krypticmouse commited on
Commit
39f40ee
·
verified ·
1 Parent(s): 7f6e3cd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -1
README.md CHANGED
@@ -4,4 +4,81 @@ task_categories:
4
  - text-generation
5
  language:
6
  - en
7
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  - text-generation
5
  language:
6
  - en
7
+ ---
8
+
9
+ # Marin Markdownified Wikipedia
10
+
11
+ Markdownified Wikipedia is a large-scale, pre-processed version of the English Wikipedia Enterprise HTML dump consisting of **8.59B tokens**. The corpus has been converted to clean, section-aware Markdown for language-model training.
12
+
13
+ | | Value |
14
+ |---------------------|-------|
15
+ | Tokens (GPT-style) | 8 587 224 558 |
16
+ | Primary source | https://dumps.wikimedia.org/other/enterprise_html/runs/20241201/enwiki-NS0-20241201-ENTERPRISE-HTML.json.tar.gz |
17
+ | File format | JSONL |
18
+ | License | CC-BY-SA 4.0 (mirrors upstream Wikipedia licenses) |
19
+
20
+ ## Processing and Cleaning Pipeline
21
+
22
+ Our conversion pipeline combines several sophisticated techniques to transform raw Wikipedia HTML into high-quality Markdown:
23
+
24
+ 1. **HTML Preprocessing:** We start with the Enterprise HTML dump in DOLMA format, which provides HTML representations of Wikipedia articles with metadata.
25
+
26
+ 2. **Structural Cleanup**
27
+ - Mathematical equations are converted from MathML to LaTeX notation with appropriate delimiters
28
+ - Infoboxes are relocated to a dedicated section at the end of each article
29
+ - Reference sections and citations are removed to reduce noise and focus on the informative content
30
+
31
+ 3. **DOM Simplification:** We employ a [custom-enhanced version of Resiliparse](https://github.com/stanford-crfm/chatnoir-resiliparse) that preserves semantic HTML structure. Rather than flattening to plain text, we retain important elements like headings, paragraphs, lists, and links while removing scripts, tracking code, and boilerplate.
32
+
33
+ 4. **Markdown Conversion:** Our [custom Markdownify](https://github.com/marin-community/marin/blob/main/marin/markdown/markdown.py#L145-L650) implementation transforms the simplified DOM into clean Markdown with these characteristics:
34
+ - Consistent heading format using the ATX style (# Heading)
35
+ - Removal of Wikipedia-specific navigation elements and edit buttons
36
+ - Preservation of tables in GitHub-flavored Markdown
37
+ - Standardized list formatting
38
+
39
+ The final output stores each article as a JSON object containing the Markdown text and essential metadata (ID, title, URL, creation date, and optional abstract).
40
+
41
+ 5. **Quality Filtering:** Articles are discarded when they match any of these criteria:
42
+ - More than 50% digits
43
+ - Fewer than 70 words
44
+ - More than 50% special characters
45
+ These filters were applied to remove statistical tables, list-only pages, and navigation stubs.
46
+
47
+ ## Usage Example
48
+
49
+ ```python
50
+ from datasets import load_dataset
51
+
52
+ ds = load_dataset(
53
+ "marin-community/wikipedia-markdown",
54
+ split="train",
55
+ streaming=True
56
+ )
57
+
58
+ for article in ds.take(3):
59
+ print(article["text"])
60
+ ```
61
+
62
+ ## Citation
63
+
64
+ If you use this dataset in your research, please cite both the original Wikipedia contributors and our work:
65
+ ```
66
+ @misc{markdownified_wiki_2024,
67
+ title = {Markdownified Wikipedia},
68
+ author = {The Marin Community},
69
+ year = {2024},
70
+ url = {https://huggingface.co/datasets/marin-community/markdownified-wiki}
71
+ }
72
+ ```
73
+
74
+ ## License
75
+
76
+ All content inherits Wikipedia's licensing: CC-BY-SA 4.0. Our conversion tools and pipeline are released under Apache 2.0.
77
+
78
+ ## Acknowledgement
79
+
80
+ We extend our gratitude to:
81
+
82
+ - The Wikimedia Foundation and Wikipedia's volunteer editors
83
+ - Janek Bevendorff for the [Resiliparse project](https://github.com/chatnoir-eu/chatnoir-resiliparse)
84
+ - Matthew Dapena-Tretter for [Markdownify](https://github.com/matthewwithanm/python-markdownify)