Commit
·
4c1f667
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/1.0.0/dummy_data.zip +3 -0
- newsroom.py +144 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "\nNEWSROOM is a large dataset for training and evaluating summarization systems.\nIt contains 1.3 million articles and summaries written by authors and\neditors in the newsrooms of 38 major publications.\n\nDataset features includes:\n - text: Input news text.\n - summary: Summary for the news.\nAnd additional features:\n - title: news title.\n - url: url of the news.\n - date: date of the article.\n - density: extractive density.\n - coverage: extractive coverage.\n - compression: compression ratio.\n - density_bin: low, medium, high.\n - coverage_bin: extractive, abstractive.\n - compression_bin: low, medium, high.\n\nThis dataset can be downloaded upon requests. Unzip all the contents\n\"train.jsonl, dev.josnl, test.jsonl\" to the tfds folder.\n\n", "citation": "\n@inproceedings{N18-1065,\n author = {Grusky, Max and Naaman, Mor and Artzi, Yoav},\n title = {NEWSROOM: A Dataset of 1.3 Million Summaries\n with Diverse Extractive Strategies},\n booktitle = {Proceedings of the 2018 Conference of the\n North American Chapter of the Association for\n Computational Linguistics: Human Language Technologies},\n year = {2018},\n}\n", "homepage": "https://summari.es", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "summary": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "date": {"dtype": "string", "id": null, "_type": "Value"}, "density_bin": {"dtype": "string", "id": null, "_type": "Value"}, "coverage_bin": {"dtype": "string", "id": null, "_type": "Value"}, "compression_bin": {"dtype": "string", "id": null, "_type": "Value"}, "density": {"dtype": "float32", "id": null, "_type": "Value"}, "coverage": {"dtype": "float32", "id": null, "_type": "Value"}, "compression": {"dtype": "float32", "id": null, "_type": "Value"}}, "supervised_keys": {"input": "text", "output": "summary"}, "builder_name": "newsroom", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 472446866, "num_examples": 108862, "dataset_name": "newsroom"}, "train": {"name": "train", "num_bytes": 4357506078, "num_examples": 995041, "dataset_name": "newsroom"}, "validation": {"name": "validation", "num_bytes": 473206951, "num_examples": 108837, "dataset_name": "newsroom"}}, "download_checksums": {}, "download_size": 0, "dataset_size": 5303159895, "size_in_bytes": 5303159895}}
|
dummy/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a083c8805b149f1d7d3fedf6073e7c56828eb1666a2d6a69e43f18a8740b674
|
3 |
+
size 1209
|
newsroom.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""NEWSROOM Dataset."""
|
18 |
+
|
19 |
+
from __future__ import absolute_import, division, print_function
|
20 |
+
|
21 |
+
import json
|
22 |
+
import os
|
23 |
+
|
24 |
+
import datasets
|
25 |
+
|
26 |
+
|
27 |
+
_CITATION = """
|
28 |
+
@inproceedings{N18-1065,
|
29 |
+
author = {Grusky, Max and Naaman, Mor and Artzi, Yoav},
|
30 |
+
title = {NEWSROOM: A Dataset of 1.3 Million Summaries
|
31 |
+
with Diverse Extractive Strategies},
|
32 |
+
booktitle = {Proceedings of the 2018 Conference of the
|
33 |
+
North American Chapter of the Association for
|
34 |
+
Computational Linguistics: Human Language Technologies},
|
35 |
+
year = {2018},
|
36 |
+
}
|
37 |
+
"""
|
38 |
+
|
39 |
+
_DESCRIPTION = """
|
40 |
+
NEWSROOM is a large dataset for training and evaluating summarization systems.
|
41 |
+
It contains 1.3 million articles and summaries written by authors and
|
42 |
+
editors in the newsrooms of 38 major publications.
|
43 |
+
|
44 |
+
Dataset features includes:
|
45 |
+
- text: Input news text.
|
46 |
+
- summary: Summary for the news.
|
47 |
+
And additional features:
|
48 |
+
- title: news title.
|
49 |
+
- url: url of the news.
|
50 |
+
- date: date of the article.
|
51 |
+
- density: extractive density.
|
52 |
+
- coverage: extractive coverage.
|
53 |
+
- compression: compression ratio.
|
54 |
+
- density_bin: low, medium, high.
|
55 |
+
- coverage_bin: extractive, abstractive.
|
56 |
+
- compression_bin: low, medium, high.
|
57 |
+
|
58 |
+
This dataset can be downloaded upon requests. Unzip all the contents
|
59 |
+
"train.jsonl, dev.josnl, test.jsonl" to the tfds folder.
