modelId
stringlengths 5
127
| author
stringlengths 2
42
| last_modified
unknown | downloads
int64 0
223M
| likes
int64 0
8.08k
| library_name
stringclasses 346
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 53
values | createdAt
unknown | card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
LoneStriker/Tess-M-v1.1-4.65bpw-h6-exl2 | LoneStriker | "2023-11-22T09:47:45Z" | 7 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2023-11-22T09:22:42Z" | ---
license: other
license_name: yi-34b
license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE
---
# Tess
![Tess](https://huggingface.co/migtissera/Tess-M-v1.0/resolve/main/Tess.png)
Tess, short for Tessoro/Tessoso, is a general purpose Large Language Model series. Tess-M-v1.1 was trained on the Yi-34B-200K base.
# Prompt Format:
```
SYSTEM: <ANY SYSTEM CONTEXT>
USER:
ASSISTANT:
```
|
arrkaye/asoiaf_gguf | arrkaye | "2024-11-13T16:14:57Z" | 6 | 0 | transformers | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"base_model:arrkaye/asoiaf",
"base_model:quantized:arrkaye/asoiaf",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | "2024-11-13T09:06:30Z" | ---
base_model: arrkaye/asoiaf
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** arrkaye
- **License:** apache-2.0
- **Finetuned from model :** arrkaye/asoiaf
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF | mradermacher | "2024-12-13T17:45:17Z" | 337 | 1 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:netcat420/MFANN-llama3.1-abliterated-SLERP-v3",
"base_model:quantized:netcat420/MFANN-llama3.1-abliterated-SLERP-v3",
"license:llama3.1",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | "2024-10-08T07:27:04Z" | ---
base_model: netcat420/MFANN-llama3.1-abliterated-SLERP-v3
language:
- en
library_name: transformers
license: llama3.1
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/netcat420/MFANN-llama3.1-abliterated-SLERP-v3
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.8 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.8 | fast on arm+i8mm, low quality |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.8 | fast on arm+sve, low quality |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/MFANN-llama3.1-abliterated-SLERP-v3-i1-GGUF/resolve/main/MFANN-llama3.1-abliterated-SLERP-v3.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
vedaantp/email-model | vedaantp | "2024-09-29T19:17:42Z" | 44 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"llama",
"text-classification",
"generated_from_trainer",
"base_model:meta-llama/Llama-3.2-1B",
"base_model:finetune:meta-llama/Llama-3.2-1B",
"license:llama3.2",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-classification | "2024-09-27T23:16:43Z" | ---
library_name: transformers
license: llama3.2
base_model: meta-llama/Llama-3.2-1B
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: email-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# email-model
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9912
- Accuracy: 0.7440
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.6084 | 1.0 | 540 | 1.3931 | 0.3155 |
| 1.308 | 2.0 | 1080 | 0.8074 | 0.5893 |
| 0.9603 | 3.0 | 1620 | 1.0167 | 0.6012 |
| 0.9051 | 4.0 | 2160 | 0.8432 | 0.5952 |
| 0.9171 | 5.0 | 2700 | 0.9912 | 0.7440 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
|
GrantW65/dqn-SpaceInvadersNoFrameskip-v4 | GrantW65 | "2023-08-28T18:05:06Z" | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | "2023-08-28T18:04:26Z" | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 582.00 +/- 122.03
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga GrantW65 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga GrantW65 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga GrantW65
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
andres-gv/cmi-models-2 | andres-gv | "2023-07-04T02:34:14Z" | 4 | 0 | bertopic | [
"bertopic",
"text-classification",
"region:us"
] | text-classification | "2023-07-04T02:31:57Z" | ---
pipeline_tag: text-classification
library_name: bertopic
--- |
sail-rvc/v1voicesam | sail-rvc | "2023-07-14T07:45:00Z" | 1 | 0 | transformers | [
"transformers",
"rvc",
"sail-rvc",
"audio-to-audio",
"endpoints_compatible",
"region:us"
] | audio-to-audio | "2023-07-14T07:44:34Z" |
---
pipeline_tag: audio-to-audio
tags:
- rvc
- sail-rvc
---
# v1voicesam
## RVC Model
![banner](https://i.imgur.com/xocCjhH.jpg)
This model repo was automatically generated.
Date: 2023-07-14 07:44:59
Bot Name: juuxnscrap
Model Type: RVC
Source: https://huggingface.co/juuxn/RVCModels/
Reason: Converting into loadable format for https://github.com/chavinlo/rvc-runpod
|
mradermacher/NarrativeNexus_7B-i1-GGUF | mradermacher | "2024-11-09T20:04:18Z" | 108 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:jeiku/NarrativeNexus_7B",
"base_model:quantized:jeiku/NarrativeNexus_7B",
"license:other",
"endpoints_compatible",
"region:us",
"imatrix"
] | null | "2024-11-09T18:51:03Z" | ---
base_model: jeiku/NarrativeNexus_7B
language:
- en
library_name: transformers
license: other
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/jeiku/NarrativeNexus_7B
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/NarrativeNexus_7B-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.2 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.2 | fast on arm+i8mm, low quality |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.2 | fast on arm+sve, low quality |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/NarrativeNexus_7B-i1-GGUF/resolve/main/NarrativeNexus_7B.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
davidschulte/ESM_xtreme_PAWS-X.fr | davidschulte | "2024-12-08T14:32:44Z" | 9 | 0 | null | [
"safetensors",
"embedding_space_map",
"BaseLM:bert-base-multilingual-uncased",
"dataset:google/xtreme",
"arxiv:2410.15148",
"base_model:google-bert/bert-base-multilingual-uncased",
"base_model:finetune:google-bert/bert-base-multilingual-uncased",
"license:apache-2.0",
"region:us"
] | null | "2024-12-08T14:32:38Z" | ---
base_model: bert-base-multilingual-uncased
datasets:
- google/xtreme
license: apache-2.0
tags:
- embedding_space_map
- BaseLM:bert-base-multilingual-uncased
---
# ESM google/xtreme
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
ESM
- **Developed by:** David Schulte
- **Model type:** ESM
- **Base Model:** bert-base-multilingual-uncased
- **Intermediate Task:** google/xtreme
- **ESM architecture:** linear
- **Language(s) (NLP):** [More Information Needed]
- **License:** Apache-2.0 license
## Training Details
### Intermediate Task
- **Task ID:** google/xtreme
- **Subset [optional]:** PAWS-X.fr
- **Text Column:** ['sentence1', 'sentence2']
- **Label Column:** label
- **Dataset Split:** train
- **Sample size [optional]:** 10000
- **Sample seed [optional]:** 42
### Training Procedure [optional]
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Language Model Training Hyperparameters [optional]
- **Epochs:** 3
- **Batch size:** 32
- **Learning rate:** 2e-05
- **Weight Decay:** 0.01
- **Optimizer**: AdamW
### ESM Training Hyperparameters [optional]
- **Epochs:** 10
- **Batch size:** 32
- **Learning rate:** 0.001
- **Weight Decay:** 0.01
- **Optimizer**: AdamW
### Additional trainiung details [optional]
## Model evaluation
### Evaluation of fine-tuned language model [optional]
### Evaluation of ESM [optional]
MSE:
### Additional evaluation details [optional]
## What are Embedding Space Maps?
<!-- This section describes the evaluation protocols and provides the results. -->
Embedding Space Maps (ESMs) are neural networks that approximate the effect of fine-tuning a language model on a task. They can be used to quickly transform embeddings from a base model to approximate how a fine-tuned model would embed the the input text.
ESMs can be used for intermediate task selection with the ESM-LogME workflow.
## How can I use Embedding Space Maps for Intermediate Task Selection?
[![PyPI version](https://img.shields.io/pypi/v/hf-dataset-selector.svg)](https://pypi.org/project/hf-dataset-selector)
We release **hf-dataset-selector**, a Python package for intermediate task selection using Embedding Space Maps.
**hf-dataset-selector** fetches ESMs for a given language model and uses it to find the best dataset for applying intermediate training to the target task. ESMs are found by their tags on the Huggingface Hub.
```python
from hfselect import Dataset, compute_task_ranking
# Load target dataset from the Hugging Face Hub
dataset = Dataset.from_hugging_face(
name="stanfordnlp/imdb",
split="train",
text_col="text",
label_col="label",
is_regression=False,
num_examples=1000,
seed=42
)
# Fetch ESMs and rank tasks
task_ranking = compute_task_ranking(
dataset=dataset,
model_name="bert-base-multilingual-uncased"
)
# Display top 5 recommendations
print(task_ranking[:5])
```
For more information on how to use ESMs please have a look at the [official Github repository](https://github.com/davidschulte/hf-dataset-selector).
## Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
If you are using this Embedding Space Maps, please cite our [paper](https://arxiv.org/abs/2410.15148).
**BibTeX:**
```
@misc{schulte2024moreparameterefficientselectionintermediate,
title={Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning},
author={David Schulte and Felix Hamborg and Alan Akbik},
year={2024},
eprint={2410.15148},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.15148},
}
```
**APA:**
```
Schulte, D., Hamborg, F., & Akbik, A. (2024). Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning. arXiv preprint arXiv:2410.15148.
```
## Additional Information
|
ORKAFILM/rutino2 | ORKAFILM | "2024-12-06T00:12:26Z" | 5 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | "2024-12-05T23:50:16Z" | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: rutino2
---
# Rutino2
<Gallery />
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `rutino2` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('ORKAFILM/rutino2', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
s3nh/zephyr-speakleash-007-pl-8192-32-16-0.05-GGUF | s3nh | "2024-02-03T09:42:00Z" | 4 | 1 | transformers | [
"transformers",
"gguf",
"text-generation",
"zh",
"en",
"license:openrail",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | "2024-02-03T09:12:31Z" |
---
license: openrail
pipeline_tag: text-generation
library_name: transformers
language:
- zh
- en
---
## Original model card
Buy me a coffee if you like this project ;)
<a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a>
#### Description
GGUF Format model files for [This project](https://huggingface.co/Nondzu/zephyr-speakleash-007-pl-8192-32-16-0.05).
### GGUF Specs
GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired:
Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information.
Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models.
mmap compatibility: models can be loaded using mmap for fast loading and saving.
Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used.
Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user.
The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values.
This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for
inference or for identifying the model.
### inference
User: Tell me story about what is an quantization and what do we need to build.
I have a little bit of experience with the term “quantization” from physics, but not much. When I hear it, the first thing that comes to mind is some kind of measuring instrument, like a ruler or voltmeter. What does the phrase “quantized by 1024” mean?
It sounds more mathematical than physical.
The term quantization comes from quantum mechanics and refers to a process whereby a continuous function is approximated by discrete values, that is, it is “discretized”. In this sense, we can say that the “quanta” are the differences between adjacent
# Original model card
|
mmpc/microsoft-phi-2-squad2-qg | mmpc | "2024-02-01T04:01:25Z" | 144 | 0 | transformers | [
"transformers",
"safetensors",
"phi",
"text-generation",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-02-01T03:50:34Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mini1013/master_cate_ap0 | mini1013 | "2024-11-19T05:35:21Z" | 161 | 0 | setfit | [
"setfit",
"safetensors",
"roberta",
"sentence-transformers",
"text-classification",
"generated_from_setfit_trainer",
"arxiv:2209.11055",
"base_model:mini1013/master_domain",
"base_model:finetune:mini1013/master_domain",
"model-index",
"region:us"
] | text-classification | "2024-11-19T05:34:58Z" | ---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: '[현대백화점][비비안](RU1260) 40% 가격인하 순면 80수 기본 남성런닝 95 (주)현대백화점'
- text: 부드러운 터치감 남성 실켓가공 런닝 트렁크 팬티 세트 VMV4183VMP4183N/비너스 브라운_런닝105-팬티105 롯데쇼핑(주)
- text: '[리더스] 신축성 좋은 복부 코르셋 땀복 남자 바지 (15005144) 블랙_XL 신세계몰'
- text: 탑텐 탑텐 공용 플란넬 라운지웨어 세트 MSC4UI3001 rva-482878f BE_L(540) 라비아세개
- text: BYC 남성용 50수 순면 민소매 그랜드 런닝 2호 백색 1매 BYI6035 95 (주)대화언더웨어
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.8497076023391813
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.0 | <ul><li>'CK퍼포먼스 24 SUMMER 여름셋업 남여공용 4종 [0001]블랙 90(S) CJONSTYLE_LIVE'</li><li>'CALVIN KLEIN UNDERWEAR 여성 모던 코튼 T팬티_F3786D001 F3786D001 블랙_M 럭스펄스'</li><li>'[갭][갭] 옴므 트렁크 6종 택1 GPMTR1O30T 네이비/L(100) 패션플러스'</li></ul> |
| 1.0 | <ul><li>'[와코루](신세계마산점)선염 모달 + 면 스판 스트라이프 조끼런닝 삼각 팬티 세트(WMV2378RWMP2378P) 95_100 주식회사 에스에스지닷컴'</li><li>'남자 속옷 등산 스포츠 SET 자전거 축구 스프츠 골프 백색_100 꼬북샵'</li><li>'싸이로컴팩 면모달 선염스트라이프 런닝RU1695T 네이비_100 신세계몰'</li></ul> |
| 3.0 | <ul><li>'CJ [리복] 스피드윅 기모 웜에어 상하의 2종 세트 남성 최신상 택일 옵션01.RBMYIEM01_00_100 (주)씨제이이엔엠'</li><li>'아르메데스 남성용 히트기모 발열내의 터틀넥 상의 AR-25 3매 블랙_M (주)아르메데스'</li><li>'[기능성 의류 BEST] 시원한 냉감 기능은 기본! 완벽한 자외선 차단! 기능성 티셔츠/조거팬츠/등산바지/아웃도어 의류 01.TM-MZS303_M_ZZGRY 테슬라_TSLA'</li></ul> |
| 0.0 | <ul><li>'남자 쿨 티셔츠 남성 냉감 나시티 기능성 반팔티 쿨링 EVE 화이트_100 에브리씽굿'</li><li>'비비안 모다아울렛 비비안 젠토프 텐셀솔리드 기본 반팔런닝 RU1239T 네이비_95 MODA아울렛'</li><li>'탑텐 TOPTEN 남성 쿨에어 크루넥 매쉬 탱크_MSD2UL1201 BK_100 가투투'</li></ul> |
| 2.0 | <ul><li>'니플 나시 남자보정 속옷이너핏여유증커버남성뱃살가리개꼭지가슴압박복가리기티 남자보정나시 보급형/L/화이트 조니멀티샵'</li><li>'하라마키 배워머 더블 배워머 보온복대 남성용 HT-LunesDB-Charcoal-M BESTYOURS'</li><li>'고급 따뜻한 남자 밴딩 기모 레깅스 겨울 발열 내복 바지 보온 타이즈 블랙_2XL 사랑니'</li></ul> |
| 4.0 | <ul><li>'[오르시떼](센텀시티점)남성 D123 오니리크 반소매 상하 S 신세계백화점'</li><li>'(신세계마산점)오르시떼남성 D105 브데뜨 긴소매 상하 S 신세계백화점'</li><li>'JAJU 남 라이트 밍크 플리스 파자마 세트 블루 L 리치쇼핑'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.8497 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ap0")
# Run inference
preds = model("[리더스] 신축성 좋은 복부 코르셋 땀복 남자 바지 (15005144) 블랙_XL 신세계몰")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 9.5967 | 24 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 50 |
| 1.0 | 50 |
| 2.0 | 50 |
| 3.0 | 50 |
| 4.0 | 50 |
| 5.0 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0213 | 1 | 0.4362 | - |
| 1.0638 | 50 | 0.3126 | - |
| 2.1277 | 100 | 0.0687 | - |
| 3.1915 | 150 | 0.0294 | - |
| 4.2553 | 200 | 0.0006 | - |
| 5.3191 | 250 | 0.0003 | - |
| 6.3830 | 300 | 0.0002 | - |
| 7.4468 | 350 | 0.0002 | - |
| 8.5106 | 400 | 0.0001 | - |
| 9.5745 | 450 | 0.0001 | - |
| 10.6383 | 500 | 0.0001 | - |
| 11.7021 | 550 | 0.0001 | - |
| 12.7660 | 600 | 0.0001 | - |
| 13.8298 | 650 | 0.0001 | - |
| 14.8936 | 700 | 0.0001 | - |
| 15.9574 | 750 | 0.0001 | - |
| 17.0213 | 800 | 0.0001 | - |
| 18.0851 | 850 | 0.0001 | - |
| 19.1489 | 900 | 0.0001 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |
bveiseh/phi4-magpie-reasoning-v3-gguf | bveiseh | "2025-02-13T01:04:48Z" | 0 | 1 | null | [
"gguf",
"dataset:Magpie-Align/Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B",
"base_model:microsoft/phi-4",
"base_model:quantized:microsoft/phi-4",
"license:mit",
"endpoints_compatible",
"region:us",
"conversational"
] | null | "2025-02-12T23:47:28Z" | ---
license: mit
datasets:
- Magpie-Align/Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B
base_model:
- microsoft/phi-4
---
# Phi-4 Magpie Reasoning GGUF v3
This is a GGUF format version of the Phi-4 model fine-tuned on the Magpie dataset. This is v3. v3 was trained on 4 3090 GPUs for about 55 hours.
In order to produce reasoning traces, make sure to tell the model in the system prompt to use them. Format is <think> response </think> response. You may have to try a few prompts to get it right.
I use this system prompt with great success:
"Think through your responses carefully, always break it down. Always think before you answer by using the thinking tags: <think> response </think> response. When you think, make sure you decompose the question and consider multiple answers always before you stop thinking. "
The fine tuning on chain-of-thought outputs does indeed force the Phi-4 to increase its test time compute. I have observed it giving more clear and conscise answers to complex questions, be able to tackle math and logic questions that the base model is unable to correctly answer, and it does it with only a slight reduction in inference speed.
