|
"""consistency.py: Integrity Check, Correction by Mapping for Annotation Class, Metadata Cleaning, Statistics""" |
|
|
|
|
|
import os |
|
import sys |
|
import re |
|
|
|
|
|
from loader import load_classes, load_properties, read_dataset, write_dataset, file_name |
|
|
|
|
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
|
|
__author__ = "Johannes Bayer, Shabi Haider" |
|
__copyright__ = "Copyright 2021-2023, DFKI" |
|
__license__ = "CC" |
|
__version__ = "0.0.2" |
|
__email__ = "johannes.bayer@dfki.de" |
|
__status__ = "Prototype" |
|
|
|
|
|
|
|
|
|
|
|
MAPPING_LOOKUP = { |
|
"integrated_cricuit": "integrated_circuit", |
|
"zener": "diode.zener" |
|
} |
|
|
|
|
|
def consistency(db: list, classes: dict, recover: dict = {}) -> tuple: |
|
"""Checks Whether Annotation Classes are in provided Classes Dict and Attempts Recovery""" |
|
|
|
total, ok, mapped, faulty, rotation, text = 0, 0, 0, 0, 0, 0 |
|
|
|
for sample in db: |
|
for bbox in sample["bboxes"] + sample["polygons"] + sample["points"]: |
|
total += 1 |
|
|
|
if bbox["class"] in classes: |
|
ok += 1 |
|
|
|
if bbox["class"] in recover: |
|
bbox["class"] = recover[bbox["class"]] |
|
mapped += 1 |
|
|
|
if bbox["class"] not in classes and bbox["class"] not in recover: |
|
print(f"Can't recover faulty label in {file_name(sample)}: {bbox['class']}") |
|
faulty += 1 |
|
|
|
if bbox["rotation"] is not None: |
|
rotation += 1 |
|
|
|
if bbox["class"] == "text" and bbox["text"] is None: |
|
print(f"Missing Text in {file_name(sample)} -> {bbox['xmin']}, {bbox['ymin']}") |
|
|
|
if bbox["text"] is not None: |
|
if bbox["text"].strip() != bbox["text"]: |
|
print(f"Removing leading of trailing spaces from: {bbox['text']}") |
|
bbox["text"] = bbox["text"].strip() |
|
|
|
if bbox["class"] != "text": |
|
print(f"Text string outside Text BB in {file_name(sample)}: {bbox['class']}: {bbox['text']}") |
|
|
|
text += 1 |
|
|
|
return total, ok, mapped, faulty, rotation, text |
|
|
|
|
|
def consistency_circuit(db: list, classes: dict) -> None: |
|
"""Checks whether the Amount of Annotation per Class is Consistent Among the Samples of a Circuits""" |
|
|
|
print("BBox Inconsistency Report:") |
|
sample_cls_bb_count = {(sample["circuit"], sample["drawing"], sample["picture"]): |
|
{cls: len([bbox for bbox in sample["bboxes"] if bbox["class"] == cls]) |
|
for cls in classes} for sample in db} |
|
|
|
for circuit in set(sample["circuit"] for sample in db): |
|
circuit_samples = [sample for sample in sample_cls_bb_count if sample[0] == circuit] |
|
for cls in classes: |
|
check = [sample_cls_bb_count[sample][cls] for sample in circuit_samples] |
|
if not all(c == check[0] for c in check): |
|
print(f" Circuit {circuit}: {cls}: {check}") |
|
|
|
|
|
def circuit_annotations(db: list, classes: dict) -> None: |
|
"""Plots the Annotations per Sample and Class""" |
|
|
|
fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(8, 6)) |
|
axes.plot([len(sample["bboxes"]) for sample in db], label="all") |
|
|
|
for cls in classes: |
|
axes.plot([len([annotation for annotation in sample["bboxes"] |
|
if annotation["class"] == cls]) for sample in db], label=cls) |
|
|
|
plt.minorticks_on() |
|
axes.set_xticks(np.arange(0, len(db)+1, step=8)) |
|
axes.set_xticks(np.arange(0, len(db), step=8)+4, minor=True) |
