AggregatorAdvisor / Preprocessing Script.py
haneulpark's picture
Update Preprocessing Script.py
d8b1250 verified
## Script to sanitize and split AggregatorAdvisor dataset
# 1. Load modules
pip install rdkit
pip install molvs
import pandas as pd
import numpy as np
import urllib.request
import tqdm
import rdkit
from rdkit import Chem
import molvs
standardizer = molvs.Standardizer()
fragment_remover = molvs.fragment.FragmentRemover()
# 2. Load the original dataset into a pandas DataFrame
# PLEASE download the 'raw_data.csv', which is the dataset from the paper, and run the code
# https://huggingface.co/datasets/maomlab/AggregatorAdvisor/blob/main/raw_data.csv
AA = pd.read_csv('raw_data.csv') # AA is an abbreviation of Aggregator Advisor
#3. Resolve SMILES parse error
# Smiles is 'None', found the compound on ChemSpider
# Smiles displayed 'Explicit valence for atom # 2 O, 3, is greater than permitted'
# https://www.chemspider.com/Chemical-Structure.17588253.html?rid=026abd00-5d7b-4c7a-b279-3ba43ab46203
AA.loc[AA['smiles'] == '[O-][N+](=[O-])C1=CC=CC(=C1)C2=NC(CO2)C3=CC=CC=C3' , 'smiles'] = 'c1ccc(cc1)C2COC(=N2)c3cccc(c3)[N+](=O)[O-]'
# Smiles is 'None', found the compound on ChemSpider
# Smiles displayed 'Explicit valence for atom # 2 O, 3, is greater than permitted'
# https://www.chemspider.com/Chemical-Structure.17588254.html?rid=0f94ced5-dee6-4274-b0c5-796500b40be7
AA.loc[AA['smiles'] == '[O-][N+](=[O-])C1=CC=CC(=C1)C2=NCCC(O2)C3=CC=CC=C3', 'smiles'] = 'c1ccc(cc1)C2CCN=C(O2)c3cccc(c3)[N+](=O)[O-]'
#4. Sanitize with MolVS and print problems
AA['X'] = [ \
rdkit.Chem.MolToSmiles(
fragment_remover.remove(
standardizer.standardize(
rdkit.Chem.MolFromSmiles(
smiles))))
for smiles in AA['smiles']]
problems = []
for index, row in tqdm.tqdm(AA.iterrows()):
result = molvs.validate_smiles(row['X'])
if len(result) == 0:
continue
problems.append( (row['substance_id'], result) )
# most are because it includes the salt form and/or it is not neutralized
for substance_id, alert in problems:
print(f"substance_id: {substance_id}, problem: {alert[0]}")
# Result interpretation
# - Can't kekulize mol: The error message means that kekulization would break the molecules down, so it couldn't proceed
# It doesn't mean that the molecules are bad, it just means that normalization failed
#5. Select columns and rename the dataset
AA.rename(columns={'X': 'SMILES'}, inplace=True)
newAA = AA[['SMILES', 'substance_id', 'aggref_index', 'logP', 'reference']]
#6. Import modules to split the dataset
import sys
from rdkit import DataStructs
from rdkit.Chem import AllChem as Chem
from rdkit.Chem import PandasTools
import scipy.spatial.distance as ssd
from scipy.cluster import hierarchy
#7. Split the dataset into test and train
#7. Split the dataset into test and train
class MolecularFingerprint:
def __init__(self, fingerprint):
self.fingerprint = fingerprint
def __str__(self):
return self.fingerprint.__str__()
def compute_fingerprint(molecule):
try:
fingerprint = Chem.GetMorganFingerprintAsBitVect(molecule, 2, nBits=1024)
result = np.zeros(len(fingerprint), np.int32)
DataStructs.ConvertToNumpyArray(fingerprint, result)
return MolecularFingerprint(result)
except:
print("Fingerprints for a structure cannot be calculated")
return None
def tanimoto_distances_yield(fingerprints, num_fingerprints):
for i in range(1, num_fingerprints):
yield [1 - x for x in DataStructs.BulkTanimotoSimilarity(fingerprints[i], fingerprints[:i])]
def butina_cluster(fingerprints, num_points, distance_threshold, reordering=False):
nbr_lists = [None] * num_points
for i in range(num_points):
nbr_lists[i] = []
dist_fun = tanimoto_distances_yield(fingerprints, num_points)
for i in range(1, num_points):
dists = next(dist_fun)
for j in range(i):
dij = dists[j]
if dij <= distance_threshold:
nbr_lists[i].append(j)
nbr_lists[j].append(i)
t_lists = [(len(y), x) for x, y in enumerate(nbr_lists)]
t_lists.sort(reverse=True)
res = []
seen = [0] * num_points
while t_lists:
_, idx = t_lists.pop(0)
if seen[idx]:
continue
t_res = [idx]
for nbr in nbr_lists[idx]:
if not seen[nbr]:
t_res.append(nbr)
seen[nbr] = 1
if reordering:
nbr_nbr = [nbr_lists[t] for t in t_res]
nbr_nbr = frozenset().union(*nbr_nbr)
for x, y in enumerate(t_lists):
y1 = y[1]
if seen[y1] or (y1 not in nbr_nbr):
continue
nbr_lists[y1] = set(nbr_lists[y1]).difference(t_res)