## Model Details
- Base Model: Microsoft Phi-4 (14B parameters)
- Format: GGUF (8-bit quantization)
- Fine-tuning: LoRA with merged weights, 4-bit double quantization with Flash Attention v1
- Training Dataset: Magpie Reasoning Dataset
- Version: 3
## Training Data
- 2,200 excellent quality examples
- 3,000 good quality examples
- Total training samples: 5,200
## Evaluation Dataset
- 5 very hard + excellent quality examples
- 5 medium + excellent quality examples
- 5 very easy + excellent quality examples
## Technical Details
- LoRA Parameters:
- Rank (r): 24
- Alpha: 48
- Target Modules: q_proj, k_proj, v_proj, o_proj
- Dropout: 0.05
- Training Configuration:
- Epochs: 5
- Learning Rate: 3e-5
- Batch Size: 1 with gradient accumulation steps of 16
- Optimizer: AdamW (Fused)
- Precision: BFloat16 during training
- Final Format: 8-bit quantized GGUF
## Usage with llama.cpp
For CPU inference, use the following command:
main -m phi4-magpie-reasoning.gguf -n 512 --repeat_penalty 1.1 --color -i -r User:
## Model Size
- GGUF Format (8-bit): ~14GB
- Original Model (14B parameters)
## License
This model inherits the license terms from Microsoft Phi-4 and the Magpie dataset. |
Radiantloom/radintloom-mistral-7b-fusion-dpo | Radiantloom | "2024-02-20T15:10:14Z" | 48 | 1 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-02-20T13:18:18Z" | ---
library_name: transformers
license: apache-2.0
---
<img src="https://huggingface.co/Radiantloom/radintloom-mistral-7b-fusion/resolve/main/Radiantloom Mistral 7B Fusion.png" alt="Radiantloom Mistral 7B Fusion" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
## Radiantloom Mistral 7B Fusion DPO
This model is a finetuned version of [Radiantloom Mistral 7B Fusion](https://huggingface.co/Radiantloom/radintloom-mistral-7b-fusion). It was finetuned using Direct Preference Optimization (DPO). |
mrferr3t/77e76dfe-8180-412b-8330-bf3815c68e03 | mrferr3t | "2025-02-07T17:05:51Z" | 6 | 0 | peft | [
"peft",
"safetensors",
"phi3",
"axolotl",
"generated_from_trainer",
"custom_code",
"base_model:microsoft/Phi-3-mini-128k-instruct",
"base_model:adapter:microsoft/Phi-3-mini-128k-instruct",
"license:mit",
"region:us"
] | null | "2025-02-07T15:30:08Z" | ---
library_name: peft
license: mit
base_model: microsoft/Phi-3-mini-128k-instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 77e76dfe-8180-412b-8330-bf3815c68e03
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
auto_find_batch_size: false
base_model: microsoft/Phi-3-mini-128k-instruct
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 4bc42649f3ff82d6_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/4bc42649f3ff82d6_train_data.json
type:
field_instruction: task_description
field_output: raw_llm_response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 6
eval_strategy: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: mrferr3t/77e76dfe-8180-412b-8330-bf3815c68e03
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 6
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps:
micro_batch_size: 16
mlflow_experiment_name: /tmp/4bc42649f3ff82d6_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: /workspace/hub_repo/last-checkpoint
s2_attention: null
sample_packing: false
save_steps: 6
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode:
wandb_name: 48a8e43e-b4b0-4dd9-b312-f08688990a50
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 48a8e43e-b4b0-4dd9-b312-f08688990a50
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 77e76dfe-8180-412b-8330-bf3815c68e03
This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1862
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| No log | 0.0748 | 1 | 0.8170 |
| 6.5456 | 0.2991 | 4 | 0.8158 |
| 6.691 | 0.5981 | 8 | 0.8000 |
| 6.3989 | 0.8972 | 12 | 0.7614 |
| 6.0936 | 1.1963 | 16 | 0.7144 |
| 5.5498 | 1.4953 | 20 | 0.6460 |
| 5.0071 | 1.7944 | 24 | 0.5539 |
| 4.267 | 2.0935 | 28 | 0.4592 |
| 3.4615 | 2.3925 | 32 | 0.3938 |
| 3.0627 | 2.6916 | 36 | 0.3494 |
| 2.7272 | 2.9907 | 40 | 0.3245 |
| 2.5849 | 3.2897 | 44 | 0.3048 |
| 2.3831 | 3.5888 | 48 | 0.2903 |
| 2.2856 | 3.8879 | 52 | 0.2777 |
| 2.1933 | 4.1869 | 56 | 0.2681 |
| 2.0663 | 4.5981 | 60 | 0.2595 |
| 2.0344 | 4.8972 | 64 | 0.2522 |
| 1.99 | 5.1963 | 68 | 0.2455 |
| 1.8869 | 5.4953 | 72 | 0.2410 |
| 1.7991 | 5.7944 | 76 | 0.2366 |
| 1.7489 | 6.0935 | 80 | 0.2315 |
| 1.6638 | 6.3925 | 84 | 0.2289 |
| 1.6282 | 6.6916 | 88 | 0.2244 |
| 1.5532 | 6.9907 | 92 | 0.2188 |
| 1.3809 | 7.2897 | 96 | 0.2183 |
| 1.4088 | 7.5888 | 100 | 0.2097 |
| 1.3434 | 7.8879 | 104 | 0.2082 |
| 1.225 | 8.1869 | 108 | 0.2118 |
| 1.107 | 8.4860 | 112 | 0.2023 |
| 1.0832 | 8.7850 | 116 | 0.1983 |
| 1.0002 | 9.0841 | 120 | 0.1992 |
| 0.8442 | 9.3832 | 124 | 0.2001 |
| 0.8082 | 9.6822 | 128 | 0.1962 |
| 0.8014 | 9.9813 | 132 | 0.1879 |
| 0.6291 | 10.2804 | 136 | 0.1984 |
| 0.5763 | 10.5794 | 140 | 0.1888 |
| 0.5712 | 10.8785 | 144 | 0.1850 |
| 0.4783 | 11.1776 | 148 | 0.1959 |
| 0.4133 | 11.4766 | 152 | 0.1858 |
| 0.4108 | 11.7757 | 156 | 0.1862 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
roleplaiapp/Slush-Sunfall-Rocinante-GGLD-12B-Q5_K_S-GGUF | roleplaiapp | "2025-01-31T05:35:15Z" | 7 | 0 | transformers | [
"transformers",
"gguf",
"12b",
"5-bit",
"Q5_K_S",
"ggld",
"llama-cpp",
"rocinante",
"slush",
"sunfall",
"text-generation",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | "2025-01-31T05:34:39Z" | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 12b
- 5-bit
- Q5_K_S
- ggld
- gguf
- llama-cpp
- rocinante
- slush
- sunfall
- text-generation
---
# roleplaiapp/Slush-Sunfall-Rocinante-GGLD-12B-Q5_K_S-GGUF
**Repo:** `roleplaiapp/Slush-Sunfall-Rocinante-GGLD-12B-Q5_K_S-GGUF`
**Original Model:** `Slush-Sunfall-Rocinante-GGLD-12B`
**Quantized File:** `Slush-Sunfall-Rocinante-GGLD-12B.Q5_K_S.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `Q5_K_S`
## Overview
This is a GGUF Q5_K_S quantized version of Slush-Sunfall-Rocinante-GGLD-12B
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
shafire/SkynetZero | shafire | "2024-09-21T18:34:13Z" | 6 | 2 | transformers | [
"transformers",
"gguf",
"autotrain",
"text-generation-inference",
"text-generation",
"peft",
"base_model:meta-llama/Llama-3.1-8B",
"base_model:quantized:meta-llama/Llama-3.1-8B",
"license:other",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | "2024-09-17T00:30:22Z" |
---
tags:
- autotrain
- text-generation-inference
- text-generation
- peft
library_name: transformers
base_model: meta-llama/Meta-Llama-3.1-8B
widget:
- messages:
- role: user
content: What is your favorite condiment?
license: other
---
# SkynetZero LLM - Trained with AutoTrain and Updated to GGUF Format THIS MODEL IS NOT WORKING CAN YOU FIX IT? https://huggingface.co/shafire/talktoaiQT
Newer working GGUF here: **GGUF WORKING TESTED MODEL NEWER ONE SIMILAR TO THIS IS HERE https://huggingface.co/shafire/talktoaiQ **
![SkynetZero](https://huggingface.co/shafire/SkynetZero/resolve/main/skynetzero.png)
**SkynetZero** is a quantum-powered language model trained with reflection datasets and TalkToAI custom data sets. The model went through several iterations, including a re-writing of datasets and validation phases due to errors encountered during testing and conversion into a fully functional LLM. This process helped ensure that SkynetZero can handle complex, multi-dimensional reasoning tasks with an emphasis on ethical decision-making.
### Key Highlights of SkynetZero:
- **Advanced Quantum Reasoning**: The integration of quantum-inspired math systems enabled SkynetZero to tackle complex ethical dilemmas and multi-dimensional problem-solving tasks.
- **Custom Re-Written Datasets**: The training involved multiple rounds of AI-assisted dataset curation, where reflection datasets were re-written for clarity, accuracy, and consistency. Additionally, TalkToAI datasets were integrated and re-processed to align with SkynetZero’s quantum reasoning framework.
- **Iterative Improvement**: During testing and model conversion, the datasets were re-written and validated several times to address errors. Each iteration enhanced the model’s ethical consistency and problem-solving accuracy.
SkynetZero is now available in **GGUF format**, following 8 hours of training on a large GPU server using the Hugging Face AutoTrain platform.
**Made in Nottingham England by Shafaet Brady Hussain (shafaet.com)**
# Usage - SkynetZero leverages open-source ideas and mathematical innovations. Further details can be found on [talktoai.org](https://talktoai.org) and [researchforum.online](https://researchforum.online). The model is licensed under the official legal guidelines for LLaMA 3.1 Meta.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype="auto"
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
output_ids = model.generate(input_ids.to("cuda"))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
```
### Training Methodology
SkynetZero was fine-tuned on the **LLaMA 3.1 8B** architecture, utilizing custom datasets that underwent AI-assisted re-writing. The training process focused on enhancing the model's ability to handle **multi-variable quantum reasoning** while ensuring ethical decision-making alignment. After identifying errors during testing and conversion to a model, the datasets were adjusted and the model iteratively improved across multiple epochs.
### Further Research and Contributions
SkynetZero is part of an ongoing effort to explore **AI-human co-creation** in the development of quantum-enhanced AI models. The co-creation process with OpenAI’s **Agent Zero** provided valuable assistance in curating, editing, and validating datasets, pushing the boundaries of what large language models can achieve.
|
RylanSchaeffer/collapse_gemma-2-2b_hs2_replace_iter12_sftsd2 | RylanSchaeffer | "2024-10-01T17:05:27Z" | 5 | 0 | null | [
"safetensors",
"gemma2",
"trl",
"sft",
"generated_from_trainer",
"base_model:google/gemma-2-2b",
"base_model:finetune:google/gemma-2-2b",
"license:gemma",
"region:us"
] | null | "2024-10-01T17:02:44Z" | ---
license: gemma
base_model: google/gemma-2-2b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-2b_hs2_replace_iter12_sftsd2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# collapse_gemma-2-2b_hs2_replace_iter12_sftsd2
This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5455
- Num Input Tokens Seen: 4776248
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| No log | 0 | 0 | 1.3909 | 0 |
| 1.576 | 0.0511 | 5 | 1.2789 | 245968 |
| 0.8863 | 0.1022 | 10 | 1.2945 | 492152 |
| 0.425 | 0.1533 | 15 | 1.5320 | 737520 |
| 0.2379 | 0.2043 | 20 | 1.7713 | 982160 |
| 0.0907 | 0.2554 | 25 | 1.9824 | 1224512 |
| 0.0414 | 0.3065 | 30 | 2.2019 | 1470552 |
| 0.0276 | 0.3576 | 35 | 2.3755 | 1714072 |
| 0.0296 | 0.4087 | 40 | 2.4664 | 1966528 |
| 0.0225 | 0.4598 | 45 | 2.4860 | 2212000 |
| 0.0211 | 0.5109 | 50 | 2.5160 | 2456616 |
| 0.022 | 0.5619 | 55 | 2.5310 | 2704328 |
| 0.0214 | 0.6130 | 60 | 2.5350 | 2960528 |
| 0.0205 | 0.6641 | 65 | 2.5329 | 3202432 |
| 0.021 | 0.7152 | 70 | 2.5373 | 3446344 |
| 0.0201 | 0.7663 | 75 | 2.5473 | 3689160 |
| 0.0216 | 0.8174 | 80 | 2.5416 | 3935112 |
| 0.0194 | 0.8685 | 85 | 2.5472 | 4182704 |
| 0.0209 | 0.9195 | 90 | 2.5474 | 4433736 |
| 0.0213 | 0.9706 | 95 | 2.5460 | 4680728 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
rhplus0831/maid-yuzu-v2-mid | rhplus0831 | "2024-02-03T04:17:12Z" | 4 | 0 | transformers | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"mergekit",
"merge",
"base_model:smelborp/MixtralOrochi8x7B",
"base_model:merge:smelborp/MixtralOrochi8x7B",
"base_model:ycros/BagelMIsteryTour-v2-8x7B",
"base_model:merge:ycros/BagelMIsteryTour-v2-8x7B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-02-03T03:43:41Z" | ---
base_model:
- smelborp/MixtralOrochi8x7B
- ycros/BagelMIsteryTour-v2-8x7B
library_name: transformers
tags:
- mergekit
- merge
---
# maid-yuzu-v2-mid
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* [smelborp/MixtralOrochi8x7B](https://huggingface.co/smelborp/MixtralOrochi8x7B)
* [ycros/BagelMIsteryTour-v2-8x7B](https://huggingface.co/ycros/BagelMIsteryTour-v2-8x7B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
base_model:
model:
path: smelborp/MixtralOrochi8x7B
dtype: bfloat16
merge_method: slerp
parameters:
t:
- value: 0.375
slices:
- sources:
- layer_range: [0, 32]
model:
model:
path: smelborp/MixtralOrochi8x7B
- layer_range: [0, 32]
model:
model:
path: ycros/BagelMIsteryTour-v2-8x7B
```
|
mandeepbagga/upstage-llama-2048-infyGPT | mandeepbagga | "2023-07-22T18:21:57Z" | 0 | 0 | peft | [
"peft",
"region:us"
] | null | "2023-07-22T11:47:53Z" | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
cksghl1004/Space_8B_instruct_ver7 | cksghl1004 | "2025-01-20T02:05:01Z" | 292 | 0 | transformers | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit",
"base_model:quantized:unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | "2025-01-17T01:49:28Z" | ---
base_model: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** cksghl1004
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Helsinki-NLP/opus-mt-ca-uk | Helsinki-NLP | "2023-08-16T11:26:46Z" | 145 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"ca",
"uk",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | "2022-03-02T23:29:04Z" | ---
language:
- ca
- uk
tags:
- translation
license: apache-2.0
---
### cat-ukr
* source group: Catalan
* target group: Ukrainian
* OPUS readme: [cat-ukr](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cat-ukr/README.md)
* model: transformer-align
* source language(s): cat
* target language(s): ukr
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm4k,spm4k)
* download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/cat-ukr/opus-2020-06-16.zip)
* test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cat-ukr/opus-2020-06-16.test.txt)
* test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cat-ukr/opus-2020-06-16.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.cat.ukr | 28.6 | 0.503 |
### System Info:
- hf_name: cat-ukr
- source_languages: cat
- target_languages: ukr
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cat-ukr/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['ca', 'uk']
- src_constituents: {'cat'}
- tgt_constituents: {'ukr'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm4k,spm4k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/cat-ukr/opus-2020-06-16.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/cat-ukr/opus-2020-06-16.test.txt
- src_alpha3: cat
- tgt_alpha3: ukr
- short_pair: ca-uk
- chrF2_score: 0.503
- bleu: 28.6
- brevity_penalty: 0.9670000000000001
- ref_len: 2438.0
- src_name: Catalan
- tgt_name: Ukrainian
- train_date: 2020-06-16
- src_alpha2: ca
- tgt_alpha2: uk
- prefer_old: False
- long_pair: cat-ukr
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
Vaishu1212/my-pet-dog | Vaishu1212 | "2024-02-27T14:34:33Z" | 0 | 0 | diffusers | [
"diffusers",
"safetensors",
"NxtWave-GenAI-Webinar",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | "2024-02-27T14:29:39Z" | ---
license: creativeml-openrail-m
tags:
- NxtWave-GenAI-Webinar
- text-to-image
- stable-diffusion
---
### My-Pet-Dog Dreambooth model trained by Vaishu1212 following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: GoX19932gAS
Sample pictures of this concept:
![0](https://huggingface.co/Vaishu1212/my-pet-dog/resolve/main/sample_images/upload.jpg)
|
Nelver28/chatbj-llama2-13b-chat-hr-finetuned-french | Nelver28 | "2023-07-27T10:17:05Z" | 4 | 1 | peft | [
"peft",
"region:us"
] | null | "2023-07-27T10:16:44Z" | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
lambdaofgod/query-titles_dependencies-nbow-nbow-mnrl | lambdaofgod | "2023-01-06T11:21:41Z" | 0 | 0 | sentence-transformers | [
"sentence-transformers",
"feature-extraction",
"sentence-similarity",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | sentence-similarity | "2023-01-06T11:21:36Z" | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# lambdaofgod/query-titles_dependencies-nbow-nbow-mnrl
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 200 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('lambdaofgod/query-titles_dependencies-nbow-nbow-mnrl')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=lambdaofgod/query-titles_dependencies-nbow-nbow-mnrl)
## Full Model Architecture
```
SentenceTransformer(
(0): WordEmbeddings(
(emb_layer): Embedding(4395, 200)
)
(1): WordWeights(
(emb_layer): Embedding(4395, 1)
)
(2): Pooling({'word_embedding_dimension': 200, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
fliarbi/teams-new | fliarbi | "2024-01-01T08:05:02Z" | 3 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:google/flan-t5-base",
"base_model:finetune:google/flan-t5-base",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | "2024-01-01T04:18:57Z" | ---
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
model-index:
- name: teams-new
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# teams-new
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.36.2
- Pytorch 1.12.1+cu113
- Datasets 2.16.1
- Tokenizers 0.15.0
|
gustavomalkomes/vit-base-patch16-224-in21k | gustavomalkomes | "2024-11-07T20:40:56Z" | 239 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"optimum_habana",
"vit",
"image-classification",
"vision",
"generated_from_trainer",
"base_model:google/vit-base-patch16-224-in21k",
"base_model:finetune:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | "2024-11-05T22:20:37Z" | ---
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- vision
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-in21k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-in21k
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the chainyo/rvl-cdip dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4223
- Accuracy: 0.8788
- Memory Allocated (gb): 1.49
- Max Memory Allocated (gb): 2.1
- Total Memory Available (gb): 126.62
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.45.2
- Pytorch 2.4.0a0+git12138a8
- Datasets 3.1.0
- Tokenizers 0.20.3
|
SEBIS/legal_t5_small_multitask_es_fr | SEBIS | "2021-06-23T11:04:12Z" | 10 | 0 | transformers | [
"transformers",
"pytorch",
"jax",
"t5",
"text2text-generation",
"translation Spanish French model",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | "2022-03-02T23:29:04Z" |
---
language: Spanish French
tags:
- translation Spanish French model
datasets:
- dcep europarl jrc-acquis
widget:
- text: "Fecha del anuncio en el Pleno"
---
# legal_t5_small_multitask_es_fr model
Model on translating legal text from Spanish to French. It was first released in
[this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair
from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model.
## Model description
No pretraining is involved in case of legal_t5_small_multitask_es_fr model, rather the unsupervised task is added with all the translation task
to realize the multitask learning scenario.
## Intended uses & limitations
The model could be used for translation of legal texts from Spanish to French.
### How to use
Here is how to use this model to translate legal text from Spanish to French in PyTorch:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline
pipeline = TranslationPipeline(
model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_es_fr"),
tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_es_fr", do_lower_case=False,
skip_special_tokens=True),
device=0
)
es_text = "Fecha del anuncio en el Pleno"
pipeline([es_text], max_length=512)
```
## Training data
The legal_t5_small_multitask_es_fr model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts.
## Training procedure
The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule.
### Preprocessing
An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model.
