edornd commited on
Commit
bb78965
Β·
1 Parent(s): 86715a1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md CHANGED
@@ -1,3 +1,96 @@
1
  ---
2
  license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-4.0
3
+ task_categories:
4
+ - image-segmentation
5
+ - image-classification
6
+ language:
7
+ - en
8
+ tags:
9
+ - semantic segmentation
10
+ - remote sensing
11
+ - sentinel
12
+ - wildfire
13
+ pretty_name: Wildfires - CEMS
14
+ size_categories:
15
+ - 1K<n<10K
16
  ---
17
+ # Wildfires - CEMS
18
+
19
+ The dataset includes annotations for burned area delineation and land cover segmentation, with a focus on European soil.
20
+ The dataset is curated from various sources, including the Copernicus European Monitoring System (EMS) and Sentinel-2 feeds.
21
+
22
+ ---------
23
+ - **Repository:** https://github.com/links-ads/burned-area-seg
24
+ - **Paper:** Coming soon
25
+ ---------
26
+ ![Dataset sample](assets/sample.png)
27
+
28
+ ## Dataset Structure
29
+
30
+ The main dataset used in the paper comprises the following inputs:
31
+
32
+ | Suffix | Data Type | Description | Format |
33
+ |---------|--------------------|-------------------------------------------------------------------------------------------|--------------------------|
34
+ | S2L2A | Sentinel-2 Image | L2A data with 12 channels in reflectance/10k format | GeoTIFF (.tif) |
35
+ | DEL | Delineation Map | Binary map indicating burned areas as uint8 values (0 or 1) | GeoTIFF (.tif) |
36
+ | GRA | Grading Map | Grading information (if available) with uint8 values ranging from 0 to 4 | GeoTIFF (.tif) |
37
+ | ESA_LC | Land Cover Map | ESA WorldCover 2020 land cover classes as uint8 values | GeoTIFF (.tif) |
38
+ | CM | Cloud Cover Map | Cloud cover mask, uint8 values generated using CloudSen12 (0 or 1) | GeoTIFF (.tif) |
39
+
40
+ Additionally, the dataset also contains two land cover variants, the ESRI Annual Land Cover (9 categories) and the static variant (10 categories), not used in this study.
41
+ The dataset already provides a `train` / `val` / `test` split for convenience, however the inner structure of each group is the same.
42
+ The folders are structured as follows:
43
+
44
+ ```
45
+ train/val/test/
46
+ β”œβ”€β”€ EMSR230/
47
+ β”‚ β”œβ”€β”€ AOI01/
48
+ β”‚ β”‚ β”œβ”€β”€ EMSR230_AOI01_01/
49
+ β”‚ β”‚ β”‚ β”œβ”€β”€ EMSR230_AOI01_01_CM.png
50
+ β”‚ β”‚ β”‚ β”œβ”€β”€ EMSR230_AOI01_01_CM.tif
51
+ β”‚ β”‚ β”‚ β”œβ”€β”€ EMSR230_AOI01_01_DEL.png
52
+ β”‚ β”‚ β”‚ β”œβ”€β”€ EMSR230_AOI01_01_DEL.tif
53
+ β”‚ β”‚ β”‚ β”œβ”€β”€ EMSR230_AOI01_01_ESA_LC.png
54
+ β”‚ β”‚ β”‚ β”œβ”€β”€ EMSR230_AOI01_01_ESA_LC.tif
55
+ β”‚ β”‚ β”‚ β”œβ”€β”€ EMSR230_AOI01_01_GRA.png
56
+ β”‚ β”‚ β”‚ β”œβ”€β”€ EMSR230_AOI01_01_GRA.tif
57
+ β”‚ β”‚ β”‚ β”œβ”€β”€ EMSR230_AOI01_01_S2L2A.json -> metadata information
58
+ β”‚ β”‚ β”‚ β”œβ”€β”€ EMSR230_AOI01_01_S2L2A.png -> RGB visualization
59
+ β”‚ β”‚ β”‚ └── EMSR230_AOI01_01_S2L2A.tif
60
+ β”‚ β”‚ β”‚ └── ...
61
+ β”‚ β”‚ β”œβ”€β”€ EMSR230_AOI01_02/
62
+ β”‚ β”‚ β”‚ └── ...
63
+ β”‚ β”‚ β”œβ”€β”€ ...
64
+ β”‚ β”œβ”€β”€ AOI02/
65
+ β”‚ β”‚ └── ...
66
+ β”‚ β”œβ”€β”€ ...
67
+ β”œβ”€β”€ EMSR231/
68
+ β”‚ β”œβ”€β”€ ...
69
+ β”œβ”€β”€ ...
70
+ ```
71
+
72
+ ### Source Data
73
+
74
+ - Activations are directly derived from Copernicus EMS (CEMS): [https://emergency.copernicus.eu/mapping/list-of-activations-rapid](https://emergency.copernicus.eu/mapping/list-of-activations-rapid)
75
+ - Sentinel-2 and LC images are downloaded from Microsoft Planetary Computer, using the AoI provided by CEMS.
76
+ - DEL and GRA maps represent the rasterized version of the delineation/grading products provided by the Copernicus service.
77
+
78
+
79
+ ### Licensing Information
80
+
81
+ CC-BY-4.0 [https://creativecommons.org/licenses/by/4.0/](https://creativecommons.org/licenses/by/4.0/)
82
+
83
+ ### Citation Information
84
+
85
+ ```bibtex
86
+ @inproceedings{arnaudo2023burned,
87
+ title={Robust Burned Area Delineation through Multitask Learning},
88
+ author={Arnaudo, Edoardo and Barco, Luca and Merlo, Matteo and Rossi, Claudio},
89
+ booktitle={Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases},
90
+ year={2023}
91
+ }
92
+ ```
93
+
94
+ ### Contributions
95
+ - Luca Barco (luca.barco@linksfoundation.com)
96
+ - Edoardo Arnaudo (edoardo.arnaudo@polito.it | linksfoundation.com)