t_lists[x] = (len(nbr_lists[y1]), y1)
t_lists.sort(reverse=True)
res.append(tuple(t_res))
return tuple(res)
def hierarchal_cluster(fingerprints):
num_fingerprints = len(fingerprints)
av_cluster_size = 8
dists = []
for i in range(0, num_fingerprints):
sims = DataStructs.BulkTanimotoSimilarity(fingerprints[i], fingerprints)
dists.append([1 - x for x in sims])
dis_array = ssd.squareform(dists)
Z = hierarchy.linkage(dis_array)
average_cluster_size = av_cluster_size
cluster_amount = int(num_fingerprints / average_cluster_size)
clusters = hierarchy.cut_tree(Z, n_clusters=cluster_amount)
clusters = list(clusters.transpose()[0])
cs = []
for i in range(max(clusters) + 1):
cs.append([])
for i in range(len(clusters)):
cs[clusters[i]].append(i)
return cs
def cluster_fingerprints(fingerprints, method="Auto"):
num_fingerprints = len(fingerprints)
if method == "Auto":
method = "TB" if num_fingerprints >= 10000 else "Hierarchy"
if method == "TB":
cutoff = 0.56
print("Butina clustering is selected. Dataset size is:", num_fingerprints)
clusters = butina_cluster(fingerprints, num_fingerprints, cutoff)
elif method == "Hierarchy":
print("Hierarchical clustering is selected. Dataset size is:", num_fingerprints)
clusters = hierarchal_cluster(fingerprints)
return clusters
def split_dataframe(dataframe, smiles_col_index, fraction_to_train, split_for_exact_fraction=True, cluster_method="Auto"):
try:
import math
smiles_column_name = dataframe.columns[smiles_col_index]
molecule = 'molecule'
fingerprint = 'fingerprint'
group = 'group'
testing = 'testing'
try:
PandasTools.AddMoleculeColumnToFrame(dataframe, smiles_column_name, molecule)
except:
print("Exception occurred during molecule generation...")
dataframe = dataframe.loc[dataframe[molecule].notnull()]
dataframe[fingerprint] = [compute_fingerprint(m) for m in dataframe[molecule]]
dataframe = dataframe.loc[dataframe[fingerprint].notnull()]
fingerprints = [Chem.GetMorganFingerprintAsBitVect(m, 2, nBits=2048) for m in dataframe[molecule]]
clusters = cluster_fingerprints(fingerprints, method=cluster_method)
dataframe.drop([molecule, fingerprint], axis=1, inplace=True)
last_training_index = int(math.ceil(len(dataframe) * fraction_to_train))
clustered = None
cluster_no = 0
mol_count = 0
for cluster in clusters:
cluster_no = cluster_no + 1
try:
one_cluster = dataframe.iloc[list(cluster)].copy()
except:
print("Wrong indexes in Cluster: %i, Molecules: %i" % (cluster_no, len(cluster)))
continue
one_cluster.loc[:, 'ClusterNo'] = cluster_no
one_cluster.loc[:, 'MolCount'] = len(cluster)
if (mol_count < last_training_index) or (cluster_no < 2):
one_cluster.loc[:, group] = 'training'
else:
one_cluster.loc[:, group] = testing
mol_count += len(cluster)
clustered = pd.concat([clustered, one_cluster], ignore_index=True)
if split_for_exact_fraction:
print("Adjusting test to train ratio. It may split one cluster")
clustered.loc[last_training_index + 1:, group] = testing
print("Clustering finished. Training set size is %i, Test set size is %i, Fraction %.2f" %
(len(clustered.loc[clustered[group] != testing]),
len(clustered.loc[clustered[group] == testing]),
len(clustered.loc[clustered[group] == testing]) / len(clustered)))
except KeyboardInterrupt:
print("Clustering interrupted.")
return clustered
def realistic_split(df, smile_col_index, frac_train, split_for_exact_frac=True, cluster_method = "Auto"):
return split_dataframe(df.copy(), smile_col_index, frac_train, split_for_exact_frac, cluster_method=cluster_method)
def split_df_into_train_and_test_sets(df):
df['group'] = df['group'].str.replace(' ', '_')
df['group'] = df['group'].str.lower()
train = df[df['group'] == 'training']
test = df[df['group'] == 'testing']
return train, test
# 8. Test and train datasets have been made
smiles_index = 0 # Because smiles is in the first column
realistic = realistic_split(newAA.copy(), smiles_index, 0.8, split_for_exact_frac=True, cluster_method="Auto")
realistic_train, realistic_test = split_df_into_train_and_test_sets(realistic)
#9. Select columns and name the datasets
selected_columns = realistic_train[['SMILES', 'substance_id', 'aggref_index', 'logP', 'reference']]
selected_columns.to_csv("AggregatorAdvisor_train.csv", index=False)
selected_columns = realistic_test[['SMILES', 'substance_id', 'aggref_index', 'logP', 'reference']]
selected_columns.to_csv("AggregatorAdvisor_test.csv", index=False)