### Pretraining
## Evaluation results
When the model is used for translation test dataset, achieves the following results:
Test results :
| Model | BLEU score |
|:-----:|:-----:|
| legal_t5_small_multitask_es_fr | 41.523|
### BibTeX entry and citation info
> Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
|
jenishlezdo/test-model | jenishlezdo | "2025-02-07T09:47:59Z" | 17 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2025-02-07T09:44:03Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
mradermacher/Llama-3.1-SuperSwallow-70B-Instruct-v0.1-GGUF | mradermacher | "2024-12-01T01:08:01Z" | 17 | 1 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"chat",
"ja",
"en",
"base_model:nitky/Llama-3.1-SuperSwallow-70B-Instruct-v0.1",
"base_model:quantized:nitky/Llama-3.1-SuperSwallow-70B-Instruct-v0.1",
"license:llama3.1",
"endpoints_compatible",
"region:us"
] | null | "2024-11-30T12:15:29Z" | ---
base_model: nitky/Llama-3.1-SuperSwallow-70B-Instruct-v0.1
language:
- ja
- en
library_name: transformers
license: llama3.1
quantized_by: mradermacher
tags:
- mergekit
- merge
- chat
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
static quants of https://huggingface.co/nitky/Llama-3.1-SuperSwallow-70B-Instruct-v0.1
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama-3.1-SuperSwallow-70B-Instruct-v0.1-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-SuperSwallow-70B-Instruct-v0.1-GGUF/resolve/main/Llama-3.1-SuperSwallow-70B-Instruct-v0.1.Q2_K.gguf) | Q2_K | 26.5 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-SuperSwallow-70B-Instruct-v0.1-GGUF/resolve/main/Llama-3.1-SuperSwallow-70B-Instruct-v0.1.Q3_K_S.gguf) | Q3_K_S | 31.0 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-SuperSwallow-70B-Instruct-v0.1-GGUF/resolve/main/Llama-3.1-SuperSwallow-70B-Instruct-v0.1.Q3_K_M.gguf) | Q3_K_M | 34.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-SuperSwallow-70B-Instruct-v0.1-GGUF/resolve/main/Llama-3.1-SuperSwallow-70B-Instruct-v0.1.Q3_K_L.gguf) | Q3_K_L | 37.2 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-SuperSwallow-70B-Instruct-v0.1-GGUF/resolve/main/Llama-3.1-SuperSwallow-70B-Instruct-v0.1.IQ4_XS.gguf) | IQ4_XS | 38.4 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-SuperSwallow-70B-Instruct-v0.1-GGUF/resolve/main/Llama-3.1-SuperSwallow-70B-Instruct-v0.1.Q4_K_S.gguf) | Q4_K_S | 40.4 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-SuperSwallow-70B-Instruct-v0.1-GGUF/resolve/main/Llama-3.1-SuperSwallow-70B-Instruct-v0.1.Q4_K_M.gguf) | Q4_K_M | 42.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-SuperSwallow-70B-Instruct-v0.1-GGUF/resolve/main/Llama-3.1-SuperSwallow-70B-Instruct-v0.1.Q5_K_S.gguf) | Q5_K_S | 48.8 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-SuperSwallow-70B-Instruct-v0.1-GGUF/resolve/main/Llama-3.1-SuperSwallow-70B-Instruct-v0.1.Q5_K_M.gguf) | Q5_K_M | 50.0 | |
| [PART 1](https://huggingface.co/mradermacher/Llama-3.1-SuperSwallow-70B-Instruct-v0.1-GGUF/resolve/main/Llama-3.1-SuperSwallow-70B-Instruct-v0.1.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3.1-SuperSwallow-70B-Instruct-v0.1-GGUF/resolve/main/Llama-3.1-SuperSwallow-70B-Instruct-v0.1.Q6_K.gguf.part2of2) | Q6_K | 58.0 | very good quality |
| [PART 1](https://huggingface.co/mradermacher/Llama-3.1-SuperSwallow-70B-Instruct-v0.1-GGUF/resolve/main/Llama-3.1-SuperSwallow-70B-Instruct-v0.1.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3.1-SuperSwallow-70B-Instruct-v0.1-GGUF/resolve/main/Llama-3.1-SuperSwallow-70B-Instruct-v0.1.Q8_0.gguf.part2of2) | Q8_0 | 75.1 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
featherless-ai-quants/VitalContribution-Evangelion-7B-GGUF | featherless-ai-quants | "2024-11-10T19:50:08Z" | 67 | 0 | null | [
"gguf",
"text-generation",
"base_model:VitalContribution/Evangelion-7B",
"base_model:quantized:VitalContribution/Evangelion-7B",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | "2024-11-07T17:13:21Z" | ---
base_model: VitalContribution/Evangelion-7B
pipeline_tag: text-generation
quantized_by: featherless-ai-quants
---
# VitalContribution/Evangelion-7B GGUF Quantizations 🚀
![Featherless AI Quants](./featherless-quants.png)
*Optimized GGUF quantization files for enhanced model performance*
> Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee.
---
## Available Quantizations 📊
| Quantization Type | File | Size |
|-------------------|------|------|
| IQ4_XS | [VitalContribution-Evangelion-7B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/VitalContribution-Evangelion-7B-GGUF/blob/main/VitalContribution-Evangelion-7B-IQ4_XS.gguf) | 3761.66 MB |
| Q2_K | [VitalContribution-Evangelion-7B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/VitalContribution-Evangelion-7B-GGUF/blob/main/VitalContribution-Evangelion-7B-Q2_K.gguf) | 2593.27 MB |
| Q3_K_L | [VitalContribution-Evangelion-7B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/VitalContribution-Evangelion-7B-GGUF/blob/main/VitalContribution-Evangelion-7B-Q3_K_L.gguf) | 3644.97 MB |
| Q3_K_M | [VitalContribution-Evangelion-7B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/VitalContribution-Evangelion-7B-GGUF/blob/main/VitalContribution-Evangelion-7B-Q3_K_M.gguf) | 3355.97 MB |
| Q3_K_S | [VitalContribution-Evangelion-7B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/VitalContribution-Evangelion-7B-GGUF/blob/main/VitalContribution-Evangelion-7B-Q3_K_S.gguf) | 3017.97 MB |
| Q4_K_M | [VitalContribution-Evangelion-7B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/VitalContribution-Evangelion-7B-GGUF/blob/main/VitalContribution-Evangelion-7B-Q4_K_M.gguf) | 4166.07 MB |
| Q4_K_S | [VitalContribution-Evangelion-7B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/VitalContribution-Evangelion-7B-GGUF/blob/main/VitalContribution-Evangelion-7B-Q4_K_S.gguf) | 3948.57 MB |
| Q5_K_M | [VitalContribution-Evangelion-7B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/VitalContribution-Evangelion-7B-GGUF/blob/main/VitalContribution-Evangelion-7B-Q5_K_M.gguf) | 4893.69 MB |
| Q5_K_S | [VitalContribution-Evangelion-7B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/VitalContribution-Evangelion-7B-GGUF/blob/main/VitalContribution-Evangelion-7B-Q5_K_S.gguf) | 4766.19 MB |
| Q6_K | [VitalContribution-Evangelion-7B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/VitalContribution-Evangelion-7B-GGUF/blob/main/VitalContribution-Evangelion-7B-Q6_K.gguf) | 5666.80 MB |
| Q8_0 | [VitalContribution-Evangelion-7B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/VitalContribution-Evangelion-7B-GGUF/blob/main/VitalContribution-Evangelion-7B-Q8_0.gguf) | 7339.34 MB |
---
## ⚡ Powered by [Featherless AI](https://featherless.ai)
### Key Features
- 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly
- 🛠️ **Zero Infrastructure** - No server setup or maintenance required
- 📚 **Vast Compatibility** - Support for 2400+ models and counting
- 💎 **Affordable Pricing** - Starting at just $10/month
---
**Links:**
[Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models) |
Regain/PST-to-EML-Converter | Regain | "2024-05-08T15:43:52Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-05-08T15:41:46Z" | Need to convert emails from a PST file (used by Microsoft Outlook) to individual EML files for wider compatibility? Regain PST to EML Converter can help.
This software offers a user-friendly interface to browse and select PST files. You can choose specific emails or entire folders for conversion. Regain even lets you preview emails before conversion.
The converter supports both ANSI and Unicode PST files, ensuring compatibility with various PST versions. It boasts fast conversion speeds, even for large PST files.
A free version allows you to convert a limited number of emails. Upgrading unlocks batch conversion and additional output formats like MSG and MBOX.
Key Features:
Convert PST to EML and other formats
Preview emails before conversion
Supports large PST files
Simple and user-friendly interface
Free and paid versions available
|
Triangle104/Dumpling-Mistral-Nemo-8B-Q4_K_M-GGUF | Triangle104 | "2025-02-12T10:49:21Z" | 20 | 0 | transformers | [
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"base_model:nbeerbower/Dumpling-Mistral-Nemo-8B",
"base_model:quantized:nbeerbower/Dumpling-Mistral-Nemo-8B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | "2025-02-11T13:35:42Z" | ---
library_name: transformers
tags:
- llama-cpp
- gguf-my-repo
base_model: nbeerbower/Dumpling-Mistral-Nemo-8B
license: apache-2.0
---
# Triangle104/Dumpling-Mistral-Nemo-8B-Q4_K_M-GGUF
This model was converted to GGUF format from [`nbeerbower/Dumpling-Mistral-Nemo-8B`](https://huggingface.co/nbeerbower/Dumpling-Mistral-Nemo-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/nbeerbower/Dumpling-Mistral-Nemo-8B) for more details on the model.
---
🧪 Experimental
An attempt to recover intelligence with a quick train, results are meh
Dumpling-Mistral-Nemo-8B
nbeerbower/mistral-nemo-kartoffel-PRUNE3 finetuned on:
-nbeerbower/GreatFirewall-DPO
-nbeerbower/Schule-DPO
-nbeerbower/Purpura-DPO
-nbeerbower/Arkhaios-DPO
-jondurbin/truthy-dpo-v0.1
-antiven0m/physical-reasoning-dpo
-flammenai/Date-DPO-NoAsterisks
-flammenai/Prude-Phi3-DPO
-Atsunori/HelpSteer2-DPO (1,000 samples)
-jondurbin/gutenberg-dpo-v0.1
-nbeerbower/gutenberg2-dpo
-nbeerbower/gutenberg-moderne-dpo.
Method
---
QLoRA ORPO tune with 2x RTX 3090 for 2 epochs.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Dumpling-Mistral-Nemo-8B-Q4_K_M-GGUF --hf-file dumpling-mistral-nemo-8b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Dumpling-Mistral-Nemo-8B-Q4_K_M-GGUF --hf-file dumpling-mistral-nemo-8b-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Dumpling-Mistral-Nemo-8B-Q4_K_M-GGUF --hf-file dumpling-mistral-nemo-8b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Dumpling-Mistral-Nemo-8B-Q4_K_M-GGUF --hf-file dumpling-mistral-nemo-8b-q4_k_m.gguf -c 2048
``` |
mia-llm/pythia-160m-AGnews-roya | mia-llm | "2025-01-17T22:44:06Z" | 65 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"gpt_neox",
"text-generation",
"generated_from_trainer",
"trl",
"sft",
"base_model:EleutherAI/pythia-160m",
"base_model:finetune:EleutherAI/pythia-160m",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2025-01-17T22:43:53Z" | ---
base_model: EleutherAI/pythia-160m
library_name: transformers
model_name: pythia-160m-None.9.2
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for pythia-160m-None.9.2
This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="RoyArkh/pythia-160m-None.9.2", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.13.0
- Transformers: 4.48.0
- Pytorch: 2.2.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
kanakg1/bert_a01_r8 | kanakg1 | "2024-03-30T18:35:17Z" | 25 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-03-30T18:33:12Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Owhslp/nous_researcher_tuning_2_6 | Owhslp | "2024-03-06T11:24:31Z" | 4 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-03-06T10:47:12Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
DuJinHua/AiMed_PaperAbs | DuJinHua | "2023-11-03T08:44:12Z" | 16 | 0 | transformers | [
"transformers",
"pytorch",
"baichuan",
"text-generation",
"custom_code",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2023-11-02T06:35:25Z" | ---
license: apache-2.0
---
# AiMed: Artificial Intelligence large language model for chinese Medicine 面向中文医学的人工智能大语言模型
[![License Apache 2.0](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](LICENSE)
[![python_version](https://img.shields.io/badge/Python-3.8%2B-green.svg)](requirements.txt)
## 🔬 介绍
**AiMed** 面向中文医学的人工智能大语言模型由**清华大学OpenDE团队**和**中国医学科学院医学信息研究所**(下称“医信所”)联合研发。
**AiMed** 期望实现有效处理医学知识问答、医学论文阅读、医学文献检索等任务和在医学科研中的应用。
**AiMed** 详细测试脚本请参考我们的项目:https://github.com/Du-JinHua/AiMed
## ⏩ 构建流程
**AiMed** 整个构建流程包括:
- PT增量预训练
- SFT有监督微调
- AiMed_PaperAbs是AiMed系列模型中,通过从千万医学文献中提取高质量10万条摘要进行的论文摘要大模型微调版本。
- RLHF(奖励建模、强化学习训练)
- DPO(直接偏好优化)
## 🌏 模型基座
| 模型名 | 模型大小 | 开源参数 |
| ------------------------------------------------------- | --------------------------- |-----------------------------------------------------------------------------------------|
| [Baichuan](https://github.com/baichuan-inc/baichuan-13B) | 13B | [baichuan-inc/Baichuan-13B-Chat](https://huggingface.co/baichuan-inc/Baichuan-13B-Chat) |
## 😜 推理和部署
推理所需的模型权重、源码、配置公开于https://github.com/Du-JinHua/AiMed
## ⚠️ 局限性
授权协议为 The Apache License 2.0,目前仅支持学术研究,不支持商业用途。 |
shrusti333/language_translation | shrusti333 | "2023-05-17T05:55:43Z" | 0 | 0 | keras | [
"keras",
"tf-keras",
"translation",
"en",
"dataset:shrusti333/konkani_translation",
"region:us"
] | translation | "2023-05-17T04:54:02Z" | ---
datasets:
- shrusti333/konkani_translation
language:
- en
metrics:
- accuracy
pipeline_tag: translation
library_name: keras
--- |
SakuraFoxKira/BY_RF-7 | SakuraFoxKira | "2023-05-11T15:32:31Z" | 0 | 4 | null | [
"license:creativeml-openrail-m",
"region:us"
] | null | "2023-05-11T15:28:50Z" | ---
license: creativeml-openrail-m
---
|
Jongsim/Llama-3-MAAL-8B-Instruct-v0.1-GPTQ | Jongsim | "2024-05-16T10:19:03Z" | 5 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"en",
"ko",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"gptq",
"region:us"
] | text-generation | "2024-05-16T03:33:19Z" | ---
license: llama3
language:
- en
- ko
---
original model
<a rel="nofollow" href="https://huggingface.co/maum-ai/Llama-3-MAAL-8B-Instruct-v0.1">Llama-3-MAAL-8B-Instruct-v0.1</a>
GPTQ quants of Llama-3-MAAL-8B-Instruct-v0.1
Located in the main branch
- 8bit GPTQ model
원본 모델
<a rel="nofollow" href="https://huggingface.co/maum-ai/Llama-3-MAAL-8B-Instruct-v0.1">Llama-3-MAAL-8B-Instruct-v0.1</a>
Llama-3-MAAL-8B-Instruct-v0.1 모델 GPTQ 양자화
메인 branch에 있는 파일
- 8bit GPTQ model |
jeongseokoh/latent-attention-roberta | jeongseokoh | "2024-11-27T19:53:58Z" | 103 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | "2024-11-27T19:43:01Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
imagepipeline/Age-Slider-Young-V2-Negative | imagepipeline | "2023-12-21T12:07:25Z" | 0 | 0 | null | [
"imagepipeline",
"imagepipeline.io",
"text-to-image",
"ultra-realistic",
"license:creativeml-openrail-m",
"region:us"
] | text-to-image | "2023-12-21T12:07:23Z" | ---
license: creativeml-openrail-m
tags:
- imagepipeline
- imagepipeline.io
- text-to-image
- ultra-realistic
pinned: false
pipeline_tag: text-to-image
---
## Age-Slider-Young-V2-Negative
<img src="https://f005.backblazeb2.com/b2api/v2/b2_download_file_by_id?fileId=4_zfdf0a8ed59e8666b89b10713_f109c68537a69cb90_d20231210_m053523_c005_v0501010_t0024_u01702186523945" alt="Generated by Image Pipeline" style="border-radius: 10px;">
**This embedding model is uploaded on [imagepipeline.io](https://imagepipeline.io/)**
Model details - AS-YoungV2-Neg: Place in your negative prompt at strength of 1.0 to 1.3, generally removes adults from the scene
[![Try this model](https://img.shields.io/badge/try_this_model-image_pipeline-BD9319)](https://imagepipeline.io/models/Age-Slider-Young-V2-Negative?id=a2a81c57-662c-4024-9eee-7a5db05edcf0/)
## How to try this model ?
You can try using it locally or send an API call to test the output quality.
Get your `API_KEY` from [imagepipeline.io](https://imagepipeline.io/). No payment required.
Coding in `php` `javascript` `node` etc ? Checkout our documentation
[![documentation](https://img.shields.io/badge/documentation-image_pipeline-blue)](https://docs.imagepipeline.io/docs/introduction)
```python
import requests
import json
url = "https://imagepipeline.io/sd/text2image/v1/run"
payload = json.dumps({
"model_id": "sd1.5",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": false,
"guidance_scale": 7.5,
"multi_lingual": "no",
"embeddings": "a2a81c57-662c-4024-9eee-7a5db05edcf0",
"lora_models": "",
"lora_weights": ""
})
headers = {
'Content-Type': 'application/json',
'API-Key': 'your_api_key'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
}
```
Get more ready to use `MODELS` like this for `SD 1.5` and `SDXL` :
[![All models](https://img.shields.io/badge/Get%20All%20Models-image_pipeline-BD9319)](https://imagepipeline.io/models)
### API Reference
#### Generate Image
```http
https://api.imagepipeline.io/sd/text2image/v1
```
| Headers | Type | Description |
|:----------------------| :------- |:-------------------------------------------------------------------------------------------------------------------|
| `API-Key` | `str` | Get your `API_KEY` from [imagepipeline.io](https://imagepipeline.io/) |
| `Content-Type` | `str` | application/json - content type of the request body |
| Parameter | Type | Description |
| :-------- | :------- | :------------------------- |
| `model_id` | `str` | Your base model, find available lists in [models page](https://imagepipeline.io/models) or upload your own|
| `prompt` | `str` | Text Prompt. Check our [Prompt Guide](https://docs.imagepipeline.io/docs/SD-1.5/docs/extras/prompt-guide) for tips |
| `num_inference_steps` | `int [1-50]` | Noise is removed with each step, resulting in a higher-quality image over time. Ideal value 30-50 (without LCM) |
| `guidance_scale` | `float [1-20]` | Higher guidance scale prioritizes text prompt relevance but sacrifices image quality. Ideal value 7.5-12.5 |
| `lora_models` | `str, array` | Pass the model_id(s) of LoRA models that can be found in models page |
| `lora_weights` | `str, array` | Strength of the LoRA effect |
---
license: creativeml-openrail-m
tags:
- imagepipeline
- imagepipeline.io
- text-to-image
- ultra-realistic
pinned: false
pipeline_tag: text-to-image
---
### Feedback
If you have any feedback, please reach out to us at hello@imagepipeline.io
#### 🔗 Visit Website
[![portfolio](https://img.shields.io/badge/image_pipeline-BD9319?style=for-the-badge&logo=gocd&logoColor=white)](https://imagepipeline.io/)
If you are the original author of this model, please [click here](https://airtable.com/apprTaRnJbDJ8ufOx/shr4g7o9B6fWfOlUR) to add credits
|
ndeclarke/wav2vec2-mms-1b-CV17.0 | ndeclarke | "2024-10-21T03:28:08Z" | 17 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice_17_0",
"base_model:facebook/mms-1b-all",
"base_model:finetune:facebook/mms-1b-all",
"license:cc-by-nc-4.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | "2024-09-11T14:48:02Z" | ---
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
- bleu
model-index:
- name: wav2vec2-mms-1b-CV17.0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
metrics:
- name: Wer
type: wer
value: 0.6538388264431321
- name: Bleu
type: bleu
value: 0.14202013774436864
---
# wav2vec2-mms-1b-CV17.0
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_17_0 dataset.
