|
import math |
|
import os |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
from torchvision import transforms |
|
|
|
from PIL import Image |
|
|
|
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, DEFAULT_CROP_PCT |
|
from timm.data.auto_augment import rand_augment_transform, augment_and_mix_transform, auto_augment_transform |
|
from timm.data.transforms import str_to_interp_mode, str_to_pil_interp, RandomResizedCropAndInterpolation, \ |
|
ResizeKeepRatio, CenterCropOrPad, RandomCropOrPad, TrimBorder, ToNumpy, MaybeToTensor, MaybePILToTensor |
|
from timm.data.random_erasing import RandomErasing |
|
|
|
def augment_meme(img_size: Union[int, Tuple[int, int]] = 224, |
|
scale: Optional[Tuple[float, float]] = None, |
|
ratio: Optional[Tuple[float, float]] = None, |
|
train_crop_mode: Optional[str] = None, |
|
color_jitter: Union[float, Tuple[float, ...]] = 0.4, |
|
color_jitter_prob: Optional[float] = None, |
|
force_color_jitter: bool = False, |
|
grayscale_prob: float = 0., |
|
gaussian_blur_prob: float = 0., |
|
auto_augment: Optional[str] = None, |
|
interpolation: str = 'random', |
|
mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN, |
|
std: Tuple[float, ...] = IMAGENET_DEFAULT_STD, |
|
re_prob: float = 0., |
|
re_mode: str = 'const', |
|
re_count: int = 1, |
|
re_num_splits: int = 0, |
|
use_prefetcher: bool = False, |
|
normalize: bool = True, |
|
separate: bool = False, |
|
hflip = 0, |
|
vflip = 0 |
|
): |
|
|
|
train_crop_mode = train_crop_mode or 'rrc' |
|
assert train_crop_mode in {'rrc', 'rkrc', 'rkrr'} |
|
if train_crop_mode in ('rkrc', 'rkrr'): |
|
|
|
scale = tuple(scale or (0.8, 1.00)) |
|
ratio = tuple(ratio or (0.9, 1/.9)) |
|
primary_tfl = [ |
|
ResizeKeepRatio( |
|
img_size, |
|
interpolation=interpolation, |
|
random_scale_prob=0.5, |
|
random_scale_range=scale, |
|
random_scale_area=True, |
|
random_aspect_prob=0.5, |
|
random_aspect_range=ratio, |
|
), |
|
CenterCropOrPad(img_size, padding_mode='reflect') |
|
if train_crop_mode == 'rkrc' else |
|
RandomCropOrPad(img_size, padding_mode='reflect') |
|
] |
|
else: |
|
scale = tuple(scale or (0.08, 1.0)) |
|
ratio = tuple(ratio or (3. / 4., 4. / 3.)) |
|
primary_tfl = [] |
|
if hflip > 0.: |
|
primary_tfl += [transforms.RandomHorizontalFlip(p=hflip)] |
|
if vflip > 0.: |
|
primary_tfl += [transforms.RandomVerticalFlip(p=vflip)] |
|
|
|
secondary_tfl = [] |
|
disable_color_jitter = False |
|
if auto_augment: |
|
assert isinstance(auto_augment, str) |
|
|
|
|
|
disable_color_jitter = not (force_color_jitter or '3a' in auto_augment) |
|
if isinstance(img_size, (tuple, list)): |
|
img_size_min = min(img_size) |
|
else: |
|
img_size_min = img_size |
|
aa_params = dict( |
|
translate_const=int(img_size_min * 0.45), |
|
img_mean=tuple([min(255, round(255 * x)) for x in mean]), |
|
) |
|
if interpolation and interpolation != 'random': |
|
aa_params['interpolation'] = str_to_pil_interp(interpolation) |
|
if auto_augment.startswith('rand'): |
|
secondary_tfl += [rand_augment_transform(auto_augment, aa_params)] |
|
elif auto_augment.startswith('augmix'): |
|
aa_params['translate_pct'] = 0.3 |
|
secondary_tfl += [augment_and_mix_transform(auto_augment, aa_params)] |
|
else: |
|
secondary_tfl += [auto_augment_transform(auto_augment, aa_params)] |
|
|
|
if color_jitter is not None and not disable_color_jitter: |
|
|
|
if isinstance(color_jitter, (list, tuple)): |
|
|
|
|
|
assert len(color_jitter) in (3, 4) |
|
else: |
|
|
|
color_jitter = (float(color_jitter),) * 3 |
|
if color_jitter_prob is not None: |
|
secondary_tfl += [ |
|
transforms.RandomApply([ |
|
transforms.ColorJitter(*color_jitter), |
|
], |
|
p=color_jitter_prob |
|
) |
|
] |
|
else: |
|
secondary_tfl += [transforms.ColorJitter(*color_jitter)] |
|
|
|
if grayscale_prob: |
|
secondary_tfl += [transforms.RandomGrayscale(p=grayscale_prob)] |
|
|
|
if gaussian_blur_prob: |
|
secondary_tfl += [ |
|
transforms.RandomApply([ |
|
transforms.GaussianBlur(kernel_size=23), |
|
], |
|
p=gaussian_blur_prob, |
|
) |
|
] |
|
|
|
final_tfl = [] |
|
if use_prefetcher: |
|
|
|
final_tfl += [ToNumpy()] |
|
elif not normalize: |
|
|
|
final_tfl += [MaybePILToTensor()] |
|
else: |
|
final_tfl += [ |
|
MaybeToTensor(), |
|
transforms.Normalize( |
|
mean=torch.tensor(mean), |
|
std=torch.tensor(std), |
|
), |
|
] |
|
if re_prob > 0.: |
|
final_tfl += [ |
|
RandomErasing( |
|
re_prob, |
|
mode=re_mode, |
|
max_count=re_count, |
|
num_splits=re_num_splits, |
|
device='cpu', |
|
) |
|
] |
|
|
|
if separate: |
|
return transforms.Compose(secondary_tfl), transforms.Compose(final_tfl) |
|
else: |
|
return transforms.Compose(primary_tfl + secondary_tfl) |
|
|
|
|
|
transform_meme = augment_meme( |
|
img_size=224, |
|
color_jitter=0.4, |
|
grayscale_prob=0.2, |
|
gaussian_blur_prob=0.5, |
|
auto_augment='rand-m9-mstd0.5', |
|
normalize=True |
|
) |
|
|
|
|
|
|
|
input_dir = '/mnt/afs/niuyazhe/data/meme/data/Cimages/Cimages/Cimages/' |
|
N = 3 |
|
for filename in os.listdir(input_dir): |
|
|
|
if filename.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif')) and filename.lower()[-5]==')': |
|
|
|
input_path = os.path.join(input_dir, filename) |
|
|
|
|
|
try: |
|
image = Image.open(input_path).convert('RGB') |
|
except Exception as e: |
|
print(e) |
|
continue |
|
|
|
|
|
for i in range(N): |
|
|
|
try: |
|
transformed_image = transform_meme(image) |
|
|
|
|
|
|
|
|
|
base_name, ext = os.path.splitext(filename) |
|
output_filename = f"{base_name}_{i}{ext}" |
|
output_path = os.path.join(input_dir, output_filename) |
|
|
|
|
|
transformed_image.save(output_path) |
|
print(f"Saved {output_path}") |
|
|
|
except Exception as e: |
|
print(e) |
|
continue |