manot commited on
Commit
e085ecd
·
1 Parent(s): cc94d67

dataset uploaded by roboflow2huggingface package

Browse files
README.dataset.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # road damage > 2023-06-08 1:19pm
2
+ https://universe.roboflow.com/abdulmohsen-fahad-f7pdw/road-damage-xvt2d
3
+
4
+ Provided by a Roboflow user
5
+ License: CC BY 4.0
6
+
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - object-detection
4
+ tags:
5
+ - roboflow
6
+ - roboflow2huggingface
7
+
8
+ ---
9
+
10
+ <div align="center">
11
+ <img width="640" alt="manot/pothole-segmentation" src="https://huggingface.co/datasets/manot/pothole-segmentation/resolve/main/thumbnail.jpg">
12
+ </div>
13
+
14
+ ### Dataset Labels
15
+
16
+ ```
17
+ ['potholes', 'object', 'pothole', 'potholes']
18
+ ```
19
+
20
+
21
+ ### Number of Images
22
+
23
+ ```json
24
+ {'valid': 157, 'test': 80, 'train': 582}
25
+ ```
26
+
27
+
28
+ ### How to Use
29
+
30
+ - Install [datasets](https://pypi.org/project/datasets/):
31
+
32
+ ```bash
33
+ pip install datasets
34
+ ```
35
+
36
+ - Load the dataset:
37
+
38
+ ```python
39
+ from datasets import load_dataset
40
+
41
+ ds = load_dataset("manot/pothole-segmentation", name="full")
42
+ example = ds['train'][0]
43
+ ```
44
+
45
+ ### Roboflow Dataset Page
46
+ [https://universe.roboflow.com/abdulmohsen-fahad-f7pdw/road-damage-xvt2d/dataset/3](https://universe.roboflow.com/abdulmohsen-fahad-f7pdw/road-damage-xvt2d/dataset/3?ref=roboflow2huggingface)
47
+
48
+ ### Citation
49
+
50
+ ```
51
+ @misc{ road-damage-xvt2d_dataset,
52
+ title = { road damage Dataset },
53
+ type = { Open Source Dataset },
54
+ author = { abdulmohsen fahad },
55
+ howpublished = { \\url{ https://universe.roboflow.com/abdulmohsen-fahad-f7pdw/road-damage-xvt2d } },
56
+ url = { https://universe.roboflow.com/abdulmohsen-fahad-f7pdw/road-damage-xvt2d },
57
+ journal = { Roboflow Universe },
58
+ publisher = { Roboflow },
59
+ year = { 2023 },
60
+ month = { jun },
61
+ note = { visited on 2023-06-13 },
62
+ }
63
+ ```
64
+
65
+ ### License
66
+ CC BY 4.0
67
+
68
+ ### Dataset Summary
69
+ This dataset was exported via roboflow.com on June 13, 2023 at 8:47 AM GMT
70
+
71
+ Roboflow is an end-to-end computer vision platform that helps you
72
+ * collaborate with your team on computer vision projects
73
+ * collect & organize images
74
+ * understand and search unstructured image data
75
+ * annotate, and create datasets
76
+ * export, train, and deploy computer vision models
77
+ * use active learning to improve your dataset over time
78
+
79
+ For state of the art Computer Vision training notebooks you can use with this dataset,
80
+ visit https://github.com/roboflow/notebooks
81
+
82
+ To find over 100k other datasets and pre-trained models, visit https://universe.roboflow.com
83
+
84
+ The dataset includes 819 images.
85
+ Potholes are annotated in COCO format.
86
+
87
+ The following pre-processing was applied to each image:
88
+ * Auto-orientation of pixel data (with EXIF-orientation stripping)
89
+
90
+ No image augmentation techniques were applied.
91
+
92
+
93
+
README.roboflow.txt ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ road damage - v3 2023-06-08 1:19pm
3
+ ==============================
4
+
5
+ This dataset was exported via roboflow.com on June 13, 2023 at 8:47 AM GMT
6
+
7
+ Roboflow is an end-to-end computer vision platform that helps you
8
+ * collaborate with your team on computer vision projects
9
+ * collect & organize images
10
+ * understand and search unstructured image data
11
+ * annotate, and create datasets
12
+ * export, train, and deploy computer vision models
13
+ * use active learning to improve your dataset over time
14
+
15
+ For state of the art Computer Vision training notebooks you can use with this dataset,
16
+ visit https://github.com/roboflow/notebooks
17
+
18
+ To find over 100k other datasets and pre-trained models, visit https://universe.roboflow.com
19
+
20
+ The dataset includes 819 images.