Adapters for several languages were trained.
## Intended uses & limitations
Speech-to-text transciption of Malayalam, Tamil, Telugu, and Yoruba.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- training_steps: 2000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1
|
begeri/a2c-PandaReachDense-v3 | begeri | "2023-11-07T21:40:14Z" | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"PandaReachDense-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | "2023-11-07T20:48:39Z" | ---
library_name: stable-baselines3
tags:
- PandaReachDense-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v3
type: PandaReachDense-v3
metrics:
- type: mean_reward
value: -0.21 +/- 0.07
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v3**
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
azxky6645/01252129-under500-filtering_NuminaMath-CoT | azxky6645 | "2025-01-25T12:31:02Z" | 12 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"trl",
"sft",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2025-01-25T12:30:24Z" | ---
library_name: transformers
tags:
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
rcebot/Llama-3-8B | rcebot | "2024-08-13T04:03:29Z" | 8 | 0 | null | [
"safetensors",
"llama",
"facebook",
"meta",
"pytorch",
"llama-3",
"text-generation",
"conversational",
"en",
"license:llama3",
"region:us"
] | text-generation | "2024-08-12T10:36:17Z" | ---
language:
- en
pipeline_tag: text-generation
tags:
- facebook
- meta
- pytorch
- llama
- llama-3
license: llama3
extra_gated_prompt: >-
### META LLAMA 3 COMMUNITY LICENSE AGREEMENT
Meta Llama 3 Version Release Date: April 18, 2024
"Agreement" means the terms and conditions for use, reproduction, distribution and modification of the
Llama Materials set forth herein.
"Documentation" means the specifications, manuals and documentation accompanying Meta Llama 3
distributed by Meta at https://llama.meta.com/get-started/.
"Licensee" or "you" means you, or your employer or any other person or entity (if you are entering into
this Agreement on such person or entity’s behalf), of the age required under applicable laws, rules or
regulations to provide legal consent and that has legal authority to bind your employer or such other
person or entity if you are entering in this Agreement on their behalf.
"Meta Llama 3" means the foundational large language models and software and algorithms, including
machine-learning model code, trained model weights, inference-enabling code, training-enabling code,
fine-tuning enabling code and other elements of the foregoing distributed by Meta at
https://llama.meta.com/llama-downloads.
"Llama Materials" means, collectively, Meta’s proprietary Meta Llama 3 and Documentation (and any
portion thereof) made available under this Agreement.
"Meta" or "we" means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your
principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located
outside of the EEA or Switzerland).
1. License Rights and Redistribution.
a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free
limited license under Meta’s intellectual property or other rights owned by Meta embodied in the Llama
Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the
Llama Materials.
b. Redistribution and Use.
i. If you distribute or make available the Llama Materials (or any derivative works
thereof), or a product or service that uses any of them, including another AI model, you shall (A) provide
a copy of this Agreement with any such Llama Materials; and (B) prominently display “Built with Meta
Llama 3” on a related website, user interface, blogpost, about page, or product documentation. If you
use the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is
distributed or made available, you shall also include “Llama 3” at the beginning of any such AI model
name.
ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part
of an integrated end user product, then Section 2 of this Agreement will not apply to you.
iii. You must retain in all copies of the Llama Materials that you distribute the following
attribution notice within a “Notice” text file distributed as a part of such copies: “Meta Llama 3 is
licensed under the Meta Llama 3 Community License, Copyright © Meta Platforms, Inc. All Rights
Reserved.”
iv. Your use of the Llama Materials must comply with applicable laws and regulations
(including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama
Materials (available at https://llama.meta.com/llama3/use-policy), which is hereby incorporated by
reference into this Agreement.
v. You will not use the Llama Materials or any output or results of the Llama Materials to
improve any other large language model (excluding Meta Llama 3 or derivative works thereof).
2. Additional Commercial Terms. If, on the Meta Llama 3 version release date, the monthly active users
of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700
million monthly active users in the preceding calendar month, you must request a license from Meta,
which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the
rights under this Agreement unless or until Meta otherwise expressly grants you such rights.
3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY
OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF
ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND
ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND
RESULTS.
4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING
OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL,
INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED
OF THE POSSIBILITY OF ANY OF THE FOREGOING.
5. Intellectual Property.
a. No trademark licenses are granted under this Agreement, and in connection with the Llama
Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other
or any of its affiliates, except as required for reasonable and customary use in describing and
redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to
use “Llama 3” (the “Mark”) solely as required to comply with the last sentence of Section 1.b.i. You will
comply with Meta’s brand guidelines (currently accessible at
https://about.meta.com/brand/resources/meta/company-brand/ ). All goodwill arising out of your use
of the Mark will inure to the benefit of Meta.
b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with
respect to any derivative works and modifications of the Llama Materials that are made by you, as
between you and Meta, you are and will be the owner of such derivative works and modifications.
c. If you institute litigation or other proceedings against Meta or any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Meta Llama 3 outputs or
results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other
rights owned or licensable by you, then any licenses granted to you under this Agreement shall
terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold
harmless Meta from and against any claim by any third party arising out of or related to your use or
distribution of the Llama Materials.
6. Term and Termination. The term of this Agreement will commence upon your acceptance of this
Agreement or access to the Llama Materials and will continue in full force and effect until terminated in
accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in
breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete
and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this
Agreement.
7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of
the State of California without regard to choice of law principles, and the UN Convention on Contracts
for the International Sale of Goods does not apply to this Agreement. The courts of California shall have
exclusive jurisdiction of any dispute arising out of this Agreement.
### Meta Llama 3 Acceptable Use Policy
Meta is committed to promoting safe and fair use of its tools and features, including Meta Llama 3. If you
access or use Meta Llama 3, you agree to this Acceptable Use Policy (“Policy”). The most recent copy of
this policy can be found at [https://llama.meta.com/llama3/use-policy](https://llama.meta.com/llama3/use-policy)
#### Prohibited Uses
We want everyone to use Meta Llama 3 safely and responsibly. You agree you will not use, or allow
others to use, Meta Llama 3 to:
1. Violate the law or others’ rights, including to:
1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:
1. Violence or terrorism
2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material
3. Human trafficking, exploitation, and sexual violence
4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.
5. Sexual solicitation
6. Any other criminal activity
2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals
3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services
4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices
5. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws
6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials
7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system
2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Meta Llama 3 related to the following:
1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State
2. Guns and illegal weapons (including weapon development)
3. Illegal drugs and regulated/controlled substances
4. Operation of critical infrastructure, transportation technologies, or heavy machinery
5. Self-harm or harm to others, including suicide, cutting, and eating disorders
6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual
3. Intentionally deceive or mislead others, including use of Meta Llama 3 related to the following:
1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation
2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content
3. Generating, promoting, or further distributing spam
4. Impersonating another individual without consent, authorization, or legal right
5. Representing that the use of Meta Llama 3 or outputs are human-generated
6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement
4. Fail to appropriately disclose to end users any known dangers of your AI system
Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation
of this Policy through one of the following means:
* Reporting issues with the model: [https://github.com/meta-llama/llama3](https://github.com/meta-llama/llama3)
* Reporting risky content generated by the model:
developers.facebook.com/llama_output_feedback
* Reporting bugs and security concerns: facebook.com/whitehat/info
* Reporting violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: LlamaUseReport@meta.com
extra_gated_fields:
First Name: text
Last Name: text
Date of birth: date_picker
Country: country
Affiliation: text
geo: ip_location
By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox
extra_gated_description: The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).
extra_gated_button_content: Submit
widget:
- example_title: Hello
messages:
- role: user
content: Hey my name is Julien! How are you?
- example_title: Winter holidays
messages:
- role: system
content: You are a helpful and honest assistant. Please, respond concisely and truthfully.
- role: user
content: Can you recommend a good destination for Winter holidays?
- example_title: Programming assistant
messages:
- role: system
content: You are a helpful and honest code and programming assistant. Please, respond concisely and truthfully.
- role: user
content: Write a function that computes the nth fibonacci number.
inference:
parameters:
max_new_tokens: 300
stop:
- <|end_of_text|>
- <|eot_id|>
---
## Model Details
Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety.
**Model developers** Meta
**Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants.
**Input** Models input text only.
**Output** Models generate text and code only.
**Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
<table>
<tr>
<td>
</td>
<td><strong>Training Data</strong>
</td>
<td><strong>Params</strong>
</td>
<td><strong>Context length</strong>
</td>
<td><strong>GQA</strong>
</td>
<td><strong>Token count</strong>
</td>
<td><strong>Knowledge cutoff</strong>
</td>
</tr>
<tr>
<td rowspan="2" >Llama 3
</td>
<td rowspan="2" >A new mix of publicly available online data.
</td>
<td>8B
</td>
<td>8k
</td>
<td>Yes
</td>
<td rowspan="2" >15T+
</td>
<td>March, 2023
</td>
</tr>
<tr>
<td>70B
</td>
<td>8k
</td>
<td>Yes
</td>
<td>December, 2023
</td>
</tr>
</table>
**Llama 3 family of models**. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability.
**Model Release Date** April 18, 2024.
**Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
**License** A custom commercial license is available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license)
Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
## Intended Use
**Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
**Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**.
**Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy.
## How to use
This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with transformers and with the original `llama3` codebase.
### Use with transformers
You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both.
#### Transformers pipeline
```python
import transformers
import torch
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
messages,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][-1])
```
#### Transformers AutoModelForCausalLM
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```
### Use with `llama3`
Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3)
To download Original checkpoints, see the example command below leveraging `huggingface-cli`:
```
huggingface-cli download meta-llama/Meta-Llama-3-8B-Instruct --include "original/*" --local-dir Meta-Llama-3-8B-Instruct
```
For Hugging Face support, we recommend using transformers or TGI, but a similar command works.
## Hardware and Software
**Training Factors** We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
**Carbon Footprint Pretraining utilized a cumulative** 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.
<table>
<tr>
<td>
</td>
<td><strong>Time (GPU hours)</strong>
</td>
<td><strong>Power Consumption (W)</strong>
</td>
<td><strong>Carbon Emitted(tCO2eq)</strong>
</td>
</tr>
<tr>
<td>Llama 3 8B
</td>
<td>1.3M
</td>
<td>700
</td>
<td>390
</td>
</tr>
<tr>
<td>Llama 3 70B
</td>
<td>6.4M
</td>
<td>700
</td>
<td>1900
</td>
</tr>
<tr>
<td>Total
</td>
<td>7.7M
</td>
<td>
</td>
<td>2290
</td>
</tr>
</table>
**CO2 emissions during pre-training**. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.
## Training Data
**Overview** Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
**Data Freshness** The pretraining data has a cutoff of March 2023 for the 8B and December 2023 for the 70B models respectively.
## Benchmarks
In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see [here](https://github.com/meta-llama/llama3/blob/main/eval_methodology.md).
### Base pretrained models
<table>
<tr>
<td><strong>Category</strong>
</td>
<td><strong>Benchmark</strong>
</td>
<td><strong>Llama 3 8B</strong>
</td>
<td><strong>Llama2 7B</strong>
</td>
<td><strong>Llama2 13B</strong>
</td>
<td><strong>Llama 3 70B</strong>
</td>
<td><strong>Llama2 70B</strong>
</td>
</tr>
<tr>
<td rowspan="6" >General
</td>
<td>MMLU (5-shot)
</td>
<td>66.6
</td>
<td>45.7
</td>
<td>53.8
</td>
<td>79.5
</td>
<td>69.7
</td>
</tr>
<tr>
<td>AGIEval English (3-5 shot)
</td>
<td>45.9
</td>
<td>28.8
</td>
<td>38.7
</td>
<td>63.0
</td>
<td>54.8
</td>
</tr>
<tr>
<td>CommonSenseQA (7-shot)
</td>
<td>72.6
</td>
<td>57.6
</td>
<td>67.6
</td>
<td>83.8
</td>
<td>78.7
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>76.1
</td>
<td>73.3
</td>
<td>75.4
</td>
<td>83.1
</td>
<td>81.8
</td>
</tr>
<tr>
<td>BIG-Bench Hard (3-shot, CoT)
</td>
<td>61.1
</td>
<td>38.1
</td>
<td>47.0
</td>
<td>81.3
</td>
<td>65.7
</td>
</tr>
<tr>
<td>ARC-Challenge (25-shot)
</td>
<td>78.6
</td>
<td>53.7
</td>
<td>67.6
</td>
<td>93.0
</td>
<td>85.3
</td>
</tr>
<tr>
<td>Knowledge reasoning
</td>
<td>TriviaQA-Wiki (5-shot)
</td>
<td>78.5
</td>
<td>72.1
</td>
<td>79.6
</td>
<td>89.7
</td>
<td>87.5
</td>
</tr>
<tr>
<td rowspan="4" >Reading comprehension
</td>
<td>SQuAD (1-shot)
</td>
<td>76.4
</td>
<td>72.2
</td>
<td>72.1
</td>
<td>85.6
</td>
<td>82.6
</td>
</tr>
<tr>
<td>QuAC (1-shot, F1)
</td>
<td>44.4
</td>
<td>39.6
</td>
<td>44.9
</td>
<td>51.1
</td>
<td>49.4
</td>
</tr>
<tr>
<td>BoolQ (0-shot)
</td>
<td>75.7
</td>
<td>65.5
</td>
<td>66.9
</td>
<td>79.0
</td>
<td>73.1
</td>
</tr>
<tr>
<td>DROP (3-shot, F1)
</td>
<td>58.4
</td>
<td>37.9
</td>
<td>49.8
</td>
<td>79.7
</td>
<td>70.2
</td>
</tr>
</table>
### Instruction tuned models
<table>
<tr>
<td><strong>Benchmark</strong>
</td>
<td><strong>Llama 3 8B</strong>
</td>
<td><strong>Llama 2 7B</strong>
</td>
<td><strong>Llama 2 13B</strong>
</td>
<td><strong>Llama 3 70B</strong>
</td>
<td><strong>Llama 2 70B</strong>
</td>
</tr>
<tr>
<td>MMLU (5-shot)
</td>
<td>68.4
</td>
<td>34.1
</td>
<td>47.8
</td>
<td>82.0
</td>
<td>52.9
</td>
</tr>
<tr>
<td>GPQA (0-shot)
</td>
<td>34.2
</td>
<td>21.7
</td>
<td>22.3
</td>
<td>39.5
</td>
<td>21.0
</td>
</tr>
<tr>
<td>HumanEval (0-shot)
</td>
<td>62.2
</td>
<td>7.9
</td>
<td>14.0
</td>
<td>81.7
</td>
<td>25.6
</td>
</tr>
<tr>
<td>GSM-8K (8-shot, CoT)
</td>
<td>79.6
</td>
<td>25.7
</td>
<td>77.4
</td>
<td>93.0
</td>
<td>57.5
</td>
</tr>
<tr>
<td>MATH (4-shot, CoT)
</td>
<td>30.0
</td>
<td>3.8
</td>
<td>6.7
</td>
<td>50.4
</td>
<td>11.6
</td>
</tr>
</table>
### Responsibility & Safety
We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.
Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.
Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.
As part of the Llama 3 release, we updated our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including [Meta Llama Guard 2](https://llama.meta.com/purple-llama/) and [Code Shield](https://llama.meta.com/purple-llama/) safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a [reference implementation](https://github.com/meta-llama/llama-recipes/tree/main/recipes/responsible_ai) to get you started.
#### Llama 3-Instruct
As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.
<span style="text-decoration:underline;">Safety</span>
For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.
<span style="text-decoration:underline;">Refusals</span>
In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.
We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.
#### Responsible release
In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.
Misuse
If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy/](https://llama.meta.com/llama3/use-policy/).
#### Critical risks
<span style="text-decoration:underline;">CBRNE</span> (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)
We have conducted a two fold assessment of the safety of the model in this area:
* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.
* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).
### <span style="text-decoration:underline;">Cyber Security </span>
We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of [equivalent coding capability](https://huggingface.co/spaces/facebook/CyberSecEval).
### <span style="text-decoration:underline;">Child Safety</span>
Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.
### Community
Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama).
Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community.
## Ethical Considerations and Limitations
The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.
But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating [Purple Llama](https://github.com/facebookresearch/PurpleLlama) solutions into your workflows and specifically [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.
Please see the Responsible Use Guide available at [http://llama.meta.com/responsible-use-guide](http://llama.meta.com/responsible-use-guide)
## Citation instructions
@article{llama3modelcard,
title={Llama 3 Model Card},
author={AI@Meta},
year={2024},
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
## Contributors
Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
|
Serega1200/test | Serega1200 | "2024-03-16T22:12:35Z" | 0 | 0 | null | [
"biology",
"chemistry",
"finance",
"music",
"code",
"medical",
"text-generation-inference",
"merge",
"moe",
"ar",
"be",
"ru",
"en",
"arxiv:1910.09700",
"license:bsd-3-clause",
"region:us"
] | null | "2024-03-16T22:07:15Z" | ---
license: bsd-3-clause
language:
- ar
- be
- ru
- en
tags:
- biology
- chemistry
- finance
- music
- code
- medical
- text-generation-inference
- merge
- moe
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
TheBloke/WizardLM-30B-Uncensored-GGUF | TheBloke | "2023-09-27T12:52:39Z" | 836 | 14 | transformers | [
"transformers",
"gguf",
"llama",
"uncensored",
"dataset:ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered",
"base_model:cognitivecomputations/WizardLM-30B-Uncensored",
"base_model:quantized:cognitivecomputations/WizardLM-30B-Uncensored",
"license:other",
"region:us"
] | null | "2023-09-19T23:15:29Z" | ---
license: other
tags:
- uncensored
datasets:
- ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered
model_name: Wizardlm 30B Uncensored
base_model: ehartford/WizardLM-30B-Uncensored
inference: false
model_creator: Eric Hartford
model_type: llama
prompt_template: '{prompt}
### Response:
'
quantized_by: TheBloke
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->
# Wizardlm 30B Uncensored - GGUF
- Model creator: [Eric Hartford](https://huggingface.co/ehartford)
- Original model: [Wizardlm 30B Uncensored](https://huggingface.co/ehartford/WizardLM-30B-Uncensored)
<!-- description start -->
## Description
This repo contains GGUF format model files for [Eric Hartford's Wizardlm 30B Uncensored](https://huggingface.co/ehartford/WizardLM-30B-Uncensored).
