Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
ArXiv:
DOI:
Libraries:
Datasets
pandas
License:
lorenzozangari commited on
Commit
f42c8bb
·
1 Parent(s): 15fd614

First commit

Browse files
.gitattributes CHANGED
@@ -57,3 +57,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ data/BAAI-bge-m3/hf_ds.parquet filter=lfs diff=lfs merge=lfs -text
61
+ data/ filter=lfs diff=lfs merge=lfs -text
62
+ data/BAAI-bge-m3/ filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,221 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ language:
4
+ - en
5
+ tags:
6
+ - Emotion
7
+ - Morality
8
+ - Events
9
+ pretty_name: E2MoCase
10
+ size_categories:
11
+ - 10K<n<100K
12
+ configs:
13
+ - config_name: bert-base-uncased
14
+ data_files: "data/bert-base-uncased/*.parquet"
15
+ default: true
16
+
17
+ - config_name: all-MiniLM-L6-v2
18
+ data_files: "data/all-MiniLM-L6-v2/*.parquet"
19
+
20
+ - config_name: all-mpnet-base-v2
21
+ data_files: "data/all-mpnet-base-v2/*.parquet"
22
+
23
+ - config_name: Qwen3-Embedding-0.6B
24
+ data_files: "data/Qwen3-Embedding-0.6B/*.parquet"
25
+
26
+ - config_name: BAAI-bge-m3
27
+ data_files: "data/BAAI-bge-m3/*.parquet"
28
+ ---
29
+ # E2MoCase: summary
30
+
31
+ E2MoCase is a novel curated dataset linking news stories about real-world legal cases to (i) the concrete events they describe, (ii) the emotions they evoke, and (iii) the moral foundations they frame. Articles are segmented into paragraphs, and each paragraph is independently annotated with aligned event (triggering words and involved entities), emotion labels, and moral labels, giving researchers a fine-grained lens on narrative bias. *The resource paper describing the dataset is currently under review at CIKM 2025.*
32
+
33
+
34
+ <p align="center">
35
+ <img src="image.png" width="350">
36
+ </p>
37
+
38
+
39
+
40
+ # Data access and reproducibility
41
+ The source articles for E2MoCase were retrieved through [Swissdox@LiRI platform](https://www.liri.uzh.ch/en/services/swissdox.html). The raw news paragraphs cannot be openly shared [due to commercial restrictions](https://www.liri.uzh.ch/en/services/swissdox.html) imposed by Swissdox. However, the original query (in YAML format) used for retrieving data from Swissdox@LiRI can be found in our [Github repository](https://github.com/lorenzozangari/E2MoCase).
42
+ Additionally, aggregated/derived data can also be made available: here we release the sentence embedding of the source paragraphs, generated with various pretrained language models (e.g., bert-base-uncased, Qwen3-0.6B), along with their annotations (see the [Data Description](#data-description) Section for further details). We also release the source code for rebuilding the dataset from scratch, including the interface to SwissDoc library in our [Github repository](https://github.com/lorenzozangari/E2MoCase).
43
+
44
+
45
+
46
+ **We are continuously refining and expanding the E2moCase dataset. Stay tuned for upcoming updates!**
47
+
48
+
49
+ # Data Description
50
+
51
+ E2MoCase contains 97,251 paragraphs extracted from a total of 19,250 news articles. These news articles were obtained from about 100 candidate real-world cases related to legal matters that had significant media impact due to evidence of cultural biases, such as religious, political, gender, racial, and media biases. For each case, we manually verified its factual accuracy, we ensured it had significant media impact and it was covered by reputable newspaper agencies.
52
+
53
+ All paragraphs are labeled with emotions and moralities. Of these, 50,975 paragraphs are also labeled with events, whereas the remaining ones do not contain events. The statistics of E2MoCase and its variants are shown as follows.
54
+
55
+
56
+ | | E2MoCase | E2MoCase_noEvents | E2MoCase_full |
57
+ |----------------------|---------------------|-----------------------|----------------------|
58
+ | **# paragraphs** | 50,975 | 46,276 | 97,251 |
59
+ | **avg # tokens** | 275.106 ± 245.303 | 139.402 ± 220.950 | 210.532 ± 243.647 |
60
+ | **avg # emotions** | 1.164 ± 0.757 | 1.634 ± 0.680 | 1.678 ± 0.657 |
61
+ | **avg # morals** | 3.517 ± 3.870 | 1.773 ± 1.644 | 2.795 ± 2.424 |
62
+ | **avg # events** | 3.597 ± 2.940 | 0.0 ± 0.0 | 1.885 ± 2.785 |
63
+
64
+ E2MoCase_noEvents, is the dataset obtained by removing paragraphs that do not contain events, while
65
+ E2MoCase_full, is the version that also includes paragraphs that do not contain events.