21
+ Potholes are annotated in COCO format.
22
+
23
+ The following pre-processing was applied to each image:
24
+ * Auto-orientation of pixel data (with EXIF-orientation stripping)
25
+
26
+ No image augmentation techniques were applied.
27
+
28
+
data/test.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c3e6e7a068f2217711ced8251e49128a0373423f0d3ae00b26b48f6f6240a73
3
+ size 5495643
data/train.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cbebc45b9952559b1ba81e67622d16d0a56f3198c4643d935b863b21954ebbb
3
+ size 39270098
data/valid-mini.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c62ca762d25fe8faab759c1b506a663879aa827a434a18e965f8849df87e5eb
3
+ size 198877
data/valid.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:763bf57fa09bc8ff855eeb172cea2e30ee99e3af1c923e9e96b7fe5cf45ecac4
3
+ size 10669088
football-players.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections
2
+ import json
3
+ import os
4
+
5
+ import datasets
6
+
7
+
8
+ _HOMEPAGE = "https://universe.roboflow.com/abdulmohsen-fahad-f7pdw/road-damage-xvt2d/dataset/3"
9
+ _LICENSE = "CC BY 4.0"
10
+ _CITATION = """\
11
+ @misc{ road-damage-xvt2d_dataset,
12
+ title = { road damage Dataset },
13
+ type = { Open Source Dataset },
14
+ author = { abdulmohsen fahad },
15
+ howpublished = { \\url{ https://universe.roboflow.com/abdulmohsen-fahad-f7pdw/road-damage-xvt2d } },
16
+ url = { https://universe.roboflow.com/abdulmohsen-fahad-f7pdw/road-damage-xvt2d },
17
+ journal = { Roboflow Universe },
18
+ publisher = { Roboflow },
19
+ year = { 2023 },
20
+ month = { jun },
21
+ note = { visited on 2023-06-13 },
22
+ }
23
+ """
24
+ _CATEGORIES = ['potholes', 'object', 'pothole', 'potholes']
25
+ _ANNOTATION_FILENAME = "_annotations.coco.json"
26
+
27
+
28
+ class FOOTBALLPLAYERSConfig(datasets.BuilderConfig):
29
+ """Builder Config for football-players"""
30
+
31
+ def __init__(self, data_urls, **kwargs):
32
+ """
33
+ BuilderConfig for football-players.
34
+
35
+ Args:
36
+ data_urls: `dict`, name to url to download the zip file from.
37
+ **kwargs: keyword arguments forwarded to super.
38
+ """
39
+ super(FOOTBALLPLAYERSConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
40
+ self.data_urls = data_urls
41
+
42
+
43
+ class FOOTBALLPLAYERS(datasets.GeneratorBasedBuilder):
44
+ """football-players object detection dataset"""
45
+
46
+ VERSION = datasets.Version("1.0.0")
47
+ BUILDER_CONFIGS = [
48
+ FOOTBALLPLAYERSConfig(
49
+ name="full",
50
+ description="Full version of football-players dataset.",
51
+ data_urls={
52
+ "train": "https://huggingface.co/datasets/manot/football-players/resolve/main/data/train.zip",
53
+ "validation": "https://huggingface.co/datasets/manot/football-players/resolve/main/data/valid.zip",
54
+ "test": "https://huggingface.co/datasets/manot/football-players/resolve/main/data/test.zip",
55
+ },
56
+ ),
57
+ FOOTBALLPLAYERSConfig(
58
+ name="mini",
59
+ description="Mini version of football-players dataset.",
60
+ data_urls={
61
+ "train": "https://huggingface.co/datasets/manot/football-players/resolve/main/data/valid-mini.zip",
62
+ "validation": "https://huggingface.co/datasets/manot/football-players/resolve/main/data/valid-mini.zip",
63
+ "test": "https://huggingface.co/datasets/manot/football-players/resolve/main/data/valid-mini.zip",
64
+ },
65
+ )
66
+ ]
67
+
68
+ def _info(self):
69
+ features = datasets.Features(
70
+ {
71
+ "image_id": datasets.Value("int64"),
72
+ "image": datasets.Image(),
73
+ "width": datasets.Value("int32"),
74
+ "height": datasets.Value("int32"),
75
+ "objects": datasets.Sequence(
76
+ {
