|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import datasets |
|
from collections import defaultdict |
|
from dataclasses import dataclass |
|
|
|
_CITATION = ''' |
|
''' |
|
|
|
languages = ['ar', 'bn', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th', 'zh'] |
|
non_surprise_languages = languages |
|
|
|
_DESCRIPTION = 'dataset load script for MIRACL' |
|
|
|
_DATASET_URLS = { |
|
lang: { |
|
'train': [ |
|
f'https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/topics/topics.miracl-v1.0-{lang}-train.tsv', |
|
f'https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/qrels/qrels.miracl-v1.0-{lang}-train.tsv', |
|
], |
|
'dev': [ |
|
f'https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/topics/topics.miracl-v1.0-{lang}-dev.tsv', |
|
f'https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/qrels/qrels.miracl-v1.0-{lang}-dev.tsv', |
|
] |
|
} for lang in languages |
|
} |
|
|
|
|
|
def load_topic(fn): |
|
qid2topic = {} |
|
with open(fn, encoding="utf-8") as f: |
|
for line in f: |
|
qid, topic = line.strip().split('\t') |
|
qid2topic[qid] = topic |
|
return qid2topic |
|
|
|
|
|
def load_qrels(fn): |
|
qrels = defaultdict(dict) |
|
with open(fn, encoding="utf-8") as f: |
|
for line in f: |
|
qid, _, docid, rel = line.strip().split('\t') |
|
qrels[qid][docid] = int(rel) |
|
return qrels |
|
|
|
|
|
class MIRACL(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [datasets.BuilderConfig( |
|
version=datasets.Version('1.0.0'), |
|
name=lang, description=f'MIRACL dataset in language {lang}.' |
|
) for lang in languages |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features({ |
|
'query_id': datasets.Value('string'), |
|
'query': datasets.Value('string'), |
|
|
|
'positive_passages': [{ |
|
'docid': datasets.Value('string'), |
|
'text': datasets.Value('string'), 'title': datasets.Value('string') |
|
}], |
|
'negative_passages': [{ |
|
'docid': datasets.Value('string'), |
|
'text': datasets.Value('string'), 'title': datasets.Value('string'), |
|
}], |
|
}) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
supervised_keys=None, |
|
|
|
homepage='https://project-miracl.github.io', |
|
|
|
license='', |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
lang = self.config.name |
|
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[lang]) |
|
|
|
splits = [ |
|
datasets.SplitGenerator( |
|
name='train', |
|
gen_kwargs={ |
|
'filepaths': downloaded_files['train'], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name='dev', |
|
gen_kwargs={ |
|
'filepaths': downloaded_files['dev'], |
|
}, |
|
), |
|
] |
|
return splits |
|
|
|
def _generate_examples(self, filepaths): |
|
lang = self.config.name |
|
miracl_corpus = datasets.load_dataset('miracl/miracl-corpus', lang)['train'] |
|
docid2doc = {doc['docid']: (doc['title'], doc['text']) for doc in miracl_corpus} |
|
|
|
topic_fn, qrel_fn = filepaths |
|
qid2topic = load_topic(topic_fn) |
|
qrels = load_qrels(qrel_fn) |
|
for qid in qid2topic: |
|
data = {} |
|
data['query_id'] = qid |
|
data['query'] = qid2topic[qid] |
|
|
|
pos_docids = [docid for docid, rel in qrels[qid].items() if rel == 1] |
|
neg_docids = [docid for docid, rel in qrels[qid].items() if rel == 0] |
|
data['positive_passages'] = [{ |
|
'docid': docid, |
|
**dict(zip(['title', 'text'], docid2doc[docid])) |
|
} for docid in pos_docids] |
|
data['negative_passages'] = [{ |
|
'docid': docid, |
|
**dict(zip(['title', 'text'], docid2doc[docid])) |
|
} for docid in neg_docids] |
|
yield qid, data |
|
|