66
+
67
+
68
+
69
+ The dataset contains the following fields:
70
+
71
+
72
+ - `content_id`: Identification code of the news item within SwissDox.
73
+ - `P` : Paragraph identification code. It takes the form $P_i$, where $i$ is the $i$-th paragraph within the news item.
74
+ - `subject` : Main subject of the news item (e.g., Julia Rossi case, Harvey Weinstein case).
75
+ - `event` : List of events in JSON format
76
+ - `care`, `harm`, `fairness`, `cheating`, `loyalty`, `betrayal`, `authority`, `subversion`, `purity`, `degradation`: Real-valued scores (within 0 and 1) associated with moral values
77
+ - `anticipation`, `trust`, `disgust`, `joy`, `optimism`, `surprise`, `love`, `anger`, `sadness`, `pessimism`, `fear`: Real-valued scores (within 0 and 1) associated with emotion values
78
+ - `embeddings`: Paragraph-level embeddins computed with different SentenceTransformers (e.g., bert-base uncased, Qwen3-0.6B)
79
+
80
+ ### Example data
81
+
82
+ Given the following paragraph:
83
+
84
+ ```
85
+ "Mystery without an answer: Where is Sarah's murderer?
86
+ Julia Rossi was acquitted of murdering Sarah Bianchi.
87
+ But if it wasn't her, then who killed the Italian woman with 25 stab wounds?"
88
+ ```
89
+
90
+ An annotated data instance associated with the paragraph is as follows:
91
+
92
+ **event**:
93
+
94
+ ```
95
+ [
96
+ {"mention": "murder", "entities": {"Julia Rossi": "murderer", "Sarah Bianchi": "victim"}},
97
+ {"mention": "kill", "entities": {"Julia Rossi": "murderer", "Sarah Bianchi": "victim"}}
98
+ ]
99
+ ```
100
+
101
+ **Moral columns**:
102
+ | care | harm | fairness | cheating | loyalty | betrayal | authority | subversion | purity | degradation |
103
+ |-------------|-------------|-----------------|-----------------|----------------|-----------------|------------------|-------------------|---------------|--------------------|
104
+ | 0.0 | 0.985 | 0.0 | 0.901 | 0.0 | 0.910 | 0.0 | 0.0 | 0.0 | 0.221 |
105
+
106
+ **Emotion columns**:
107
+ | anticipation | trust | disgust | joy | optimism | surprise | love | anger | sadness | pessimism | fear |
108
+ |--------------|-------|---------|------|----------|----------|------|-------|---------|-----------|------|
109
+ | 0.0 | 0.0 | 0.521 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 |
110
+
111
+
112
+ **embeddings (BERT)**:
113
+ ```
114
+ [
115
+ -0.03578636795282364, -0.1418502777814865, -0.057445134967565536, 0.33489108085632324,
116
+ -0.4916315972805023, 0.14585624635219574, 0.5827698707580566, 0.10768894851207733,
117
+ 0.1799188107252121, -0.1422875076532364, 0.32683268189430237, -0.03329094871878624,
118
+ -0.12012719362974167, -0.11901112645864487, 0.2651849389076233, 0.23091290891170502,
119
+ 0.1272478997707367, 0.5687066316604614,
120
+
121
+ ]
122
+ ```
123
+
124
+ *Note: in the above example, all references to real persons have been replaced with fictitious names.*.
