|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""BPSAD -- Brazilian Portuguese Sentiment Analysis Datasets""" |
|
|
|
import csv |
|
import os |
|
import datasets |
|
import sys |
|
|
|
from datasets import ClassLabel |
|
|
|
csv.field_size_limit(sys.maxsize) |
|
|
|
|
|
_HOMEPAGE = """\ |
|
https://www.kaggle.com/datasets/fredericods/ptbr-sentiment-analysis-datasets""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The Brazilian Portuguese Sentiment Analysis Dataset (BPSAD) is composed |
|
by the concatenation of 5 differents sources (Olist, B2W Digital, Buscapé, |
|
UTLC-Apps and UTLC-Movies), each one is composed by evaluation sentences |
|
classified according to the polarity (0: negative; 1: positive) and ratings |
|
(1, 2, 3, 4 and 5 stars).""" |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{souza2021sentiment, |
|
author={ |
|
Souza, Frederico Dias and |
|
Baptista de Oliveira e Souza Filho, João}, |
|
booktitle={ |
|
2021 IEEE Latin American Conference on |
|
Computational Intelligence (LA-CCI)}, |
|
title={ |
|
Sentiment Analysis on Brazilian Portuguese User Reviews}, |
|
year={2021}, |
|
pages={1-6}, |
|
doi={10.1109/LA-CCI48322.2021.9769838} |
|
} |
|
""" |
|
|
|
|
|
_VERSION = datasets.Version("1.0.0") |
|
_LICENSE = "" |
|
|
|
|
|
|
|
class BPSAD(datasets.GeneratorBasedBuilder): |
|
"""BPSAD dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="polarity", |
|
description="Polarity classification dataset." |
|
), |
|
datasets.BuilderConfig( |
|
name="rating", |
|
description="Rating classification dataset." |
|
), |
|
] |
|
|
|
@property |
|
def manual_download_instructions(self): |
|
return ( |
|
"To use this dataset you have to download it manually:\n" |
|
" 1. Download the `concatenated` file from `{_HOMEPAGE}`.\n" |
|
" 2. Extract the file inside `[PATH_TO_FILE]`.\n" |
|
" 3. Load the dataset using the command:\n" |
|
" datasets.load_dataset(" |
|
"\"lm4pt/bpsad\", name=..., data_dir=\"[PATH_TO_FILE]\")\n\n" |
|
"Possible names are: `polarity` and `rating`." |
|
) |
|
|
|
def _info(self): |
|
|
|
|
|
|
|
|
|
if self.config.name not in ['polarity', 'rating']: |
|
raise ValueError(( |
|
f"`{self.config.name}` is not a valid config name. Possible " |
|
"values are `polarity` and `rating`. Make sure to pass via " |
|
"`datasets.load_dataset('lm4pt/bpsad', name=...)`" |
|
)) |
|
|
|
if self.config.name == "polarity": |
|
features = datasets.Features({ |
|
"review_text": datasets.Value("string"), |
|
"polarity": ClassLabel( |
|
num_classes=2, |
|
names=['negative', 'positive'] |
|
), |
|
}) |
|
else: |
|
features = datasets.Features({ |
|
"review_text": datasets.Value("string"), |
|
"rating": datasets.Value("int8"), |
|
}) |
|
|
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
version=_VERSION, |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) |
|
|
|
|
|
if not os.path.exists(data_dir): |
|
raise FileNotFoundError(( |
|
data_dir + " does not exist. Make sure to pass the " |
|
"parameter `data_dir` via `datasets.load_dataset`.\n" |
|
"Manual download instructions:\n" + |
|
self.manual_download_instructions |
|
)) |
|
|
|
data_file = os.path.join(data_dir, "concatenated.csv") |
|
|
|
|
|
if not os.path.exists(data_file): |
|
raise FileNotFoundError(( |
|
data_file + " does not exist. " + |
|
self.manual_download_instructions |
|
)) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_file, |
|
"split": "train", |
|
'kfold_min': 1, |
|
'kfold_max': 8 |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_file, |
|
"split": "dev", |
|
'kfold_min': 9, |
|
'kfold_max': 9 |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_file, |
|
"split": "test", |
|
'kfold_min': 10, |
|
'kfold_max': 10 |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath, split, kfold_min, kfold_max): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with open(filepath) as csv_file: |
|
csv_reader = csv.reader(csv_file, delimiter=',') |
|
|
|
|
|
_ = next(csv_reader) |
|
|
|
_id = 0 |
|
if self.config.name == 'polarity': |
|
for row in csv_reader: |
|
kfold = int(row[7]) |
|
if kfold_min <= kfold and kfold <= kfold_max: |
|
yield _id, { |
|
"review_text": row[2], |
|
"polarity": int(float(row[5])), |
|
} |
|
_id += 1 |
|
else: |
|
for row in csv_reader: |
|
kfold = int(row[8]) |
|
if kfold_min <= kfold and kfold <= kfold_max: |
|
yield _id, { |
|
"review_text": row[2], |
|
"rating": int(float(row[6])), |
|
} |
|
_id += 1 |
|
|