|
% 16 9 23 |
|
|
|
% 35-7=28 algs |
|
|
|
% ["Fundamentals of Pedagogy and Pedagogy Indicators","FUNDAMENTALS OF PEDAGOGY by Lucian Green Two Uses 19 of 30.txt",0,algorithms,"186. ALEXIS: The subject should include 50 As in each book."] |
|
|
|
book1(book1,50). |
|
book1(book2,60). |
|
book1(book3,25). |
|
book1(book4,0). |
|
book1(book5,50). |
|
|
|
% ?- all_fifty(D). |
|
% D = [[book1, 50], [book2, 60], [book5, 50]]. |
|
|
|
all_fifty(Data):-findall([Name,Number],(book1(Name,Number),Number >=50),Data). |
|
|
|
/* |
|
?- pretty_print_table([[1,2,3],[4,5,6],[7,8,9]]). |
|
1 2 3 |
|
4 5 6 |
|
7 8 9 |
|
*/ |
|
pretty_print_table(Data) :- |
|
findall(_,(member(Item,Data), |
|
findall(_,(member(Item1,Item),write(Item1),write("\t")),_), |
|
writeln("")),_). |
|
|
|
% pretty_print_nd([[[1,2],[3,4]],[[1,2],[3,4]]]). |
|
/* |
|
1 2 |
|
3 4 |
|
|
|
1 2 |
|
3 4 |
|
pretty_print_nd([[[[1,2],[3,4]],[[1,2],[3,4]]],[[[1,2],[3,4]],[[1,2],[3,4]]]]). |
|
1 2 |
|
3 4 |
|
|
|
1 2 |
|
3 4 |
|
|
|
1 2 |
|
3 4 |
|
|
|
1 2 |
|
3 4 |
|
|
|
pretty_print_nd([[[[[1,2],[3,4]],[[1,2],[3,4]]],[[[1,2],[3,4]],[[1,2],[3,4]]]],[[[[1,2],[3,4]],[[1,2],[3,4]]],[[[1,2],[3,4]],[[1,2],[3,4]]]]]). |
|
|
|
1 2 |
|
3 4 |
|
|
|
1 2 |
|
3 4 |
|
|
|
1 2 |
|
3 4 |
|
|
|
1 2 |
|
3 4 |
|
|
|
1 2 |
|
3 4 |
|
|
|
1 2 |
|
3 4 |
|
|
|
1 2 |
|
3 4 |
|
|
|
1 2 |
|
3 4 |
|
|
|
*/ |
|
pretty_print_nd(Data):- |
|
findall(_,(member(Item,Data), |
|
((is_list(Item),Item=[Item1|_],is_list(Item1),Item1=[Item2|_], |
|
not(is_list(Item2)))-> |
|
(pretty_print_table(Item),nl); |
|
pretty_print_nd(Item) |
|
) |
|
),_). |
|
/* |
|
?- pretty_print_all_fifty. |
|
book1 50 |
|
book2 60 |
|
book5 50 |
|
*/ |
|
pretty_print_all_fifty :- |
|
all_fifty(Data), |
|
pretty_print_table(Data). |
|
|
|
% 28-14=14 |
|
|
|
% ["Delegate workloads, Lecturer, Recordings","Delegate Workloads 1.txt",0,algorithms," 32. I compared notes."] |
|
|
|
:-include('../listprologinterpreter/la_maths.pl'). |
|
|
|
/* |
|
find_complexity(n,C). |
|
C = n. |
|
|
|
find_complexity(sqrn, C). |
|
C=sqrn. |
|
*/ |
|
n(N,N1) :- n(N,[],N1). |
|
n([],N,N) :- !. |
|
n(N,N1,N2) :- N=[N31|N32], |
|
append(N1,[N31],N4), |
|
%N4 is N1+1, |
|
n(N32,N4,N2). |
|
|
|
sqrn(Ns,N1) :- %numbers(N,1,[],Ns), |
|
findall([N2,N3],(member(N2,Ns),member(N3,Ns)),N1). |
|
|
|
find_complexity(Name,Complexity) :- |
|
N0=10, |
|
numbers(N0,1,[],N01), |
|
(Name=n->n(N01,N1); |
|
Name=sqrn->sqrn(N01,N1)), |
|
N2 is N0^2, |
|
numbers(N2,1,[],Ns2), |
|
(close1(N01,N1)->Complexity=n; |
|
close1(N1,Ns2)->Complexity=sqrn). |
|
close1(N0,N1) :- |
|
length(N0,L0), |
|
length(N1,L1), |
|
L11 is L1-1, |
|
L12 is L1+1, |
|
L11<L0,L0=<L12. |
|
|
|
%14-8=6 left |
|
|
|
% complexity_from_findall([],C). |
|
% C = n^0. |
|
|
|
% complexity_from_findall([[m,a,b]],C). |
|
% C = n^1. |
|
|
|
% complexity_from_findall([[m,a,b],[m,c,b]],C). |
|
% C = n^2. |
|
|
|
% complexity_from_findall([[m,a,b],[m,c,b],[m,d,b]],C). |
|
% C = n^3. |
|
|
|
% complexity_from_findall([[m,a,b],[m,c,b],[m,d,b],[m,e,b]],C). |
|
% C = n^4. |
|
|
|
complexity_from_findall(L,n^C) :- |
|
length(L,C). |