|
60 |
+
|
61 |
+
"""
|
62 |
+
|
63 |
+
_DOCUMENT = "text"
|
64 |
+
_SUMMARY = "summary"
|
65 |
+
_ADDITIONAL_TEXT_FEATURES = [
|
66 |
+
"title",
|
67 |
+
"url",
|
68 |
+
"date",
|
69 |
+
"density_bin",
|
70 |
+
"coverage_bin",
|
71 |
+
"compression_bin",
|
72 |
+
]
|
73 |
+
_ADDITIONAL_FLOAT_FEATURES = [
|
74 |
+
"density",
|
75 |
+
"coverage",
|
76 |
+
"compression",
|
77 |
+
]
|
78 |
+
|
79 |
+
|
80 |
+
class Newsroom(datasets.GeneratorBasedBuilder):
|
81 |
+
"""NEWSROOM Dataset."""
|
82 |
+
|
83 |
+
VERSION = datasets.Version("1.0.0")
|
84 |
+
|
85 |
+
@property
|
86 |
+
def manual_download_instructions(self):
|
87 |
+
return """\
|
88 |
+
You should download the dataset from http://lil.datasets.cornell.edu/newsroom/
|
89 |
+
The webpage requires registration.
|
90 |
+
To unzip the .tar file run `tar -zxvf complete.tar`. To unzip the .gz files
|
91 |
+
run `gunzip train.json.gz` , ...
|
92 |
+
After downloading, please put the files under the following names
|
93 |
+
dev.jsonl, test.jsonl and train.jsonl in a dir of your choice,
|
94 |
+
which will be used as a manual_dir, e.g. `~/.manual_dirs/newsroom`
|
95 |
+
Newsroom can then be loaded via:
|
96 |
+
`datasets.load_dataset("newsroom", data_dir="~/.manual_dirs/newsroom")`.
|
97 |
+
"""
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = {k: datasets.Value("string") for k in [_DOCUMENT, _SUMMARY] + _ADDITIONAL_TEXT_FEATURES}
|
101 |
+
features.update({k: datasets.Value("float32") for k in _ADDITIONAL_FLOAT_FEATURES})
|
102 |
+
return datasets.DatasetInfo(
|
103 |
+
description=_DESCRIPTION,
|
104 |
+
features=datasets.Features(features),
|
105 |
+
supervised_keys=(_DOCUMENT, _SUMMARY),
|
106 |
+
homepage="http://lil.datasets.cornell.edu/newsroom/",
|
107 |
+
citation=_CITATION,
|
108 |
+
)
|
109 |
+
|
110 |
+
def _split_generators(self, dl_manager):
|
111 |
+
"""Returns SplitGenerators."""
|
112 |
+
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
|
113 |
+
if not os.path.exists(data_dir):
|
114 |
+
raise FileNotFoundError(
|
115 |
+
"{} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('newsroom', data_dir=...)` that includes files unzipped from the reclor zip. Manual download instructions: {}".format(
|
116 |
+
data_dir, self.manual_download_instructions
|
117 |
+
)
|
118 |
+
)
|
119 |
+
return [
|
120 |
+
datasets.SplitGenerator(
|
121 |
+
name=datasets.Split.TRAIN,
|
122 |
+
gen_kwargs={"input_file": os.path.join(data_dir, "train.jsonl")},
|
123 |
+
),
|
124 |
+
datasets.SplitGenerator(
|
125 |
+
name=datasets.Split.VALIDATION,
|
126 |
+
gen_kwargs={"input_file": os.path.join(data_dir, "dev.jsonl")},
|
127 |
+
),
|
128 |
+
datasets.SplitGenerator(
|
129 |
+
name=datasets.Split.TEST,
|
130 |
+
gen_kwargs={"input_file": os.path.join(data_dir, "test.jsonl")},
|
131 |
+
),
|
132 |
+
]
|
133 |
+
|
134 |
+
def _generate_examples(self, input_file=None):
|
135 |
+
"""Yields examples."""
|
136 |
+
with open(input_file, encoding="utf-8") as f:
|
137 |
+
for i, line in enumerate(f):
|
138 |
+
d = json.loads(line)
|
139 |
+
# fields are "url", "archive", "title", "date", "text",
|
140 |
+
# "compression_bin", "density_bin", "summary", "density",
|
141 |
+
# "compression', "coverage", "coverage_bin",
|
142 |
+
yield i, {
|
143 |
+
k: d[k] for k in [_DOCUMENT, _SUMMARY] + _ADDITIONAL_TEXT_FEATURES + _ADDITIONAL_FLOAT_FEATURES
|
144 |
+
}
|