|
|
import json
|
|
|
import requests
|
|
|
from typing import List
|
|
|
from tqdm import tqdm
|
|
|
from langchain.embeddings.base import Embeddings
|
|
|
|
|
|
class CustomAPIEmbeddings(Embeddings):
|
|
|
def __init__(self, api_url: str, show_progress: bool = True, batch_size: int = 32):
|
|
|
self.api_url = api_url
|
|
|
self.show_progress = show_progress
|
|
|
self.batch_size = batch_size
|
|
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
|
lst_embedding = []
|
|
|
iterator = range(0, len(texts), self.batch_size)
|
|
|
iterator = tqdm(iterator) if self.show_progress else iterator
|
|
|
|
|
|
for i in iterator:
|
|
|
batch = texts[i: i + self.batch_size]
|
|
|
payload = json.dumps({"inputs": batch})
|
|
|
headers = {'Content-Type': 'application/json'}
|
|
|
|
|
|
try:
|
|
|
response = requests.post(self.api_url, headers=headers, data=payload)
|
|
|
embeddings = json.loads(response.text)
|
|
|
lst_embedding.extend(embeddings)
|
|
|
except Exception as e:
|
|
|
print(f"Error on batch {i // self.batch_size}: {e}")
|
|
|
print(response.text if response else "No response")
|
|
|
|
|
|
return lst_embedding
|
|
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
|
return self.embed_documents([text])[0] |