77
+ "id": datasets.Value("int64"),
78
+ "area": datasets.Value("int64"),
79
+ "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
80
+ "category": datasets.ClassLabel(names=_CATEGORIES),
81
+ }
82
+ ),
83
+ }
84
+ )
85
+ return datasets.DatasetInfo(
86
+ features=features,
87
+ homepage=_HOMEPAGE,
88
+ citation=_CITATION,
89
+ license=_LICENSE,
90
+ )
91
+
92
+ def _split_generators(self, dl_manager):
93
+ data_files = dl_manager.download_and_extract(self.config.data_urls)
94
+ return [
95
+ datasets.SplitGenerator(
96
+ name=datasets.Split.TRAIN,
97
+ gen_kwargs={
98
+ "folder_dir": data_files["train"],
99
+ },
100
+ ),
101
+ datasets.SplitGenerator(
102
+ name=datasets.Split.VALIDATION,
103
+ gen_kwargs={
104
+ "folder_dir": data_files["validation"],
105
+ },
106
+ ),
107
+ datasets.SplitGenerator(
108
+ name=datasets.Split.TEST,
109
+ gen_kwargs={
110
+ "folder_dir": data_files["test"],
111
+ },
112
+ ),
113
+ ]
114
+
115
+ def _generate_examples(self, folder_dir):
116
+ def process_annot(annot, category_id_to_category):
117
+ return {
118
+ "id": annot["id"],
119
+ "area": annot["area"],
120
+ "bbox": annot["bbox"],
121
+ "category": category_id_to_category[annot["category_id"]],
122
+ }
123
+
124
+ image_id_to_image = {}
125
+ idx = 0
126
+
127
+ annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
128
+ with open(annotation_filepath, "r") as f:
129
+ annotations = json.load(f)
130
+ category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
131
+ image_id_to_annotations = collections.defaultdict(list)
132
+ for annot in annotations["annotations"]:
133
+ image_id_to_annotations[annot["image_id"]].append(annot)
134
+ filename_to_image = {image["file_name"]: image for image in annotations["images"]}
135
+
136
+ for filename in os.listdir(folder_dir):
137
+ filepath = os.path.join(folder_dir, filename)
138
+ if filename in filename_to_image:
139
+ image = filename_to_image[filename]
140
+ objects = [
141
+ process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
142
+ ]
143
+ with open(filepath, "rb") as f:
144
+ image_bytes = f.read()
145
+ yield idx, {
146
+ "image_id": image["id"],
147
+ "image": {"path": filepath, "bytes": image_bytes},
148
+ "width": image["width"],
149
+ "height": image["height"],
150
+ "objects": objects,
151
+ }
152
+ idx += 1
pothole-segmentation.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections
2
+ import json
3
+ import os
4
+
5
+ import datasets
6
+
7
+
8
+ _HOMEPAGE = "https://universe.roboflow.com/abdulmohsen-fahad-f7pdw/road-damage-xvt2d/dataset/3"
9
+ _LICENSE = "CC BY 4.0"
10
+ _CITATION = """\
11
+ @misc{ road-damage-xvt2d_dataset,
12
+ title = { road damage Dataset },
13
+ type = { Open Source Dataset },
14
+ author = { abdulmohsen fahad },
15
+ howpublished = { \\url{ https://universe.roboflow.com/abdulmohsen-fahad-f7pdw/road-damage-xvt2d } },
16
+ url = { https://universe.roboflow.com/abdulmohsen-fahad-f7pdw/road-damage-xvt2d },
17
+ journal = { Roboflow Universe },
18
+ publisher = { Roboflow },
19
+ year = { 2023 },
20
+ month = { jun },
21
+ note = { visited on 2023-06-13 },
22
+ }
23
+ """
24
+ _CATEGORIES = ['potholes', 'object', 'pothole', 'potholes']
25
+ _ANNOTATION_FILENAME = "_annotations.coco.json"
26
+
27
+
28
+ class POTHOLESEGMENTATIONConfig(datasets.BuilderConfig):
29
+ """Builder Config for pothole-segmentation"""
30
+
31
+ def __init__(self, data_urls, **kwargs):
32
+ """
33
+ BuilderConfig for pothole-segmentation.
34
+
35
+ Args:
36
+ data_urls: `dict`, name to url to download the zip file from.
37
+ **kwargs: keyword arguments forwarded to super.
