Update README.md
Browse files
README.md
CHANGED
@@ -1,26 +1,42 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
dataset_info:
|
4 |
-
features:
|
5 |
-
- name: question_id
|
6 |
-
dtype: string
|
7 |
-
- name: category
|
8 |
-
dtype: string
|
9 |
-
- name: cluster
|
10 |
-
dtype: string
|
11 |
-
- name: turns
|
12 |
-
list:
|
13 |
-
- name: content
|
14 |
-
dtype: string
|
15 |
-
splits:
|
16 |
-
- name: train
|
17 |
-
num_bytes: 251691
|
18 |
-
num_examples: 500
|
19 |
-
download_size: 154022
|
20 |
-
dataset_size: 251691
|
21 |
-
configs:
|
22 |
-
- config_name: default
|
23 |
-
data_files:
|
24 |
-
- split: train
|
25 |
-
path: data/train-*
|
26 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
dataset_info:
|
4 |
+
features:
|
5 |
+
- name: question_id
|
6 |
+
dtype: string
|
7 |
+
- name: category
|
8 |
+
dtype: string
|
9 |
+
- name: cluster
|
10 |
+
dtype: string
|
11 |
+
- name: turns
|
12 |
+
list:
|
13 |
+
- name: content
|
14 |
+
dtype: string
|
15 |
+
splits:
|
16 |
+
- name: train
|
17 |
+
num_bytes: 251691
|
18 |
+
num_examples: 500
|
19 |
+
download_size: 154022
|
20 |
+
dataset_size: 251691
|
21 |
+
configs:
|
22 |
+
- config_name: default
|
23 |
+
data_files:
|
24 |
+
- split: train
|
25 |
+
path: data/train-*
|
26 |
+
---
|
27 |
+
|
28 |
+
## Arena-Hard-Auto
|
29 |
+
|
30 |
+
**Arena-Hard-Auto-v0.1** ([See Paper](https://arxiv.org/abs/2406.11939)) is an automatic evaluation tool for instruction-tuned LLMs. It contains 500 challenging user queries sourced from Chatbot Arena. We prompt GPT-4-Turbo as judge to compare the models' responses against a baseline model (default: GPT-4-0314). Notably, Arena-Hard-Auto has the highest *correlation* and *separability* to Chatbot Arena among popular open-ended LLM benchmarks ([See Paper](https://arxiv.org/abs/2406.11939)). If you are curious to see how well your model might perform on Chatbot Arena, we recommend trying Arena-Hard-Auto.
|
31 |
+
|
32 |
+
Please checkout our GitHub repo on how to evaluate models using Arena-Hard-Auto and more information about the benchmark.
|
33 |
+
|
34 |
+
If you find this dataset useful, feel free to cite us!
|
35 |
+
```
|
36 |
+
@article{li2024crowdsourced,
|
37 |
+
title={From Crowdsourced Data to High-Quality Benchmarks: Arena-Hard and BenchBuilder Pipeline},
|
38 |
+
author={Li, Tianle and Chiang, Wei-Lin and Frick, Evan and Dunlap, Lisa and Wu, Tianhao and Zhu, Banghua and Gonzalez, Joseph E and Stoica, Ion},
|
39 |
+
journal={arXiv preprint arXiv:2406.11939},
|
40 |
+
year={2024}
|
41 |
+
}
|
42 |
+
```
|