ZenMoore commited on
Commit
f4bbf4e
1 Parent(s): ba54444

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -9
README.md CHANGED
@@ -11,6 +11,7 @@ size_categories:
11
  ---
12
  # FineFineWeb: A Comprehensive Study on Fine-Grained Domain Web Corpus
13
 
 
14
  arXiv: Coming Soon
15
 
16
  Project Page: Coming Soon
@@ -143,19 +144,19 @@ The results above reveal the following observations:
143
 
144
  ## Domain-Domain Duplication
145
 
146
- Let \\(D_1,D_2,\dots,D_N)\\ represent $N$ distinct domains, where we select top-20 URLs for each domain $D_i$, denoted as $\{U_{i1}, U_{i2}, \dots, U_{i20}\}$,. The total set of URLs across all domains is represented as $\mathcal{U}$, and the total number of URLs is $M = |\mathcal{U}|$.
147
 
148
- For each URL $U_k \in \mathcal{U}$, the term frequency (TF) is defined as the proportion of $U_k$ in the total set of URLs:
149
 
150
- $\text{TF}(U_k) = \frac{\text{count}(U_k)}{M}$
151
 
152
- where $\text{count}(U_k)$ is the number of times $U_k$ appears in $\mathcal{U}$. Additionally, the document frequency $K_k$ of $U_k$ is the number of domains in which $U_k$ appears. Based on this, the inverse document frequency (IDF) is calculated as:
153
 
154
- $\text{IDF}(U_k) = \log(\frac{N}{K_k})$
155
 
156
- The TF-IDF value for each URL $U_{ij}$ in a specific domain $D_i$ is then computed as:
157
 
158
- $\text{TF-IDF}(U_{ij}) = \text{TF}(U_{ij}) \times \text{IDF}(U_{ij})$
159
 
160
  ![domain-domain URL duplication](./assets/duplication.png)
161
 
@@ -165,7 +166,7 @@ As shown in the figure, most domains have low duplication rates, except for topi
165
 
166
  ## **Domain-Benchmark BPC-Acc Correlation**
167
 
168
- Experimental method: Using 28 models (see the paper), we first calculate BPC for all domains to obtain a model ranking $R_D$. Similarly, we compute scores across all benchmarks to obtain a model ranking $R_M$. We then calculate the Spearman correlation between $R_D$ and $R_M$.
169
 
170
  ![domain-benchmark BPC-Acc correlation](./assets/domain-benchmark%20correlation.png)
171
 
@@ -178,7 +179,7 @@ Experimental method: Using 28 models (see the paper), we first calculate BPC for
178
  @misc{
179
  title={FineFineWeb: A Comprehensive Study on Fine-grained Domain Web Corpus},
180
  url={[https://huggingface.co/datasets/m-a-p/FineFineWeb](https://huggingface.co/datasets/m-a-p/FineFineWeb)},
181
- author = {M-A-P, Ge Zhang*, Xinrun Du*, Zhimiao Yu*, Zili Wang*, Zekun Wang, Shuyue Guo, Tianyu Zheng, Kang Zhu, Jerry Liu, Shawn Yue, Binbin Liu, Zhongyuan Peng, Yifan Yao, Jack Yang, Ziming Li, Bingni Zhang, Wenhu Chen, Minghao Liu, Tianyu Liu, Xiaohuan Zhou, Yang Gao, Qian Liu, Taifeng Wang+, Wenhao Huang+},
182
  publisher={huggingface},
183
  verision={v0.1.0},
184
  month={December},
 
11
  ---
12
  # FineFineWeb: A Comprehensive Study on Fine-Grained Domain Web Corpus
13
 
14
+
15
  arXiv: Coming Soon
16
 
17
  Project Page: Coming Soon
 
144
 
145
  ## Domain-Domain Duplication
146
 
147
+ Let \\(D_1, D_2, \dots, D_N\\) represent \\(N\\) distinct domains, where we select top-20 URLs for each domain \\(D_i\\), denoted as \\(\{U_{i1}, U_{i2}, \dots, U_{i20}\}\\),. The total set of URLs across all domains is represented as \\(\mathcal{U}\\), and the total number of URLs is \\(M = |\mathcal{U}|\\).
148
 
149
+ For each URL \\(U_k \in \mathcal{U}\\), the term frequency (TF) is defined as the proportion of \\(U_k\\) in the total set of URLs:
150
 
151
+ \\(\text{TF}(U_k) = \frac{\text{count}(U_k)}{M}\\)
152
 
153
+ where \\(\text{count}(U_k)\\) is the number of times \\(U_k\\) appears in \\(\mathcal{U}\\). Additionally, the document frequency \\(K_k\\) of \\(U_k\\) is the number of domains in which \\(U_k\\) appears. Based on this, the inverse document frequency (IDF) is calculated as:
154
 
155
+ \\(\text{IDF}(U_k) = \log(\frac{N}{K_k})\\)
156
 
157
+ The TF-IDF value for each URL \\(U_{ij}\\) in a specific domain \\(D_i\\) is then computed as:
158
 
159
+ \\(\text{TF-IDF}(U_{ij}) = \text{TF}(U_{ij}) \times \text{IDF}(U_{ij})\\)
160
 
161
  ![domain-domain URL duplication](./assets/duplication.png)
162
 
 
166
 
167
  ## **Domain-Benchmark BPC-Acc Correlation**
168
 
169
+ Experimental method: Using 28 models (see the paper), we first calculate BPC for all domains to obtain a model ranking \\(R_D\\). Similarly, we compute scores across all benchmarks to obtain a model ranking \\(R_M\\). We then calculate the Spearman correlation between \\(R_D\\) and \\(R_M\\).
170
 
171
  ![domain-benchmark BPC-Acc correlation](./assets/domain-benchmark%20correlation.png)
172
 
 
179
  @misc{
180
  title={FineFineWeb: A Comprehensive Study on Fine-grained Domain Web Corpus},
181
  url={[https://huggingface.co/datasets/m-a-p/FineFineWeb](https://huggingface.co/datasets/m-a-p/FineFineWeb)},
182
+ author = {M-A-P, Ge Zhang*, Xinrun Du*, Zhimiao Yu*, Zili Wang*, Zekun Wang, Shuyue Guo, Tianyu Zheng, Kang Zhu, Jerry Liu, Shawn Yue, Binbin Liu, Zhongyuan Peng, Yifan Yao, Jack Yang, Ziming Li, Bingni Zhang, Minghao Liu, Tianyu Liu, Yang Gao, Wenhu Chen, Xiaohuan Zhou, Qian Liu, Taifeng Wang+, Wenhao Huang+},
183
  publisher={huggingface},
184
  verision={v0.1.0},
185
  month={December},