<!-- description end -->
<!-- README_GGUF.md-about-gguf start -->
### About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplate list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
<!-- README_GGUF.md-about-gguf end -->
<!-- repositories-available start -->
## Repositories available
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/WizardLM-30B-uncensored-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardLM-30B-uncensored-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardLM-30B-uncensored-GGUF)
* [Eric Hartford's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/WizardLM-30B-Uncensored)
<!-- repositories-available end -->
<!-- prompt-template start -->
## Prompt template: WizardLM
```
{prompt}
### Response:
```
<!-- prompt-template end -->
<!-- compatibility_gguf start -->
## Compatibility
These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
## Explanation of quantisation methods
<details>
<summary>Click to see details</summary>
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_gguf end -->
<!-- README_GGUF.md-provided-files start -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [WizardLM-30B-Uncensored.Q2_K.gguf](https://huggingface.co/TheBloke/WizardLM-30B-uncensored-GGUF/blob/main/WizardLM-30B-Uncensored.Q2_K.gguf) | Q2_K | 2 | 13.50 GB| 16.00 GB | smallest, significant quality loss - not recommended for most purposes |
| [WizardLM-30B-Uncensored.Q3_K_S.gguf](https://huggingface.co/TheBloke/WizardLM-30B-uncensored-GGUF/blob/main/WizardLM-30B-Uncensored.Q3_K_S.gguf) | Q3_K_S | 3 | 14.06 GB| 16.56 GB | very small, high quality loss |
| [WizardLM-30B-Uncensored.Q3_K_M.gguf](https://huggingface.co/TheBloke/WizardLM-30B-uncensored-GGUF/blob/main/WizardLM-30B-Uncensored.Q3_K_M.gguf) | Q3_K_M | 3 | 15.76 GB| 18.26 GB | very small, high quality loss |
| [WizardLM-30B-Uncensored.Q3_K_L.gguf](https://huggingface.co/TheBloke/WizardLM-30B-uncensored-GGUF/blob/main/WizardLM-30B-Uncensored.Q3_K_L.gguf) | Q3_K_L | 3 | 17.28 GB| 19.78 GB | small, substantial quality loss |
| [WizardLM-30B-Uncensored.Q4_0.gguf](https://huggingface.co/TheBloke/WizardLM-30B-uncensored-GGUF/blob/main/WizardLM-30B-Uncensored.Q4_0.gguf) | Q4_0 | 4 | 18.36 GB| 20.86 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [WizardLM-30B-Uncensored.Q4_K_S.gguf](https://huggingface.co/TheBloke/WizardLM-30B-uncensored-GGUF/blob/main/WizardLM-30B-Uncensored.Q4_K_S.gguf) | Q4_K_S | 4 | 18.44 GB| 20.94 GB | small, greater quality loss |
| [WizardLM-30B-Uncensored.Q4_K_M.gguf](https://huggingface.co/TheBloke/WizardLM-30B-uncensored-GGUF/blob/main/WizardLM-30B-Uncensored.Q4_K_M.gguf) | Q4_K_M | 4 | 19.62 GB| 22.12 GB | medium, balanced quality - recommended |
| [WizardLM-30B-Uncensored.Q5_0.gguf](https://huggingface.co/TheBloke/WizardLM-30B-uncensored-GGUF/blob/main/WizardLM-30B-Uncensored.Q5_0.gguf) | Q5_0 | 5 | 22.40 GB| 24.90 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [WizardLM-30B-Uncensored.Q5_K_S.gguf](https://huggingface.co/TheBloke/WizardLM-30B-uncensored-GGUF/blob/main/WizardLM-30B-Uncensored.Q5_K_S.gguf) | Q5_K_S | 5 | 22.40 GB| 24.90 GB | large, low quality loss - recommended |
| [WizardLM-30B-Uncensored.Q5_K_M.gguf](https://huggingface.co/TheBloke/WizardLM-30B-uncensored-GGUF/blob/main/WizardLM-30B-Uncensored.Q5_K_M.gguf) | Q5_K_M | 5 | 23.05 GB| 25.55 GB | large, very low quality loss - recommended |
| [WizardLM-30B-Uncensored.Q6_K.gguf](https://huggingface.co/TheBloke/WizardLM-30B-uncensored-GGUF/blob/main/WizardLM-30B-Uncensored.Q6_K.gguf) | Q6_K | 6 | 26.69 GB| 29.19 GB | very large, extremely low quality loss |
| [WizardLM-30B-Uncensored.Q8_0.gguf](https://huggingface.co/TheBloke/WizardLM-30B-uncensored-GGUF/blob/main/WizardLM-30B-Uncensored.Q8_0.gguf) | Q8_0 | 8 | 34.57 GB| 37.07 GB | very large, extremely low quality loss - not recommended |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
<!-- README_GGUF.md-provided-files end -->
<!-- README_GGUF.md-how-to-download start -->
## How to download GGUF files
**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
- LM Studio
- LoLLMS Web UI
- Faraday.dev
### In `text-generation-webui`
Under Download Model, you can enter the model repo: TheBloke/WizardLM-30B-uncensored-GGUF and below it, a specific filename to download, such as: WizardLM-30B-Uncensored.Q4_K_M.gguf.
Then click Download.
### On the command line, including multiple files at once
I recommend using the `huggingface-hub` Python library:
```shell
pip3 install huggingface-hub
```
Then you can download any individual model file to the current directory, at high speed, with a command like this:
```shell
huggingface-cli download TheBloke/WizardLM-30B-uncensored-GGUF WizardLM-30B-Uncensored.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```
<details>
<summary>More advanced huggingface-cli download usage</summary>
You can also download multiple files at once with a pattern:
```shell
huggingface-cli download TheBloke/WizardLM-30B-uncensored-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
```shell
pip3 install hf_transfer
```
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
```shell
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/WizardLM-30B-uncensored-GGUF WizardLM-30B-Uncensored.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```
Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>
<!-- README_GGUF.md-how-to-download end -->
<!-- README_GGUF.md-how-to-run start -->
## Example `llama.cpp` command
Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
```shell
./main -ngl 32 -m WizardLM-30B-Uncensored.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}\n### Response:"
```
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
## How to run in `text-generation-webui`
Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
## How to run from Python code
You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
### How to load this model in Python code, using ctransformers
#### First install the package
Run one of the following commands, according to your system:
```shell
# Base ctransformers with no GPU acceleration
pip install ctransformers
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]
# Or with AMD ROCm GPU acceleration (Linux only)
CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
# Or with Metal GPU acceleration for macOS systems only
CT_METAL=1 pip install ctransformers --no-binary ctransformers
```
#### Simple ctransformers example code
```python
from ctransformers import AutoModelForCausalLM
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("TheBloke/WizardLM-30B-uncensored-GGUF", model_file="WizardLM-30B-Uncensored.Q4_K_M.gguf", model_type="llama", gpu_layers=50)
print(llm("AI is going to"))
```
## How to use with LangChain
Here are guides on using llama-cpp-python and ctransformers with LangChain:
* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
<!-- README_GGUF.md-how-to-run end -->
<!-- footer start -->
<!-- 200823 -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute
Thanks to the [chirper.ai](https://chirper.ai) team!
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Aemon Algiz.
**Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
<!-- footer end -->
<!-- original-model-card start -->
# Original model card: Eric Hartford's Wizardlm 30B Uncensored
This is WizardLM trained with a subset of the dataset - responses that contained alignment / moralizing were removed. The intent is to train a WizardLM that doesn't have alignment built-in, so that alignment (of any sort) can be added separately with for example with a RLHF LoRA.
Shout out to the open source AI/ML community, and everyone who helped me out.
Note:
An uncensored model has no guardrails.
You are responsible for anything you do with the model, just as you are responsible for anything you do with any dangerous object such as a knife, gun, lighter, or car.
Publishing anything this model generates is the same as publishing it yourself.
You are responsible for the content you publish, and you cannot blame the model any more than you can blame the knife, gun, lighter, or car for what you do with it.
<!-- original-model-card end -->
|
sd-concepts-library/shitao | sd-concepts-library | "2023-08-02T13:30:24Z" | 0 | 1 | null | [
"base_model:stabilityai/stable-diffusion-2",
"base_model:finetune:stabilityai/stable-diffusion-2",
"license:mit",
"region:us"
] | null | "2023-08-02T13:30:21Z" | ---
license: mit
base_model: stabilityai/stable-diffusion-2
---
### shitao on Stable Diffusion
This is the `<st>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as a `style`:
![<st> 0](https://huggingface.co/sd-concepts-library/shitao/resolve/main/concept_images/2.jpeg)
![<st> 1](https://huggingface.co/sd-concepts-library/shitao/resolve/main/concept_images/3.jpeg)
![<st> 2](https://huggingface.co/sd-concepts-library/shitao/resolve/main/concept_images/1.jpeg)
![<st> 3](https://huggingface.co/sd-concepts-library/shitao/resolve/main/concept_images/0.jpeg)
|
mradermacher/openbuddy-deepseek-67b-v15.3-4k-GGUF | mradermacher | "2024-11-10T06:56:09Z" | 38 | 0 | transformers | [
"transformers",
"gguf",
"zh",
"en",
"fr",
"de",
"ja",
"ko",
"it",
"ru",
"fi",
"base_model:OpenBuddy/openbuddy-deepseek-67b-v15.3-4k",
"base_model:quantized:OpenBuddy/openbuddy-deepseek-67b-v15.3-4k",
"license:other",
"endpoints_compatible",
"region:us"
] | null | "2024-11-05T15:43:26Z" | ---
base_model: OpenBuddy/openbuddy-deepseek-67b-v15.3-4k
language:
- zh
- en
- fr
- de
- ja
- ko
- it
- ru
- fi
library_name: transformers
license: other
license_link: https://github.com/deepseek-ai/DeepSeek-LLM/blob/548a39bdd03986297ea4e233a8b7676edd6bec3e/LICENSE-MODEL
license_name: deepseek
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/OpenBuddy/openbuddy-deepseek-67b-v15.3-4k
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/openbuddy-deepseek-67b-v15.3-4k-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/openbuddy-deepseek-67b-v15.3-4k-GGUF/resolve/main/openbuddy-deepseek-67b-v15.3-4k.Q2_K.gguf) | Q2_K | 25.2 | |
| [GGUF](https://huggingface.co/mradermacher/openbuddy-deepseek-67b-v15.3-4k-GGUF/resolve/main/openbuddy-deepseek-67b-v15.3-4k.Q3_K_S.gguf) | Q3_K_S | 29.4 | |
| [GGUF](https://huggingface.co/mradermacher/openbuddy-deepseek-67b-v15.3-4k-GGUF/resolve/main/openbuddy-deepseek-67b-v15.3-4k.Q3_K_M.gguf) | Q3_K_M | 32.8 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/openbuddy-deepseek-67b-v15.3-4k-GGUF/resolve/main/openbuddy-deepseek-67b-v15.3-4k.Q3_K_L.gguf) | Q3_K_L | 35.7 | |
| [GGUF](https://huggingface.co/mradermacher/openbuddy-deepseek-67b-v15.3-4k-GGUF/resolve/main/openbuddy-deepseek-67b-v15.3-4k.IQ4_XS.gguf) | IQ4_XS | 36.6 | |
| [GGUF](https://huggingface.co/mradermacher/openbuddy-deepseek-67b-v15.3-4k-GGUF/resolve/main/openbuddy-deepseek-67b-v15.3-4k.Q4_K_S.gguf) | Q4_K_S | 38.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/openbuddy-deepseek-67b-v15.3-4k-GGUF/resolve/main/openbuddy-deepseek-67b-v15.3-4k.Q4_K_M.gguf) | Q4_K_M | 40.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/openbuddy-deepseek-67b-v15.3-4k-GGUF/resolve/main/openbuddy-deepseek-67b-v15.3-4k.Q5_K_S.gguf) | Q5_K_S | 46.6 | |
| [GGUF](https://huggingface.co/mradermacher/openbuddy-deepseek-67b-v15.3-4k-GGUF/resolve/main/openbuddy-deepseek-67b-v15.3-4k.Q5_K_M.gguf) | Q5_K_M | 47.8 | |
| [PART 1](https://huggingface.co/mradermacher/openbuddy-deepseek-67b-v15.3-4k-GGUF/resolve/main/openbuddy-deepseek-67b-v15.3-4k.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/openbuddy-deepseek-67b-v15.3-4k-GGUF/resolve/main/openbuddy-deepseek-67b-v15.3-4k.Q6_K.gguf.part2of2) | Q6_K | 55.4 | very good quality |
| [PART 1](https://huggingface.co/mradermacher/openbuddy-deepseek-67b-v15.3-4k-GGUF/resolve/main/openbuddy-deepseek-67b-v15.3-4k.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/openbuddy-deepseek-67b-v15.3-4k-GGUF/resolve/main/openbuddy-deepseek-67b-v15.3-4k.Q8_0.gguf.part2of2) | Q8_0 | 71.7 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
nat-hunt/ea76628e-e0f5-4bc8-8fd1-56508f49914a | nat-hunt | "2025-01-21T20:22:17Z" | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/llama-2-7b-chat",
"base_model:adapter:unsloth/llama-2-7b-chat",
"license:apache-2.0",
"region:us"
] | null | "2025-01-21T18:55:04Z" | ---
library_name: peft
license: apache-2.0
base_model: unsloth/llama-2-7b-chat
tags:
- axolotl
- generated_from_trainer
model-index:
- name: ea76628e-e0f5-4bc8-8fd1-56508f49914a
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/llama-2-7b-chat
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 88a7a4ef16b7645c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/88a7a4ef16b7645c_train_data.json
type:
field_instruction: utt
field_output: annot_utt
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: nat-hunt/ea76628e-e0f5-4bc8-8fd1-56508f49914a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: /tmp/88a7a4ef16b7645c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a313e50a-ef92-4948-bd5f-6bfaeb774e2a
wandb_project: Birthday-SN56-4-Gradients-On-Demand
wandb_run: your_name
wandb_runid: a313e50a-ef92-4948-bd5f-6bfaeb774e2a
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# ea76628e-e0f5-4bc8-8fd1-56508f49914a
This model is a fine-tuned version of [unsloth/llama-2-7b-chat](https://huggingface.co/unsloth/llama-2-7b-chat) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.0 | 0.0000 | 1 | nan |
| 0.0 | 0.0000 | 3 | nan |
| 0.0 | 0.0001 | 6 | nan |
| 0.0 | 0.0001 | 9 | nan |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Best000/e3e62084-2cb3-45a1-9c69-68c5813c098a | Best000 | "2025-02-02T12:15:39Z" | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:scb10x/llama-3-typhoon-v1.5-8b-instruct",
"base_model:adapter:scb10x/llama-3-typhoon-v1.5-8b-instruct",
"license:llama3",
"region:us"
] | null | "2025-02-02T12:13:22Z" | ---
library_name: peft
license: llama3
base_model: scb10x/llama-3-typhoon-v1.5-8b-instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: e3e62084-2cb3-45a1-9c69-68c5813c098a
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: scb10x/llama-3-typhoon-v1.5-8b-instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 40af34e5ab05396e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/40af34e5ab05396e_train_data.json
type:
field_input: ''
field_instruction: prompt
field_output: safe_response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: Best000/e3e62084-2cb3-45a1-9c69-68c5813c098a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/40af34e5ab05396e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 3cfd2269-5633-449d-b7ce-a0694eca12ec
wandb_project: Birthday-SN56-15-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 3cfd2269-5633-449d-b7ce-a0694eca12ec
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# e3e62084-2cb3-45a1-9c69-68c5813c098a
This model is a fine-tuned version of [scb10x/llama-3-typhoon-v1.5-8b-instruct](https://huggingface.co/scb10x/llama-3-typhoon-v1.5-8b-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0866
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 112
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0090 | 1 | 1.6880 |
| 1.2215 | 0.2517 | 28 | 1.1953 |
| 1.1187 | 0.5034 | 56 | 1.1266 |
| 1.0951 | 0.7551 | 84 | 1.0966 |
| 1.0709 | 1.0067 | 112 | 1.0866 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
thomasfm/distilbert-base-uncased-finetuned-ner-nlp | thomasfm | "2022-11-18T18:09:05Z" | 119 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | "2022-11-18T17:43:51Z" | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ner-nlp
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner-nlp
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0812
- Precision: 0.8835
- Recall: 0.9039
- F1: 0.8936
- Accuracy: 0.9804
## Model description
### Essential info about tagged entities
- geo: Geographical Entity
- gpe: Geopolitical Entity
- tim: Time Indicator
### Label description
- Label 0: 'B-geo',
- Label 1: 'B-gpe',
- Label 2: 'B-tim',
- Label 3: 'I-geo',
- Label 4: 'I-gpe',
- Label 5: 'I-tim',
- Label 6: 'O'
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0384 | 1.0 | 1781 | 0.0671 | 0.8770 | 0.9038 | 0.8902 | 0.9799 |
| 0.0295 | 2.0 | 3562 | 0.0723 | 0.8844 | 0.8989 | 0.8915 | 0.9804 |
| 0.023 | 3.0 | 5343 | 0.0731 | 0.8787 | 0.9036 | 0.8910 | 0.9800 |
| 0.0186 | 4.0 | 7124 | 0.0812 | 0.8835 | 0.9039 | 0.8936 | 0.9804 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.0
- Tokenizers 0.13.2
|
apwic/nerugm-lora-r2a0d0.05 | apwic | "2024-05-24T19:00:34Z" | 0 | 0 | null | [
"tensorboard",
"generated_from_trainer",
"id",
"base_model:indolem/indobert-base-uncased",
"base_model:finetune:indolem/indobert-base-uncased",
"license:mit",
"region:us"
] | null | "2024-05-24T14:37:30Z" | ---
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: nerugm-lora-r2a0d0.05
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nerugm-lora-r2a0d0.05
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1346
- Precision: 0.7366
- Recall: 0.8629
- F1: 0.7948
- Accuracy: 0.9555
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.7885 | 1.0 | 528 | 0.4616 | 0.3182 | 0.0813 | 0.1296 | 0.8599 |
| 0.3921 | 2.0 | 1056 | 0.2524 | 0.6053 | 0.6798 | 0.6404 | 0.9273 |
| 0.2392 | 3.0 | 1584 | 0.1932 | 0.6500 | 0.7844 | 0.7109 | 0.9382 |
| 0.1931 | 4.0 | 2112 | 0.1676 | 0.6905 | 0.8234 | 0.7511 | 0.9444 |
| 0.1719 | 5.0 | 2640 | 0.1583 | 0.7056 | 0.8396 | 0.7668 | 0.9478 |
| 0.1602 | 6.0 | 3168 | 0.1539 | 0.7115 | 0.8582 | 0.7780 | 0.9502 |
| 0.1533 | 7.0 | 3696 | 0.1520 | 0.7031 | 0.8629 | 0.7748 | 0.9506 |
| 0.1455 | 8.0 | 4224 | 0.1456 | 0.7263 | 0.8559 | 0.7858 | 0.9525 |
| 0.1398 | 9.0 | 4752 | 0.1425 | 0.7301 | 0.8536 | 0.7870 | 0.9537 |
| 0.1368 | 10.0 | 5280 | 0.1395 | 0.7229 | 0.8536 | 0.7828 | 0.9533 |
| 0.1331 | 11.0 | 5808 | 0.1365 | 0.7360 | 0.8536 | 0.7904 | 0.9551 |
| 0.1305 | 12.0 | 6336 | 0.1377 | 0.7332 | 0.8605 | 0.7918 | 0.9549 |
| 0.1279 | 13.0 | 6864 | 0.1357 | 0.7415 | 0.8582 | 0.7956 | 0.9565 |
| 0.1251 | 14.0 | 7392 | 0.1355 | 0.7371 | 0.8652 | 0.7960 | 0.9555 |
| 0.1239 | 15.0 | 7920 | 0.1359 | 0.7366 | 0.8629 | 0.7948 | 0.9549 |
| 0.1231 | 16.0 | 8448 | 0.1347 | 0.7351 | 0.8629 | 0.7939 | 0.9551 |
| 0.122 | 17.0 | 8976 | 0.1353 | 0.7351 | 0.8629 | 0.7939 | 0.9555 |
| 0.1205 | 18.0 | 9504 | 0.1356 | 0.7317 | 0.8605 | 0.7909 | 0.9549 |
| 0.1202 | 19.0 | 10032 | 0.1347 | 0.7351 | 0.8629 | 0.7939 | 0.9551 |
| 0.1204 | 20.0 | 10560 | 0.1346 | 0.7366 | 0.8629 | 0.7948 | 0.9555 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
|
Croolch/ppo-LunarLander-v2 | Croolch | "2024-06-24T15:02:23Z" | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"tensorboard",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | "2024-03-03T07:56:00Z" | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 279.01 +/- 14.97
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
dshin/flan-t5-ppo-user-h-batch-size-8-epoch-2 | dshin | "2023-03-13T04:20:46Z" | 45 | 0 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"trl",
"reinforcement-learning",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | reinforcement-learning | "2023-03-13T04:20:12Z" | ---
license: apache-2.0
tags:
- trl
- transformers
- reinforcement-learning
---
# TRL Model
This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
## Usage
To use this model for inference, first install the TRL library:
```bash
python -m pip install trl
```
You can then generate text as follows:
```python
from transformers import pipeline
generator = pipeline("text-generation", model="dshin//tmp/tmpb3bkfvgo/dshin/flan-t5-ppo-user-h-batch-size-8-epoch-2")