125
+ # Data usage
126
+
127
+
128
+
129
+ ```python
130
+ import pandas as pd
131
+ from datasets import load_dataset
132
+ import ast
133
+
134
+ moral_columns = ['care', 'harm', 'fairness', 'cheating', 'loyalty', 'betrayal', 'authority', 'subversion', 'purity',
135
+ 'degradation']
136
+ emotion_columns= [
137
+ 'anticipation', 'trust', 'disgust', 'joy', 'optimism', 'surprise',
138
+ 'love', 'anger', 'sadness', 'pessimism', 'fear']
139
+
140
+ ds = load_dataset('lorenzozan/E2MoCase', split='train') # load the base version
141
+
142
+ print(ds)
143
+
144
+ """
145
+ Dataset({
146
+ features: ['content_id', 'P', 'event', 'subject', 'care', 'harm', 'fairness', 'cheating', 'loyalty', 'betrayal', 'authority', 'subversion', 'purity', 'degradation', 'anticipation', 'trust', 'disgust', 'joy', 'optimism', 'surprise', 'love', 'anger', 'sadness', 'pessimism', 'fear', 'embeddings'],
147
+ num_rows: 97251
148
+ })
149
+ """
150
+
151
+ df = ds.to_pandas() # convert to pandas
152
+
153
+
154
+ # Print 5 random rows
155
+ df = ds.to_pandas().sample(frac=1)
156
+ df[['subject']+emotion_columns+moral_columns].head(5)
157
+
158
+ print(df['embeddings'][1].shape) # 768
159
+
160
+ df['event'] = df['event'].apply(ast.literal_eval)
161
+
162
+ print(df['event'])
163
+
164
+ ```
165
+
166
+
167
+ You can also download the dataset with sentence embeddings provided by other pre-trained language models, e.g., *Qwen-3-Embedding-0.6B*:
168
+
169
+ ```python
170
+ from datasets import get_dataset_config_names
171
+
172
+ ds = load_dataset('lorenzozan/E2MoCase', 'Qwen3-Embedding-0.6B', split='train')
173
+ configs = get_dataset_config_names("lorenzozan/E2MoCase")
174
+ print(configs) # all availabel configs
175
+ """
176
+ ['bert-base-uncased', 'all-MiniLM-L6-v2', 'all-mpnet-base-v2', 'Qwen3-Embedding-0.6B', 'BAAI-bge-m3']
177
+ """
178
+
179
+ ```
180
+
181
+ Currently, the available sentence embeddings are *all-mpnet-base-v2*, *all-MiniLM-L6-v2*, *bert-base-uncased*, *Qwen3-Embedding-0.6B* and *BAAI/bge-m3*.
182
+
183
+
184
+
185
+ ## Ethical use of data and informed constent
186
+
187
+ This data repository is made available for research purposes only.
188
+
189
+ E2MoCase includes biased news due to its case collection process. Our case selection was not influenced by the the authors' thoughts or beliefs, but was made solely for research purposes to include prominent cases with high-impact media case.
190
+
191
+ **The authors are not responsible for any harm or liabilities that may arise from the propagation of such biases through downstream machine-learning models. Users should avoid deploying systems that might reinforce harmful stereotypes or discriminatory patterns.**
192
+
193
+
194
+ ## References
195
+
196
+ Please cite the following preprint — referring to its most recent update — in any research product that relies on the data contained in this repository:
197
+
198
+ ```
199
+ @article{greco2024e2mocase,
200
+ title={E2MoCase: A Dataset for Emotional, Event and Moral Observations in News Articles on High-impact Legal Cases},
201
+ author={Greco, Candida M and Zangari, Lorenzo and Picca, Davide and Tagarelli, Andrea},
202
+ journal={arXiv preprint arXiv:2409.09001},
203
+ year={2024}
204
+ }
205
+ ```
206
+
207
+
208
+ Also refer to the following paper on the topic:
209
+
210
+ ```
211
+ @inproceedings{zangari2025me2,
212
+ title={ME2-BERT: Are Events and Emotions what you need for Moral Foundation Prediction?},
213
+ author={Zangari, Lorenzo and Greco, Candida M and Picca, Davide and Tagarelli, Andrea},
214
+ booktitle={Proceedings of the 31st International Conference on Computational Linguistics},
215
+ pages={9516--9532},
216
+ year={2025}
217
+ }
218
+ ```
219
+
220
+
221
+
data/.gitattributes ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ all-MiniLM-L6-v2 filter=lfs diff=lfs merge=lfs -text
2
+ all-mpnet-base-v2 filter=lfs diff=lfs merge=lfs -text
3
+ bert-base-uncased filter=lfs diff=lfs merge=lfs -text
4
+ Qwen3-Embedding-0.6B filter=lfs diff=lfs merge=lfs -text
5
+ *.parquet filter=lfs diff=lfs merge=lfs -text
data/BAAI-bge-m3/hf_ds.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1cf1df1318ad6720dd135607f9f30a43ccdaf7c9f3d155566c1009aff86ac68
3
+ size 372693530
data/Qwen3-Embedding-0.6B/hf_ds.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55cf61a74c1bcbc8bb374e1e9d94507c2912ea0149b05313d2c29cde78aad6d8
3
+ size 373883534
data/all-MiniLM-L6-v2/hf_ds.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aca115a483be72a47d2046e0db5c5e4e8ee6b30cfbd85844280d3fd6c6899a95
3
+ size 141263253
data/all-mpnet-base-v2/hf_ds.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7b30b96793b72d35cbb93f9e00830ab1b4541b0e1a341edb6d722f21c01e2e4
3
+ size 280665366
data/bert-base-uncased/hf_ds.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f7ded66c80064fbce3e05173d5ed14a6fe40f4d3383861283f3b8f7043cbcd0
3
+ size 280743079
image.png ADDED

Git LFS Details

  • SHA256: 978bd4c2e264fa3d673a2a58179a3d76ef640e9869ea93aa29483914383691c1
  • Pointer size: 131 Bytes
  • Size of remote file: 103 kB