38
+ """
39
+ super(POTHOLESEGMENTATIONConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
40
+ self.data_urls = data_urls
41
+
42
+
43
+ class POTHOLESEGMENTATION(datasets.GeneratorBasedBuilder):
44
+ """pothole-segmentation object detection dataset"""
45
+
46
+ VERSION = datasets.Version("1.0.0")
47
+ BUILDER_CONFIGS = [
48
+ POTHOLESEGMENTATIONConfig(
49
+ name="full",
50
+ description="Full version of pothole-segmentation dataset.",
51
+ data_urls={
52
+ "train": "https://huggingface.co/datasets/manot/pothole-segmentation/resolve/main/data/train.zip",
53
+ "validation": "https://huggingface.co/datasets/manot/pothole-segmentation/resolve/main/data/valid.zip",
54
+ "test": "https://huggingface.co/datasets/manot/pothole-segmentation/resolve/main/data/test.zip",
55
+ },
56
+ ),
57
+ POTHOLESEGMENTATIONConfig(
58
+ name="mini",
59
+ description="Mini version of pothole-segmentation dataset.",
60
+ data_urls={
61
+ "train": "https://huggingface.co/datasets/manot/pothole-segmentation/resolve/main/data/valid-mini.zip",
62
+ "validation": "https://huggingface.co/datasets/manot/pothole-segmentation/resolve/main/data/valid-mini.zip",
63
+ "test": "https://huggingface.co/datasets/manot/pothole-segmentation/resolve/main/data/valid-mini.zip",
64
+ },
65
+ )
66
+ ]
67
+
68
+ def _info(self):
69
+ features = datasets.Features(
70
+ {
71
+ "image_id": datasets.Value("int64"),
72
+ "image": datasets.Image(),
73
+ "width": datasets.Value("int32"),
74
+ "height": datasets.Value("int32"),
75
+ "objects": datasets.Sequence(
76
+ {
77
+ "id": datasets.Value("int64"),
78
+ "area": datasets.Value("int64"),
79
+ "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
80
+ "category": datasets.ClassLabel(names=_CATEGORIES),
81
+ }
82
+ ),
83
+ }
84
+ )
85
+ return datasets.DatasetInfo(
86
+ features=features,
87
+ homepage=_HOMEPAGE,
88
+ citation=_CITATION,
89
+ license=_LICENSE,
90
+ )
91
+
92
+ def _split_generators(self, dl_manager):
93
+ data_files = dl_manager.download_and_extract(self.config.data_urls)
94
+ return [
95
+ datasets.SplitGenerator(
96
+ name=datasets.Split.TRAIN,
97
+ gen_kwargs={
98
+ "folder_dir": data_files["train"],
99
+ },
100
+ ),
101
+ datasets.SplitGenerator(
102
+ name=datasets.Split.VALIDATION,
103
+ gen_kwargs={
104
+ "folder_dir": data_files["validation"],
105
+ },
106
+ ),
107
+ datasets.SplitGenerator(
108
+ name=datasets.Split.TEST,
109
+ gen_kwargs={
110
+ "folder_dir": data_files["test"],
111
+ },
112
+ ),
113
+ ]
114
+
115
+ def _generate_examples(self, folder_dir):
116
+ def process_annot(annot, category_id_to_category):
117
+ return {
118
+ "id": annot["id"],
119
+ "area": annot["area"],
120
+ "bbox": annot["bbox"],
121
+ "category": category_id_to_category[annot["category_id"]],
122
+ }
123
+
124
+ image_id_to_image = {}
125
+ idx = 0
126
+
127
+ annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
128
+ with open(annotation_filepath, "r") as f:
129
+ annotations = json.load(f)
130
+ category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
131
+ image_id_to_annotations = collections.defaultdict(list)
132
+ for annot in annotations["annotations"]:
133
+ image_id_to_annotations[annot["image_id"]].append(annot)
134
+ filename_to_image = {image["file_name"]: image for image in annotations["images"]}
135
+
136
+ for filename in os.listdir(folder_dir):
137
+ filepath = os.path.join(folder_dir, filename)
138
+ if filename in filename_to_image:
139
+ image = filename_to_image[filename]
140
+ objects = [
141
+ process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
142
+ ]
143
+ with open(filepath, "rb") as f:
144
+ image_bytes = f.read()
145
+ yield idx, {
146
+ "image_id": image["id"],
147
+ "image": {"path": filepath, "bytes": image_bytes},
148
+ "width": image["width"],
149
+ "height": image["height"],
150
+ "objects": objects,
151
+ }
152
+ idx += 1
split_name_to_num_samples.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"valid": 157, "test": 80, "train": 582}
thumbnail.jpg ADDED

Git LFS Details

  • SHA256: 02ca476f3a01bd9afdc1eaa743c2de9fc25a2f6b2dc3c2c7f554a52b73d896e3
  • Pointer size: 131 Bytes
  • Size of remote file: 158 kB