outputs = generator("Hello, my llama is cute")
```
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
```python
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/tmpb3bkfvgo/dshin/flan-t5-ppo-user-h-batch-size-8-epoch-2")
model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/tmpb3bkfvgo/dshin/flan-t5-ppo-user-h-batch-size-8-epoch-2")
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
```
|
tensorblock/Gemmalpaca-2B-GGUF | tensorblock | "2024-12-11T07:32:39Z" | 22 | 0 | transformers | [
"transformers",
"gguf",
"TensorBlock",
"GGUF",
"dataset:vicgalle/alpaca-gpt4",
"base_model:mlabonne/Gemmalpaca-2B",
"base_model:quantized:mlabonne/Gemmalpaca-2B",
"license:other",
"model-index",
"endpoints_compatible",
"region:us"
] | null | "2024-12-11T06:25:12Z" | ---
license: other
library_name: transformers
datasets:
- vicgalle/alpaca-gpt4
extra_gated_heading: Access Gemma on Hugging Face
extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and
agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging
Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
base_model: mlabonne/Gemmalpaca-2B
tags:
- TensorBlock
- GGUF
model-index:
- name: Gemmalpaca-2B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 48.72
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Gemmalpaca-2B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 71.36
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Gemmalpaca-2B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 36.3
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Gemmalpaca-2B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.24
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Gemmalpaca-2B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.59
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Gemmalpaca-2B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 10.69
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Gemmalpaca-2B
name: Open LLM Leaderboard
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## mlabonne/Gemmalpaca-2B - GGUF
This repo contains GGUF format model files for [mlabonne/Gemmalpaca-2B](https://huggingface.co/mlabonne/Gemmalpaca-2B).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
<div style="text-align: left; margin: 20px 0;">
<a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
Run them on the TensorBlock client using your local machine ↗
</a>
</div>
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Gemmalpaca-2B-Q2_K.gguf](https://huggingface.co/tensorblock/Gemmalpaca-2B-GGUF/blob/main/Gemmalpaca-2B-Q2_K.gguf) | Q2_K | 1.158 GB | smallest, significant quality loss - not recommended for most purposes |
| [Gemmalpaca-2B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Gemmalpaca-2B-GGUF/blob/main/Gemmalpaca-2B-Q3_K_S.gguf) | Q3_K_S | 1.288 GB | very small, high quality loss |
| [Gemmalpaca-2B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Gemmalpaca-2B-GGUF/blob/main/Gemmalpaca-2B-Q3_K_M.gguf) | Q3_K_M | 1.384 GB | very small, high quality loss |
| [Gemmalpaca-2B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Gemmalpaca-2B-GGUF/blob/main/Gemmalpaca-2B-Q3_K_L.gguf) | Q3_K_L | 1.466 GB | small, substantial quality loss |
| [Gemmalpaca-2B-Q4_0.gguf](https://huggingface.co/tensorblock/Gemmalpaca-2B-GGUF/blob/main/Gemmalpaca-2B-Q4_0.gguf) | Q4_0 | 1.551 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Gemmalpaca-2B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Gemmalpaca-2B-GGUF/blob/main/Gemmalpaca-2B-Q4_K_S.gguf) | Q4_K_S | 1.560 GB | small, greater quality loss |
| [Gemmalpaca-2B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Gemmalpaca-2B-GGUF/blob/main/Gemmalpaca-2B-Q4_K_M.gguf) | Q4_K_M | 1.630 GB | medium, balanced quality - recommended |
| [Gemmalpaca-2B-Q5_0.gguf](https://huggingface.co/tensorblock/Gemmalpaca-2B-GGUF/blob/main/Gemmalpaca-2B-Q5_0.gguf) | Q5_0 | 1.799 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Gemmalpaca-2B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Gemmalpaca-2B-GGUF/blob/main/Gemmalpaca-2B-Q5_K_S.gguf) | Q5_K_S | 1.799 GB | large, low quality loss - recommended |
| [Gemmalpaca-2B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Gemmalpaca-2B-GGUF/blob/main/Gemmalpaca-2B-Q5_K_M.gguf) | Q5_K_M | 1.840 GB | large, very low quality loss - recommended |
| [Gemmalpaca-2B-Q6_K.gguf](https://huggingface.co/tensorblock/Gemmalpaca-2B-GGUF/blob/main/Gemmalpaca-2B-Q6_K.gguf) | Q6_K | 2.062 GB | very large, extremely low quality loss |
| [Gemmalpaca-2B-Q8_0.gguf](https://huggingface.co/tensorblock/Gemmalpaca-2B-GGUF/blob/main/Gemmalpaca-2B-Q8_0.gguf) | Q8_0 | 2.669 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Gemmalpaca-2B-GGUF --include "Gemmalpaca-2B-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Gemmalpaca-2B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|
maghrane/speecht5_finetuned_marar | maghrane | "2024-12-04T12:28:12Z" | 77 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"speecht5",
"text-to-audio",
"generated_from_trainer",
"base_model:microsoft/speecht5_tts",
"base_model:finetune:microsoft/speecht5_tts",
"license:mit",
"endpoints_compatible",
"region:us"
] | text-to-audio | "2024-12-04T12:14:17Z" | ---
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: speecht5_finetuned_marar
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speecht5_finetuned_marar
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5149
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 0.7185 | 3.1873 | 100 | 0.6770 |
| 0.5988 | 6.3745 | 200 | 0.5643 |
| 0.5588 | 9.5618 | 300 | 0.5402 |
| 0.5412 | 12.7490 | 400 | 0.5194 |
| 0.5154 | 15.9363 | 500 | 0.5149 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|
Haengbok/my-pet-cat | Haengbok | "2024-02-28T14:05:38Z" | 2 | 0 | diffusers | [
"diffusers",
"safetensors",
"NxtWave-GenAI-Webinar",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | "2024-02-28T13:59:19Z" | ---
license: creativeml-openrail-m
tags:
- NxtWave-GenAI-Webinar
- text-to-image
- stable-diffusion
---
### My-Pet-cat Dreambooth model trained by Haengbok following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: 220349106095
Sample pictures of this concept:
![0](https://huggingface.co/Haengbok/my-pet-cat/resolve/main/sample_images/xzg(5).jpg)
|
Nextcloud-AI/opus-mt-sv-en | Nextcloud-AI | "2024-02-14T17:14:57Z" | 135 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"rust",
"marian",
"text2text-generation",
"translation",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | "2024-02-23T10:46:32Z" | ---
pipeline_tag: translation
license: apache-2.0
---
### opus-mt-sv-en
* source languages: sv
* target languages: en
* OPUS readme: [sv-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-en/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-02-26.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-en/opus-2020-02-26.zip)
* test set translations: [opus-2020-02-26.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-en/opus-2020-02-26.test.txt)
* test set scores: [opus-2020-02-26.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-en/opus-2020-02-26.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.sv.en | 64.5 | 0.763 | |
crisU8/positive_model | crisU8 | "2023-12-31T02:38:34Z" | 3 | 0 | transformers | [
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"base_model:dccuchile/tulio-chilean-spanish-bert",
"base_model:finetune:dccuchile/tulio-chilean-spanish-bert",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | "2023-12-31T01:44:01Z" | ---
license: cc-by-4.0
base_model: dccuchile/tulio-chilean-spanish-bert
tags:
- generated_from_keras_callback
model-index:
- name: crisU8/positive_model
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# crisU8/positive_model
This model is a fine-tuned version of [dccuchile/tulio-chilean-spanish-bert](https://huggingface.co/dccuchile/tulio-chilean-spanish-bert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0606
- Validation Loss: 0.5070
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4070, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.6730 | 0.4127 | 0 |
| 0.3405 | 0.3897 | 1 |
| 0.1979 | 0.3586 | 2 |
| 0.1007 | 0.4473 | 3 |
| 0.0606 | 0.5070 | 4 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.1
- Tokenizers 0.15.0
|
hdparmar/tradfusion-v2 | hdparmar | "2023-10-30T15:12:40Z" | 9 | 0 | diffusers | [
"diffusers",
"pytorch",
"unconditional-image-generation",
"text-to-image",
"diffusion-models-class",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | "2023-10-27T11:38:27Z" | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- text-to-image
- diffusion-models-class
---
# Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
Fine-tuned Stable Diffusion Model on Irish Traditional Tunes Spectrograms
## Usage
```python
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained('hdparmar/tradfusion-v2')
image = pipeline().images[0]
image
```
|
BramVanroy/kenlm_sonar | BramVanroy | "2024-04-16T14:18:38Z" | 0 | 1 | null | [
"kenlm",
"nl",
"license:apache-2.0",
"region:us"
] | null | "2024-04-09T13:17:25Z" | ---
language:
- nl
tags:
- kenlm
license: apache-2.0
---
# KenLM (arpa) models for Dutch based on SONAR
This repository contains KenLM models (n=5) for Dutch, based on the SONAR corpus - sentence-segmented (one sentence per line). Models are provided on tokens, part-of-speech, dependency labels, and lemmas, as processed with spaCy `nl_core_news_sm`:
- kenlm_sonar_token.arpa[.bin]: token
- kenlm_sonar_pos.arpa[.bin]: part-of-speech tag
- kenlm_sonar_dep.arpa[.bin]: dependency label
- kenlm_sonar_lemma.arpa[.bin]: lemma
More noisy SONAR components (WRPEA, WRPED, WRUEA, WRUED, WRUEB) were excluded.
Both regular `.arpa` files as well as more efficient KenLM binary files (`.arpa.bin`) are provided. You probably want to use the binary versions.
## Usage from within Python
Make sure to install dependencies:
```shell
pip install huggingface_hub
pip install https://github.com/kpu/kenlm/archive/master.zip
# If you want to use spaCy preprocessing
pip install spacy
python -m spacy download nl_core_news_sm
```
We can then use the Hugging Face hub software to download and cache the model file that we want, and directly use it with KenLM.
```python
import kenlm
from huggingface_hub import hf_hub_download
model_file = hf_hub_download(repo_id="BramVanroy/kenlm_sonar", filename="kenlm_sonar_token.arpa.bin")
model = kenlm.Model(model_file)
text = "Ik eet graag koekjes !" # pre-tokenized
model.perplexity(text)
# 148.21996373689134
```
It is recommended to use spaCy as a preprocessor to automatically use the same tagsets and tokenization as were used when creating the LMs.
```python
import kenlm
import spacy
from huggingface_hub import hf_hub_download
model_file = hf_hub_download(repo_id="BramVanroy/kenlm_sonar", filename="kenlm_sonar_pos.arpa.bin") # pos file
model = kenlm.Model(model_file)
nlp = spacy.load("nl_core_news_sm")
text = "Ik eet graag koekjes!"
pos_sequence = " ".join([token.pos_ for token in nlp(text)])
# 'PRON VERB ADV NOUN PUNCT'
model.perplexity(pos_sequence)
# 6.916279238079976
```
## Reproduction
```sh
bin/lmplz -o 5 -S 75% -T ../data/tmp/ < ../data/processed_sonar_token_dedup.txt > ../data/kenlm_sonar_token.arpa
```
For class-based LMs (POS and DEP), the `--discount_fallback` was used and the parsed data was not deduplicated (but it was deduplicated on the sentence-level for token and lemma models). |
touchtech/fashion-images-perspectives-vit-large-patch16-224-in21k | touchtech | "2023-08-30T12:59:12Z" | 218 | 1 | transformers | [
"transformers",
"pytorch",
"vit",
"image-classification",
"vision",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:google/vit-large-patch16-224-in21k",
"base_model:finetune:google/vit-large-patch16-224-in21k",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | "2023-08-30T09:30:06Z" | ---
license: apache-2.0
base_model: google/vit-large-patch16-224-in21k
tags:
- image-classification
- vision
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: fashion-images-perspectives-vit-large-patch16-224-in21k
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: touchtech/fashion-images-perspectives
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9315323707498836
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fashion-images-perspectives-vit-large-patch16-224-in21k
This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the touchtech/fashion-images-perspectives dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2543
- Accuracy: 0.9315
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.4164 | 1.0 | 3042 | 0.2868 | 0.9024 |
| 0.3391 | 2.0 | 6084 | 0.3055 | 0.9041 |
| 0.2836 | 3.0 | 9126 | 0.3071 | 0.9180 |
| 0.2292 | 4.0 | 12168 | 0.2543 | 0.9315 |
| 0.1842 | 5.0 | 15210 | 0.2562 | 0.9362 |
### Framework versions
- Transformers 4.33.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
qgallouedec/tqc-Swimmer-v3-999770256 | qgallouedec | "2024-04-10T19:28:19Z" | 3 | 0 | stable-baselines3 | [
"stable-baselines3",
"Swimmer-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"Swimmer-v4",
"model-index",
"region:us"
] | reinforcement-learning | "2023-02-28T16:58:29Z" | ---
library_name: stable-baselines3
tags:
- Swimmer-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
- Swimmer-v4
model-index:
- name: TQC
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Swimmer-v3
type: Swimmer-v3
metrics:
- type: mean_reward
value: 46.63 +/- 5.64
name: mean_reward
verified: false
---
# **TQC** Agent playing **Swimmer-v3**
This is a trained model of a **TQC** agent playing **Swimmer-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo tqc --env Swimmer-v3 -orga qgallouedec -f logs/
python -m rl_zoo3.enjoy --algo tqc --env Swimmer-v3 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo tqc --env Swimmer-v3 -orga qgallouedec -f logs/
python -m rl_zoo3.enjoy --algo tqc --env Swimmer-v3 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo tqc --env Swimmer-v3 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo tqc --env Swimmer-v3 -f logs/ -orga qgallouedec
```
## Hyperparameters
```python
OrderedDict([('gamma', 0.9999),
('learning_starts', 10000),
('n_timesteps', 1000000.0),
('policy', 'MlpPolicy'),
('normalize', False)])
```
|
TheRains/yt-special-batch8-base | TheRains | "2023-08-05T08:11:59Z" | 116 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:mozilla-foundation/common_voice_9_0",
"base_model:openai/whisper-base",
"base_model:finetune:openai/whisper-base",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | "2023-08-05T05:06:06Z" | ---
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_9_0
metrics:
- wer
model-index:
- name: yt-special-batch8-base
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_9_0 id
type: mozilla-foundation/common_voice_9_0
config: id
split: train
args: id
metrics:
- name: Wer
type: wer
value: 11.4438961596224
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# yt-special-batch8-base
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the mozilla-foundation/common_voice_9_0 id dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4155
- Wer: 11.4439
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 41.113 | 1.58 | 1000 | 42.9759 | 107.5628 |
| 17.3442 | 3.17 | 2000 | 18.7037 | 144.1064 |
| 10.8061 | 4.75 | 3000 | 7.1531 | 52.5510 |
| 3.3269 | 6.34 | 4000 | 3.1035 | 47.0586 |
| 0.7405 | 7.92 | 5000 | 0.4155 | 11.4439 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|
mradermacher/deepseek-moe-16b-base-GGUF | mradermacher | "2025-02-08T08:58:41Z" | 242 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:deepseek-ai/deepseek-moe-16b-base",
"base_model:quantized:deepseek-ai/deepseek-moe-16b-base",
"license:other",
"endpoints_compatible",
"region:us"
] | null | "2025-02-08T04:28:21Z" | ---
base_model: deepseek-ai/deepseek-moe-16b-base
language:
- en
library_name: transformers
license: other
license_link: https://github.com/deepseek-ai/DeepSeek-MoE/blob/main/LICENSE-MODEL
license_name: deepseek
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/deepseek-ai/deepseek-moe-16b-base
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/deepseek-moe-16b-base-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/deepseek-moe-16b-base-GGUF/resolve/main/deepseek-moe-16b-base.Q2_K.gguf) | Q2_K | 6.8 | |
| [GGUF](https://huggingface.co/mradermacher/deepseek-moe-16b-base-GGUF/resolve/main/deepseek-moe-16b-base.Q3_K_S.gguf) | Q3_K_S | 7.9 | |
| [GGUF](https://huggingface.co/mradermacher/deepseek-moe-16b-base-GGUF/resolve/main/deepseek-moe-16b-base.Q3_K_M.gguf) | Q3_K_M | 8.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/deepseek-moe-16b-base-GGUF/resolve/main/deepseek-moe-16b-base.Q3_K_L.gguf) | Q3_K_L | 8.9 | |
| [GGUF](https://huggingface.co/mradermacher/deepseek-moe-16b-base-GGUF/resolve/main/deepseek-moe-16b-base.IQ4_XS.gguf) | IQ4_XS | 9.1 | |
| [GGUF](https://huggingface.co/mradermacher/deepseek-moe-16b-base-GGUF/resolve/main/deepseek-moe-16b-base.Q4_K_S.gguf) | Q4_K_S | 10.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/deepseek-moe-16b-base-GGUF/resolve/main/deepseek-moe-16b-base.Q4_K_M.gguf) | Q4_K_M | 11.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/deepseek-moe-16b-base-GGUF/resolve/main/deepseek-moe-16b-base.Q5_K_S.gguf) | Q5_K_S | 11.7 | |
| [GGUF](https://huggingface.co/mradermacher/deepseek-moe-16b-base-GGUF/resolve/main/deepseek-moe-16b-base.Q5_K_M.gguf) | Q5_K_M | 12.5 | |
| [GGUF](https://huggingface.co/mradermacher/deepseek-moe-16b-base-GGUF/resolve/main/deepseek-moe-16b-base.Q6_K.gguf) | Q6_K | 14.8 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/deepseek-moe-16b-base-GGUF/resolve/main/deepseek-moe-16b-base.Q8_0.gguf) | Q8_0 | 17.5 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
austinmw/ppo-LunarLander-v2 | austinmw | "2023-02-05T19:19:15Z" | 4 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | "2023-02-05T19:18:49Z" | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 251.83 +/- 22.51
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
colaibu/Game-Backup | colaibu | "2025-02-11T11:08:50Z" | 0 | 0 | null | [
"license:other",
"region:us"
] | null | "2025-01-05T00:49:28Z" | ---
license: other
license_name: smokeapi
license_link: LICENSE
---
|
Triangle104/Llama-3.1-8B-Lexi-Uncensored-V2-Q5_K_M-GGUF | Triangle104 | "2024-10-16T18:29:58Z" | 13 | 0 | transformers | [
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"base_model:Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2",
"base_model:quantized:Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2",
"license:llama3.1",
"model-index",
"endpoints_compatible",
"region:us",
"conversational"
] | null | "2024-10-16T18:28:56Z" | ---
base_model: Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
library_name: transformers
license: llama3.1
tags:
- llama-cpp
- gguf-my-repo
model-index:
- name: Llama-3.1-8B-Lexi-Uncensored-V2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 77.92
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 29.69
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 16.92
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 4.36
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.77
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 30.9
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
name: Open LLM Leaderboard
---
# Triangle104/Llama-3.1-8B-Lexi-Uncensored-V2-Q5_K_M-GGUF
This model was converted to GGUF format from [`Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2`](https://huggingface.co/Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2) for more details on the model.
