annotation["val_recordings"],
|
224 |
+
"client_id": annotation["info"]["Speaker_ID"],
|
225 |
+
'path': rel_filepath,
|
226 |
+
'audio': {"path": rel_filepath, "bytes": audio_bytes},
|
227 |
+
'sentence': recording["text"],
|
228 |
+
'up_votes': 0,
|
229 |
+
'down_votes': 0,
|
230 |
+
'age': annotation["info"]["Age"],
|
231 |
+
'gender': annotation["info"]["Sex"],
|
232 |
+
'accent': "",
|
233 |
+
'locale': "sv",
|
234 |
+
'segment': ""
|
235 |
+
}
|
236 |
+
|
237 |
+
yield rel_filepath, result
|
238 |
+
|
239 |
+
|
240 |
+
|