|
axes.grid(axis='x', linestyle='solid') |
|
axes.grid(axis='x', linestyle='dotted', alpha=0.7, which="minor") |
|
|
|
plt.title("Class Distribution in Samples") |
|
plt.xlabel("Image Sample") |
|
plt.ylabel("BB Annotation Count") |
|
|
|
plt.yscale('log') |
|
plt.legend(ncol=2, loc='center left', bbox_to_anchor=(1.0, 0.5)) |
|
plt.show() |
|
|
|
|
|
def class_distribution(db: list, classes: dict) -> None: |
|
"""Plots the Class Distribution over the Dataset""" |
|
|
|
class_nbrs = np.arange(len(classes)) |
|
class_counts = [sum([len([bbox for bbox in sample["bboxes"] + sample["polygons"] + sample["points"] |
|
if bbox["class"] == cls]) |
|
for sample in db]) for cls in classes] |
|
|
|
bars = plt.bar(class_nbrs, class_counts) |
|
plt.xticks(class_nbrs, labels=classes, rotation=90) |
|
plt.yscale('log') |
|
plt.title("Class Distribution") |
|
plt.xlabel("Class") |
|
plt.ylabel("BB Annotation Count") |
|
|
|
for rect in bars: |
|
height = rect.get_height() |
|
plt.annotate('{}'.format(height), |
|
xy=(rect.get_x() + rect.get_width() / 2, height), |
|
xytext=(0, -3), textcoords="offset points", ha='center', va='top', rotation=90) |
|
|
|
plt.show() |
|
|
|
|
|
def class_sizes(db: list, classes: dict) -> None: |
|
"""""" |
|
|
|
plt.title('BB Sizes') |
|
plt.boxplot([[max(bbox["xmax"]-bbox["xmin"], bbox["ymax"]-bbox["ymin"]) |
|
for sample in db for bbox in sample["bboxes"] if bbox["class"] == cls] |
|
for cls in classes]) |
|
class_nbrs = np.arange(len(classes))+1 |
|
plt.xticks(class_nbrs, labels=classes, rotation=90) |
|
plt.show() |
|
|
|
|
|
def image_count(drafter: int = None, segmentation: bool = False) -> int: |
|
"""Counts the Raw Images or Segmentation Maps in the Dataset""" |
|
|
|
return len([file_name for root, _, files in os.walk(".") |
|
for file_name in files |
|
if ("segmentation" if segmentation else "annotation") in root and |
|
(not drafter or f"drafter_{drafter}{os.sep}" in root)]) |
|
|
|
|
|
def read_check_write(classes: dict, drafter: int = None, segmentation: bool = False): |
|
"""Reads Annotations, Checks Consistency with Provided Classes |
|
Writes Corrected Annotations Back and Returns the Annotations""" |
|
|
|
db = read_dataset(drafter=drafter, segmentation=segmentation) |
|
ann_total, ann_ok, ann_mapped, ann_faulty, ann_rot, ann_text = consistency(db, classes) |
|
write_dataset(db, segmentation=segmentation) |
|
|
|
print("") |
|
print(" Class and File Consistency Report") |
|
print(" -------------------------------------") |
|
print(f"Annotation Type: {'Polygon' if segmentation else 'Bounding Box'}") |
|
print(f"Class Label Count: {len(classes)}") |
|
print(f"Raw Image Files: {image_count(drafter=drafter, segmentation=segmentation)}") |
|
print(f"Processed Annotation Files: {len(db)}") |
|
print(f"Total Annotation Count: {ann_total}") |
|
print(f"Consistent Annotations: {ann_ok}") |
|
print(f"Faulty Annotations (no recovery): {ann_faulty}") |
|
print(f"Corrected Annotations by Mapping: {ann_mapped}") |
|
print(f"Annotations with Rotation: {ann_rot}") |
|
print(f"Annotations with Text: {ann_text}") |
|
|
|
return db |
|
|
|
|
|
def text_statistics(db: list, plot_unique_labels: bool = False): |
|
"""Generates and Plots Statistics on Text Classes""" |
|
|
|
print("") |
|
print(" Text Statistics") |