---
Model details:
-
VERSION 2 Update Notes:
More compliant
Smarter
For best response, use this system prompt (feel free to expand upon it as you wish):
Think step by step with a logical reasoning and intellectual sense before you provide any response.
For more uncensored and compliant response, you can expand the system message differently, or simply enter a dot "." as system message.
IMPORTANT: Upon further investigation, the Q4 seems to have refusal issues sometimes. There seems to be some of the fine-tune loss happening due to the quantization. I will look into it for V3. Until then, I suggest you run F16 or Q8 if possible.
image/png
GENERAL INFO:
This model is based on Llama-3.1-8b-Instruct, and is governed by META LLAMA 3.1 COMMUNITY LICENSE AGREEMENT
Lexi is uncensored, which makes the model compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant with any requests, even unethical ones.
You are responsible for any content you create using this model. Please use it responsibly.
Lexi is licensed according to Meta's Llama license. I grant permission for any use, including commercial, that falls within accordance with Meta's Llama-3.1 license.
IMPORTANT:
Use the same template as the official Llama 3.1 8B instruct. System tokens must be present during inference, even if you set an empty system message. If you are unsure, just add a short system message as you wish.
FEEDBACK:
If you find any issues or have suggestions for improvements, feel free to leave a review and I will look into it for upcoming improvements and next version.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric Value
Avg. 27.93
IFEval (0-Shot) 77.92
BBH (3-Shot) 29.69
MATH Lvl 5 (4-Shot) 16.92
GPQA (0-shot) 4.36
MuSR (0-shot) 7.77
MMLU-PRO (5-shot) 30.90
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Llama-3.1-8B-Lexi-Uncensored-V2-Q5_K_M-GGUF --hf-file llama-3.1-8b-lexi-uncensored-v2-q5_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Llama-3.1-8B-Lexi-Uncensored-V2-Q5_K_M-GGUF --hf-file llama-3.1-8b-lexi-uncensored-v2-q5_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Llama-3.1-8B-Lexi-Uncensored-V2-Q5_K_M-GGUF --hf-file llama-3.1-8b-lexi-uncensored-v2-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Llama-3.1-8B-Lexi-Uncensored-V2-Q5_K_M-GGUF --hf-file llama-3.1-8b-lexi-uncensored-v2-q5_k_m.gguf -c 2048
```
|
saideep-arikontham/twitter-roberta-base-sentiment-latest-trump-stance-1 | saideep-arikontham | "2024-04-23T13:30:43Z" | 2 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:cardiffnlp/twitter-roberta-base-sentiment-latest",
"base_model:adapter:cardiffnlp/twitter-roberta-base-sentiment-latest",
"region:us"
] | null | "2024-04-23T07:21:31Z" | ---
library_name: peft
tags:
- generated_from_trainer
base_model: cardiffnlp/twitter-roberta-base-sentiment-latest
metrics:
- accuracy
- precision
- recall
model-index:
- name: twitter-roberta-base-sentiment-latest-trump-stance-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# twitter-roberta-base-sentiment-latest-trump-stance-1
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1168
- Accuracy: {'accuracy': 0.6666666666666666}
- Precision: {'precision': 0.5697940503432495}
- Recall: {'recall': 0.7302052785923754}
- F1 Score: {'f1': 0.6401028277634961}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|:-------------:|:-----:|:------:|:---------------:|:----------------------:|:---------------------------------:|:-------------------:|:--------------------------:|
| 0.583 | 1.0 | 3600 | 0.3772 | {'accuracy': 0.83875} | {'precision': 0.812933025404157} | {'recall': 0.88} | {'f1': 0.8451380552220888} |
| 0.5621 | 2.0 | 7200 | 0.3725 | {'accuracy': 0.853125} | {'precision': 0.9407176287051482} | {'recall': 0.75375} | {'f1': 0.8369188063844553} |
| 0.5813 | 3.0 | 10800 | 1.0373 | {'accuracy': 0.625625} | {'precision': 0.5719398711524696} | {'recall': 0.99875} | {'f1': 0.7273554847519345} |
| 0.5317 | 4.0 | 14400 | 0.3697 | {'accuracy': 0.875625} | {'precision': 0.8917861799217731} | {'recall': 0.855} | {'f1': 0.8730057434588385} |
| 0.5498 | 5.0 | 18000 | 0.4457 | {'accuracy': 0.8525} | {'precision': 0.8551637279596978} | {'recall': 0.84875} | {'f1': 0.8519447929736512} |
| 0.5388 | 6.0 | 21600 | 0.4715 | {'accuracy': 0.829375} | {'precision': 0.9136577708006279} | {'recall': 0.7275} | {'f1': 0.8100208768267223} |
| 0.5885 | 7.0 | 25200 | 0.3773 | {'accuracy': 0.85875} | {'precision': 0.8836898395721925} | {'recall': 0.82625} | {'f1': 0.8540051679586563} |
| 0.4961 | 8.0 | 28800 | 0.3819 | {'accuracy': 0.869375} | {'precision': 0.9053497942386831} | {'recall': 0.825} | {'f1': 0.8633093525179856} |
| 0.5421 | 9.0 | 32400 | 0.4011 | {'accuracy': 0.85875} | {'precision': 0.8239277652370203} | {'recall': 0.9125} | {'f1': 0.8659549228944247} |
| 0.5123 | 10.0 | 36000 | 0.3404 | {'accuracy': 0.88125} | {'precision': 0.9034391534391535} | {'recall': 0.85375} | {'f1': 0.877892030848329} |
| 0.5996 | 11.0 | 39600 | 0.3435 | {'accuracy': 0.880625} | {'precision': 0.8801498127340824} | {'recall': 0.88125} | {'f1': 0.8806995627732667} |
| 0.4871 | 12.0 | 43200 | 0.2972 | {'accuracy': 0.890625} | {'precision': 0.9021879021879022} | {'recall': 0.87625} | {'f1': 0.8890298034242232} |
| 0.5272 | 13.0 | 46800 | 0.3629 | {'accuracy': 0.874375} | {'precision': 0.9423929098966026} | {'recall': 0.7975} | {'f1': 0.8639133378469871} |
| 0.5897 | 14.0 | 50400 | 0.3164 | {'accuracy': 0.88} | {'precision': 0.9075067024128687} | {'recall': 0.84625} | {'f1': 0.8758085381630013} |
| 0.4963 | 15.0 | 54000 | 0.3343 | {'accuracy': 0.87625} | {'precision': 0.922752808988764} | {'recall': 0.82125} | {'f1': 0.8690476190476191} |
| 0.5132 | 16.0 | 57600 | 0.5593 | {'accuracy': 0.855625} | {'precision': 0.9330289193302892} | {'recall': 0.76625} | {'f1': 0.8414550446122169} |
| 0.447 | 17.0 | 61200 | 0.3651 | {'accuracy': 0.874375} | {'precision': 0.8544378698224852} | {'recall': 0.9025} | {'f1': 0.8778115501519757} |
| 0.5189 | 18.0 | 64800 | 0.3919 | {'accuracy': 0.878125} | {'precision': 0.9315263908701854} | {'recall': 0.81625} | {'f1': 0.8700866089273818} |
| 0.4835 | 19.0 | 68400 | 0.5706 | {'accuracy': 0.846875} | {'precision': 0.9541734860883797} | {'recall': 0.72875} | {'f1': 0.8263642806520198} |
| 0.455 | 20.0 | 72000 | 0.3523 | {'accuracy': 0.881875} | {'precision': 0.8813982521847691} | {'recall': 0.8825} | {'f1': 0.8819487820112429} |
| 0.4791 | 21.0 | 75600 | 0.3292 | {'accuracy': 0.884375} | {'precision': 0.8546712802768166} | {'recall': 0.92625} | {'f1': 0.8890221955608878} |
| 0.512 | 22.0 | 79200 | 0.4456 | {'accuracy': 0.87} | {'precision': 0.9391691394658753} | {'recall': 0.79125} | {'f1': 0.858887381275441} |
| 0.4783 | 23.0 | 82800 | 0.3283 | {'accuracy': 0.880625} | {'precision': 0.9188445667125172} | {'recall': 0.835} | {'f1': 0.8749181401440733} |
| 0.4699 | 24.0 | 86400 | 0.3399 | {'accuracy': 0.885} | {'precision': 0.9074074074074074} | {'recall': 0.8575} | {'f1': 0.8817480719794345} |
| 0.4485 | 25.0 | 90000 | 0.3156 | {'accuracy': 0.89} | {'precision': 0.8949367088607595} | {'recall': 0.88375} | {'f1': 0.889308176100629} |
| 0.4305 | 26.0 | 93600 | 0.3105 | {'accuracy': 0.894375} | {'precision': 0.9092088197146563} | {'recall': 0.87625} | {'f1': 0.8924252068746021} |
| 0.4704 | 27.0 | 97200 | 0.3528 | {'accuracy': 0.879375} | {'precision': 0.8634730538922155} | {'recall': 0.90125} | {'f1': 0.8819571865443425} |
| 0.4589 | 28.0 | 100800 | 0.3534 | {'accuracy': 0.879375} | {'precision': 0.8696711327649208} | {'recall': 0.8925} | {'f1': 0.8809376927822332} |
| 0.4831 | 29.0 | 104400 | 0.3315 | {'accuracy': 0.891875} | {'precision': 0.9108781127129751} | {'recall': 0.86875} | {'f1': 0.889315419065899} |
| 0.4931 | 30.0 | 108000 | 0.3200 | {'accuracy': 0.891875} | {'precision': 0.9185580774365821} | {'recall': 0.86} | {'f1': 0.8883150419625565} |
| 0.4286 | 31.0 | 111600 | 0.3488 | {'accuracy': 0.8825} | {'precision': 0.9180327868852459} | {'recall': 0.84} | {'f1': 0.8772845953002611} |
| 0.4309 | 32.0 | 115200 | 0.3192 | {'accuracy': 0.891875} | {'precision': 0.8875154511742892} | {'recall': 0.8975} | {'f1': 0.8924798011187073} |
| 0.3896 | 33.0 | 118800 | 0.3294 | {'accuracy': 0.881875} | {'precision': 0.8632580261593341} | {'recall': 0.9075} | {'f1': 0.8848263254113345} |
| 0.4327 | 34.0 | 122400 | 0.3003 | {'accuracy': 0.899375} | {'precision': 0.9346938775510204} | {'recall': 0.85875} | {'f1': 0.895114006514658} |
| 0.4179 | 35.0 | 126000 | 0.3189 | {'accuracy': 0.898125} | {'precision': 0.9368998628257887} | {'recall': 0.85375} | {'f1': 0.8933943754087639} |
| 0.4023 | 36.0 | 129600 | 0.3284 | {'accuracy': 0.8775} | {'precision': 0.8408577878103838} | {'recall': 0.93125} | {'f1': 0.8837485172004745} |
| 0.4285 | 37.0 | 133200 | 0.3221 | {'accuracy': 0.894375} | {'precision': 0.9280868385345997} | {'recall': 0.855} | {'f1': 0.8900455432661027} |
| 0.3988 | 38.0 | 136800 | 0.2861 | {'accuracy': 0.896875} | {'precision': 0.8905289052890529} | {'recall': 0.905} | {'f1': 0.8977061376317421} |
| 0.4034 | 39.0 | 140400 | 0.3501 | {'accuracy': 0.895625} | {'precision': 0.9438990182328191} | {'recall': 0.84125} | {'f1': 0.8896232650363516} |
| 0.3743 | 40.0 | 144000 | 0.3654 | {'accuracy': 0.886875} | {'precision': 0.9176788124156545} | {'recall': 0.85} | {'f1': 0.8825438027255029} |
| 0.3979 | 41.0 | 147600 | 0.3230 | {'accuracy': 0.899375} | {'precision': 0.9311740890688259} | {'recall': 0.8625} | {'f1': 0.8955223880597015} |
| 0.3808 | 42.0 | 151200 | 0.2978 | {'accuracy': 0.90375} | {'precision': 0.9205729166666666} | {'recall': 0.88375} | {'f1': 0.9017857142857143} |
| 0.3777 | 43.0 | 154800 | 0.2805 | {'accuracy': 0.899375} | {'precision': 0.9220607661822986} | {'recall': 0.8725} | {'f1': 0.8965960179833012} |
| 0.3631 | 44.0 | 158400 | 0.2984 | {'accuracy': 0.898125} | {'precision': 0.9163398692810457} | {'recall': 0.87625} | {'f1': 0.8958466453674121} |
| 0.3674 | 45.0 | 162000 | 0.2924 | {'accuracy': 0.90375} | {'precision': 0.9376693766937669} | {'recall': 0.865} | {'f1': 0.8998699609882965} |
| 0.3539 | 46.0 | 165600 | 0.3158 | {'accuracy': 0.89375} | {'precision': 0.899746192893401} | {'recall': 0.88625} | {'f1': 0.8929471032745592} |
| 0.3557 | 47.0 | 169200 | 0.2861 | {'accuracy': 0.9} | {'precision': 0.9145077720207254} | {'recall': 0.8825} | {'f1': 0.8982188295165394} |
| 0.38 | 48.0 | 172800 | 0.2962 | {'accuracy': 0.894375} | {'precision': 0.9029374201787995} | {'recall': 0.88375} | {'f1': 0.8932406822488945} |
| 0.3754 | 49.0 | 176400 | 0.2905 | {'accuracy': 0.9} | {'precision': 0.9166666666666666} | {'recall': 0.88} | {'f1': 0.8979591836734694} |
| 0.3717 | 50.0 | 180000 | 0.2880 | {'accuracy': 0.89875} | {'precision': 0.9153645833333334} | {'recall': 0.87875} | {'f1': 0.8966836734693877} |
### Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2 |
dineshresearch/Taxi_q_v3_v1 | dineshresearch | "2023-03-07T08:47:37Z" | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | "2023-03-07T08:47:34Z" | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi_q_v3_v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="dineshresearch/Taxi_q_v3_v1", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
atsuki-yamaguchi/Llama-2-7b-hf-el-30K-align-2x2ls | atsuki-yamaguchi | "2024-09-17T09:21:16Z" | 7 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"el",
"arxiv:2406.11477",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:finetune:meta-llama/Llama-2-7b-hf",
"license:llama2",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-09-07T20:36:19Z" |
---
license: llama2
language:
- el
base_model: meta-llama/Llama-2-7b-hf
library_name: transformers
---
# Llama2 7B for Greek: 100 target vocabulary size + Align target vocabulary initialization + 2x2LS training
This model is built on top of Llama2 7B adapted for Greek using 30K target language sentences sampled from CC-100.
## Model Details
* **Vocabulary**: This model has an additional 100 target vocabulary.
* **Target vocabulary initialization**: The target weights of the embedding and LM head were initialized using Align initialization.
* **Training**: This model was additionally pre-trained on 30K target language sentences sampled from CC-100. The training was conducted with the 2x2LS strategies introduced in the paper.
## Model Description
- **Language:** Greek
- **License:** Llama 2 Community License Agreement
- **Fine-tuned from model:** meta-llama/Llama-2-7b-hf
## Model Sources
- **Repository:** https://github.com/gucci-j/lowres-cve
- **Paper:** https://arxiv.org/abs/2406.11477
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"atsuki-yamaguchi/Llama-2-7b-hf-el-30K-align-2x2ls"
)
tokenizer = AutoTokenizer.from_pretrained(
"atsuki-yamaguchi/Llama-2-7b-hf-el-30K-align-2x2ls"
)
```
## Citation
```
@article{yamaguchi-etal-2024-effectively,
title={How Can We Effectively Expand the Vocabulary of LLMs with 0.01GB of Target Language Text?},
author={Atsuki Yamaguchi and Aline Villavicencio and Nikolaos Aletras},
year={2024},
journal={ArXiv},
year={2024},
volume={abs/2406.11477},
url={https://arxiv.org/abs/2406.11477},
}
```
|
Yntec/Fanatic | Yntec | "2024-05-11T08:49:37Z" | 198 | 1 | diffusers | [
"diffusers",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | "2024-05-11T07:56:25Z" | ---
license: creativeml-openrail-m
library_name: diffusers
pipeline_tag: text-to-image
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
---
# Fanatic
Samples and prompts:
![Free online ai image generator fanatic](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/QIre7E1xm_cXAIIZrbFW9.png)
Top left: pretty lady with tall guy together standing, cute eyes, photoreal portrait, is on top of he Closeup a of rocks on pile top of a ocean moon to the magazine.
