|
import datasets |
|
import os |
|
import json |
|
|
|
|
|
_CITATION = "" |
|
_DESCRIPTION = """ |
|
Wikitext-103 dataset from this paper: |
|
https://arxiv.org/pdf/1609.07843.pdf |
|
|
|
Gopher's authors concatenate all the articles, set context length to n/2 (n = max_seq_len), |
|
and use the "closed vocabulary" variant of the dataset for evaluation. |
|
|
|
In contrast, we evaluate the model on each article independently, use single token contexts |
|
(except for the last sequence in each document), and use the raw dataset. |
|
""" |
|
|
|
class Wikitext103(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
|
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage="", |
|
license="", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
test_json = dl_manager.download(os.path.join("data", "test.jsonl")) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"path": test_json}, |
|
) |
|
] |
|
|
|
|
|
def _generate_examples(self, path): |
|
with open(path, encoding="utf-8") as f: |
|
for key, row in enumerate(f): |
|
yield key, json.loads(row) |
|
|