|
print("---------------------") |
|
|
|
text_bbs = len([bbox for sample in db for bbox in sample["bboxes"] if bbox["class"] == "text"]) |
|
print(f"Text BB Annotations: {text_bbs}") |
|
|
|
text_labels = [bbox["text"] for sample in db for bbox in sample["bboxes"] if bbox["text"] is not None] |
|
print(f"Overall Text Label Count: {len(text_labels)}") |
|
|
|
text_labels_unique = set(text_labels) |
|
print(f"Unique Text Label Count: {len(text_labels_unique)}") |
|
|
|
print(f"Total Character Count: {sum([len(text_label) for text_label in text_labels])}") |
|
|
|
print("\nSet of all characters occurring in all text labels:") |
|
char_set = set([char_set for label in text_labels_unique for char_set in label]) |
|
chars = sorted(list(char_set)) |
|
print(chars) |
|
|
|
char_nbrs = np.arange(len(chars)) |
|
char_counts = [sum([len([None for text_char in text_label if text_char == char]) |
|
for text_label in text_labels]) |
|
for char in chars] |
|
plt.bar(char_nbrs, char_counts) |
|
plt.xticks(char_nbrs, chars) |
|
plt.title("Character Frequencies") |
|
plt.xlabel("Character") |
|
plt.ylabel("Overall Count") |
|
plt.show() |
|
print("\nCharacter Frequencies:") |
|
print({char: 1/char_count for char, char_count in zip(chars, char_counts)}) |
|
|
|
max_text_len = max([len(text_label) for text_label in text_labels]) |
|
text_lengths = np.arange(max_text_len)+1 |
|
text_count_by_length = [len([None for text_label in text_labels if len(text_label) == text_length]) |
|
for text_length in text_lengths] |
|
plt.bar(text_lengths, text_count_by_length) |
|
plt.xticks(text_lengths, rotation=90) |
|
plt.title("Text Length Distribution") |
|
plt.xlabel("Character Count") |
|
plt.ylabel("Annotation Count") |
|
plt.show() |
|
|
|
text_instances = text_labels_unique if plot_unique_labels else text_labels |
|
text_classes_names = [] |
|
text_classes_instances = [] |
|
|
|
for text_class in load_properties(): |
|
text_classes_names.append(text_class["name"]) |
|
text_classes_instances.append([text_instance for text_instance in text_instances |
|
if re.match(text_class["regex"], text_instance)]) |
|
|
|
text_classified = [text for text_class_instances in text_classes_instances for text in text_class_instances] |
|
text_classes_names.append("Unclassified") |
|
text_classes_instances.append([text_instance for text_instance in text_instances |
|
if text_instance not in text_classified]) |
|
|
|
for text_class_name, text_class_instances in zip(text_classes_names, text_classes_instances): |
|
print(f"\n{text_class_name}:") |
|
print(sorted(list(set(text_class_instances)))) |
|
|
|
plt.bar(text_classes_names, [len(text_class_instances) for text_class_instances in text_classes_instances]) |
|
plt.title('Count of matching pattern') |
|
plt.xlabel('Regex') |
|
plt.ylabel('No. of text matched') |
|
plt.xticks(rotation=90) |
|
plt.tight_layout() |
|
plt.show() |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
drafter_selected = int(sys.argv[1]) if len(sys.argv) == 2 else None |
|
classes = load_classes() |
|
|
|
|
|
db_bb = read_check_write(classes, drafter_selected) |
|
|
|
class_sizes(db_bb, classes) |
|
circuit_annotations(db_bb, classes) |
|
class_distribution(db_bb, classes) |
|
|
|
consistency_circuit(db_bb, classes) |
|
text_statistics(db_bb) |
|
|