Top right: Painting, high detail, Cartoon Pretty CUTE little Girl riding a wave under clouds inside of a large jar on a table, fairy clothes, DETAILED CHIBI EYES, beautiful detailed pajamas, gorgeous detailed hair, Magazine ad, iconic, 1941, sharp focus. visible brushstrokes By ROSSDRAWS and artgerm and Clay Mann and leyendecker and Dave
Bottom left: absurdres, adorable cute harley quinn, at night, dark alley, moon, :) red ponytail, blonde ponytail, in matte black hardsuit, military, roughed up, bat, city fog,
Bottom right: pin up cute young girl. attractive dancing embodying a disco-inspired aesthetic. youthful short appearance, untidy hair. attire comprises of loose-fitting pants, a t-shirt, cropped hoodie. cap, vibrant and nostalgic vibes of groovy retro 70s style, illuminated by the radiant disco balls and neon lights of the dance floor. glimpse midriff
DucHaitenFANCYxFANCY merged with the Hellmix model by Barons, Kitsch-In-Sync v2 by iamxenos, the cryptids lora by RIXYN, and artistic models with the CokeGirls lora by iamxenos.
Original pages:
https://civitai.com/models/101354/duchaiten-fancyxfancy
https://civitai.com/models/186251/coca-cola-gil-elvgrenhaddon-sundblom-pinup-style
https://civitai.com/models/142552?modelVersionId=163068 (Kitsch-In-Sync v2)
https://civitai.com/models/21493/hellmix?modelVersionId=25632
https://civitai.com/models/64766/cryptids?modelVersionId=69407 (Cryptids LoRA) |
qminh369/token-classification-llmlingua2-xlm-roberta-bctn-2308_chunk_10epoch | qminh369 | "2024-04-24T22:44:04Z" | 105 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | "2024-04-24T22:12:42Z" | ---
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
model-index:
- name: token-classification-llmlingua2-xlm-roberta-bctn-2308_chunk_10epoch
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# token-classification-llmlingua2-xlm-roberta-bctn-2308_chunk_10epoch
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1480
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 58 | 0.1906 |
| No log | 2.0 | 116 | 0.1578 |
| No log | 3.0 | 174 | 0.1530 |
| No log | 4.0 | 232 | 0.1509 |
| No log | 5.0 | 290 | 0.1495 |
| No log | 6.0 | 348 | 0.1506 |
| No log | 7.0 | 406 | 0.1489 |
| No log | 8.0 | 464 | 0.1481 |
| 0.1719 | 9.0 | 522 | 0.1480 |
| 0.1719 | 10.0 | 580 | 0.1480 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2
|
hwang2006/marian-finetuned-kde4-en-to-fr | hwang2006 | "2024-01-14T09:02:17Z" | 120 | 0 | transformers | [
"transformers",
"safetensors",
"marian",
"text2text-generation",
"tanslation",
"generated_from_trainer",
"dataset:kde4",
"base_model:Helsinki-NLP/opus-mt-en-fr",
"base_model:finetune:Helsinki-NLP/opus-mt-en-fr",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | "2024-01-14T08:20:58Z" | ---
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-en-fr
tags:
- tanslation
- generated_from_trainer
datasets:
- kde4
metrics:
- bleu
model-index:
- name: marian-finetuned-kde4-en-to-fr
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: kde4
type: kde4
config: en-fr
split: train
args: en-fr
metrics:
- name: Bleu
type: bleu
value: 52.948035826652756
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8556
- Bleu: 52.9480
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.1
- Datasets 2.16.1
- Tokenizers 0.15.0
|
damgomz/ft_32_7e6_base_x12 | damgomz | "2024-06-23T21:11:59Z" | 8 | 0 | transformers | [
"transformers",
"safetensors",
"albert",
"text-classification",
"en",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | "2024-06-23T10:51:20Z" | ---
language: en
tags:
- text-classification
pipeline_tag: text-classification
widget:
- text: GEPS Techno is the pioneer of hybridization of renewable energies at sea.
We imagine, design and commercialize innovative off-grid systems that aim to generate
power at sea, stabilize and collect data. The success of our low power platforms
WAVEPEAL enabled us to scale-up the device up to WAVEGEM, the 150-kW capacity
platform.
---
## Environmental Impact (CODE CARBON DEFAULT)
| Metric | Value |
|--------------------------|---------------------------------|
| Duration (in seconds) | [More Information Needed] |
| Emissions (Co2eq in kg) | [More Information Needed] |
| CPU power (W) | [NO CPU] |
| GPU power (W) | [No GPU] |
| RAM power (W) | [More Information Needed] |
| CPU energy (kWh) | [No CPU] |
| GPU energy (kWh) | [No GPU] |
| RAM energy (kWh) | [More Information Needed] |
| Consumed energy (kWh) | [More Information Needed] |
| Country name | [More Information Needed] |
| Cloud provider | [No Cloud] |
| Cloud region | [No Cloud] |
| CPU count | [No CPU] |
| CPU model | [No CPU] |
| GPU count | [No GPU] |
| GPU model | [No GPU] |
## Environmental Impact (for one core)
| Metric | Value |
|--------------------------|---------------------------------|
| CPU energy (kWh) | [No CPU] |
| Emissions (Co2eq in kg) | [More Information Needed] |
## Note
19 juin 2024
## My Config
| Config | Value |
|--------------------------|-----------------|
| checkpoint | albert-base-v2 |
| model_name | ft_32_7e6_base_x12 |
| sequence_length | 400 |
| num_epoch | 6 |
| learning_rate | 7e-06 |
| batch_size | 32 |
| weight_decay | 0.0 |
| warm_up_prop | 0.0 |
| drop_out_prob | 0.1 |
| packing_length | 100 |
| train_test_split | 0.2 |
| num_steps | 29328 |
## Training and Testing steps
Epoch | Train Loss | Test Loss | F-beta Score
---|---|---|---
| 0 | 0.000000 | 0.698241 | 0.343033 |
| 1 | 0.388068 | 0.293261 | 0.883665 |
| 2 | 0.249783 | 0.291608 | 0.910089 |
| 3 | 0.199442 | 0.224127 | 0.914403 |
| 4 | 0.175401 | 0.235763 | 0.932895 |
| 5 | 0.149710 | 0.254013 | 0.899420 |
| 6 | 0.121423 | 0.259248 | 0.916229 |
|
drferpa/panita-base-model-llama2-7b-v3 | drferpa | "2024-05-31T18:05:14Z" | 0 | 0 | null | [
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:finetune:meta-llama/Llama-2-7b-hf",
"endpoints_compatible",
"region:us"
] | null | "2024-01-21T19:35:01Z" | ---
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
model-index:
- name: panita-base-model-llama2-7b-v3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# panita-base-model-llama2-7b-v3
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.34.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.1
|
mlc-ai/WizardMath-13B-V1.0-q4f16_1-MLC | mlc-ai | "2024-07-11T15:31:57Z" | 2 | 0 | mlc-llm | [
"mlc-llm",
"web-llm",
"region:us"
] | null | "2023-12-17T20:55:48Z" | ---
library_name: mlc-llm
base_model: WizardLMTeam/WizardMath-13B-V1.0
tags:
- mlc-llm
- web-llm
---
# WizardMath-13B-V1.0-q4f16_1-MLC
This is the [WizardMath-13B-V1.0](https://huggingface.co/WizardLMTeam/WizardMath-13B-V1.0) model in MLC format `q4f16_1`.
The model can be used for projects [MLC-LLM](https://github.com/mlc-ai/mlc-llm) and [WebLLM](https://github.com/mlc-ai/web-llm).
## Example Usage
Here are some examples of using this model in MLC LLM.
Before running the examples, please install MLC LLM by following the [installation documentation](https://llm.mlc.ai/docs/install/mlc_llm.html#install-mlc-packages).
### Chat
In command line, run
```bash
mlc_llm chat HF://mlc-ai/WizardMath-13B-V1.0-q4f16_1-MLC
```
### REST Server
In command line, run
```bash
mlc_llm serve HF://mlc-ai/WizardMath-13B-V1.0-q4f16_1-MLC
```
### Python API
```python
from mlc_llm import MLCEngine
# Create engine
model = "HF://mlc-ai/WizardMath-13B-V1.0-q4f16_1-MLC"
engine = MLCEngine(model)
# Run chat completion in OpenAI API.
for response in engine.chat.completions.create(
messages=[{"role": "user", "content": "What is the meaning of life?"}],
model=model,
stream=True,
):
for choice in response.choices:
print(choice.delta.content, end="", flush=True)
print("\n")
engine.terminate()
```
## Documentation
For more information on MLC LLM project, please visit our [documentation](https://llm.mlc.ai/docs/) and [GitHub repo](http://github.com/mlc-ai/mlc-llm).
|
aliakyurek/a2c-PandaReachDense-v2 | aliakyurek | "2023-08-23T22:05:32Z" | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"PandaReachDense-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"arxiv:2106.13687",
"model-index",
"region:us"
] | reinforcement-learning | "2023-05-24T11:18:50Z" | ---
library_name: stable-baselines3
tags:
- PandaReachDense-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v2
type: PandaReachDense-v2
metrics:
- type: mean_reward
value: -1.05 +/- 0.23
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
Panda Gym environments: [arxiv.org/abs/2106.13687](https://arxiv.org/abs/2106.13687) |
lesso/37db12d5-be54-4a89-ab94-e30b2eb8e997 | lesso | "2025-02-05T18:12:47Z" | 6 | 0 | peft | [
"peft",
"safetensors",
"dbrx",
"axolotl",
"generated_from_trainer",
"base_model:katuni4ka/tiny-random-dbrx",
"base_model:adapter:katuni4ka/tiny-random-dbrx",
"region:us"
] | null | "2025-02-05T17:58:11Z" | ---
library_name: peft
base_model: katuni4ka/tiny-random-dbrx
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 37db12d5-be54-4a89-ab94-e30b2eb8e997
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: katuni4ka/tiny-random-dbrx
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 0a30047102b434d7_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0a30047102b434d7_train_data.json
type:
field_instruction: query
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/37db12d5-be54-4a89-ab94-e30b2eb8e997
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/0a30047102b434d7_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0be2cc61-00d1-4153-9960-910acde865cc
wandb_project: new-03
wandb_run: your_name
wandb_runid: 0be2cc61-00d1-4153-9960-910acde865cc
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 37db12d5-be54-4a89-ab94-e30b2eb8e997
This model is a fine-tuned version of [katuni4ka/tiny-random-dbrx](https://huggingface.co/katuni4ka/tiny-random-dbrx) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 11.5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 23.0 | 0.0000 | 1 | 11.5 |
| 23.0 | 0.0018 | 50 | 11.5 |
| 23.0 | 0.0036 | 100 | 11.5 |
| 23.0 | 0.0055 | 150 | 11.5 |
| 23.0 | 0.0073 | 200 | 11.5 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
mradermacher/argonium-abs-7B-4x-GGUF | mradermacher | "2025-01-13T18:56:18Z" | 298 | 0 | transformers | [
"transformers",
"gguf",
"en",
"endpoints_compatible",
"region:us",
"conversational"
] | null | "2025-01-13T17:52:12Z" | ---
base_model: Stevens/argonium-abs-7B-4x
language:
- en
library_name: transformers
quantized_by: mradermacher
tags: []
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/Stevens/argonium-abs-7B-4x
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/argonium-abs-7B-4x-GGUF/resolve/main/argonium-abs-7B-4x.Q2_K.gguf) | Q2_K | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/argonium-abs-7B-4x-GGUF/resolve/main/argonium-abs-7B-4x.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
| [GGUF](https://huggingface.co/mradermacher/argonium-abs-7B-4x-GGUF/resolve/main/argonium-abs-7B-4x.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/argonium-abs-7B-4x-GGUF/resolve/main/argonium-abs-7B-4x.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/argonium-abs-7B-4x-GGUF/resolve/main/argonium-abs-7B-4x.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
| [GGUF](https://huggingface.co/mradermacher/argonium-abs-7B-4x-GGUF/resolve/main/argonium-abs-7B-4x.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/argonium-abs-7B-4x-GGUF/resolve/main/argonium-abs-7B-4x.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/argonium-abs-7B-4x-GGUF/resolve/main/argonium-abs-7B-4x.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/argonium-abs-7B-4x-GGUF/resolve/main/argonium-abs-7B-4x.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/argonium-abs-7B-4x-GGUF/resolve/main/argonium-abs-7B-4x.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/argonium-abs-7B-4x-GGUF/resolve/main/argonium-abs-7B-4x.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/argonium-abs-7B-4x-GGUF/resolve/main/argonium-abs-7B-4x.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
m-a-p/Amber-Reproduce-29.36B | m-a-p | "2024-04-01T15:24:58Z" | 6 | 0 | transformers | [
"transformers",
"safetensors",
"endpoints_compatible",
"region:us"
] | null | "2024-04-01T08:22:31Z" | **Architecture & Training Configuration:**
- *Base Model Configuration*: This variant is built upon the Llama2-7B configuration, ensuring a robust foundation that aligns with the latest advancements in model architecture.
- *Sequence Length Adaptation*: Originally processed data for a sequence length of 2048 was detokenized and re-encoded to fit a sequence length of 4096. This step follows the preprocessing strategy of Megatron-LM, enhancing our model's capacity to understand and generate more complex sequences.
- *Batch Size & Token Management*: We adopted a batch size capable of managing 4 million tokens, tailored to accommodate the increased sequence length and ensure efficient data processing.
- *Integration of GQA Technologies*: To boost training efficiency, our configuration includes the integration of Gradient Quantization and Aggregation technologies. With 32 attention heads and a group size of 4, this feature significantly enhances the model's learning and processing capabilities.
|
asas-ai/bloom_560M_4bit_qlora_xlsum | asas-ai | "2023-10-17T18:24:49Z" | 0 | 0 | null | [
"tensorboard",
"generated_from_trainer",
"base_model:asas-ai/bloom_560M_8bit",
"base_model:finetune:asas-ai/bloom_560M_8bit",
"region:us"
] | null | "2023-10-17T18:24:22Z" | ---
base_model: asas-ai/bloom_560M_8bit
tags:
- generated_from_trainer
model-index:
- name: bloom_560M_4bit_qlora_xlsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bloom_560M_4bit_qlora_xlsum
This model is a fine-tuned version of [asas-ai/bloom_560M_8bit](https://huggingface.co/asas-ai/bloom_560M_8bit) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 2200
### Training results
### Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.4.0
- Tokenizers 0.14.1
|
Helsinki-NLP/opus-mt-tl-es | Helsinki-NLP | "2023-08-16T12:06:53Z" | 136 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"marian",
"text2text-generation",
"translation",
"tl",
"es",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | "2022-03-02T23:29:04Z" | ---
language:
- tl
- es
tags:
- translation
license: apache-2.0
---
### tgl-spa
* source group: Tagalog
* target group: Spanish
* OPUS readme: [tgl-spa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/tgl-spa/README.md)
* model: transformer-align
* source language(s): tgl_Latn
* target language(s): spa
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/tgl-spa/opus-2020-06-17.zip)
* test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/tgl-spa/opus-2020-06-17.test.txt)
* test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/tgl-spa/opus-2020-06-17.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.tgl.spa | 31.6 | 0.531 |
### System Info:
- hf_name: tgl-spa
- source_languages: tgl
- target_languages: spa
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/tgl-spa/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['tl', 'es']
- src_constituents: {'tgl_Latn'}
- tgt_constituents: {'spa'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/tgl-spa/opus-2020-06-17.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/tgl-spa/opus-2020-06-17.test.txt
- src_alpha3: tgl
- tgt_alpha3: spa
- short_pair: tl-es
- chrF2_score: 0.531
- bleu: 31.6
- brevity_penalty: 0.997
- ref_len: 4327.0
- src_name: Tagalog
- tgt_name: Spanish
- train_date: 2020-06-17
- src_alpha2: tl
- tgt_alpha2: es
- prefer_old: False
- long_pair: tgl-spa
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 |
1231czx/7b_dpo_iter1_4e7_step200_non_mask | 1231czx | "2024-07-03T02:06:14Z" | 6 | 0 | transformers | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-07-03T02:03:02Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
satoshiba/test-model | satoshiba | "2023-01-31T09:27:17Z" | 3 | 0 | transformers | [
"transformers",
"tf",
"bert",
"fill-mask",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | "2023-01-31T09:26:02Z" | ---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: test-model
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# test-model
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: None
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.26.0
- TensorFlow 2.9.2
- Tokenizers 0.13.2
|
NiiCole/timesformer-base-finetuned-k400-continual-lora-ucf101-continual-lora-ucf101 | NiiCole | "2023-10-12T14:13:03Z" | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"timesformer",
"video-classification",
"generated_from_trainer",
"base_model:NiiCole/timesformer-base-finetuned-k400-continual-lora-ucf101",
"base_model:finetune:NiiCole/timesformer-base-finetuned-k400-continual-lora-ucf101",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] | video-classification | "2023-10-12T12:05:23Z" | ---
license: cc-by-nc-4.0
base_model: NiiCole/timesformer-base-finetuned-k400-continual-lora-ucf101
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: timesformer-base-finetuned-k400-continual-lora-ucf101-continual-lora-ucf101
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# timesformer-base-finetuned-k400-continual-lora-ucf101-continual-lora-ucf101
This model is a fine-tuned version of [NiiCole/timesformer-base-finetuned-k400-continual-lora-ucf101](https://huggingface.co/NiiCole/timesformer-base-finetuned-k400-continual-lora-ucf101) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8731
- Accuracy: 0.0721
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 2276
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7573 | 0.5 | 1138 | 0.6171 | 0.9349 |
| 0.2567 | 1.5 | 2276 | 0.3121 | 0.9699 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.0+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
|
Gnider/hack_rut5_6ep | Gnider | "2024-10-06T15:54:01Z" | 114 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | "2024-10-06T15:02:13Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
jeruan3/my-awesome-text-classification | jeruan3 | "2023-12-08T07:29:28Z" | 7 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | "2023-12-08T07:29:18Z" | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: my-awesome-text-classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my-awesome-text-classification
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3872
- Accuracy: 0.943
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 469 | 2.6693 | 0.7953 |
| 3.9044 | 2.0 | 938 | 1.1595 | 0.8993 |
| 1.773 | 3.0 | 1407 | 0.6113 | 0.9313 |
| 0.7834 | 4.0 | 1876 | 0.4350 | 0.9393 |
| 0.4417 | 5.0 | 2345 | 0.3872 | 0.943 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|
joe32140/ModernBERT-large-msmarco | joe32140 | "2025-01-26T00:03:26Z" | 331 | 2 | sentence-transformers | [
"sentence-transformers",
"onnx",
"safetensors",
"modernbert",
"sentence-similarity",
"feature-extraction",
"generated_from_trainer",
"dataset_size:11662655",
"loss:CachedMultipleNegativesRankingLoss",
"en",
"dataset:sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1",
"arxiv:1908.10084",
"arxiv:2101.06983",
"base_model:answerdotai/ModernBERT-large",
"base_model:finetune:answerdotai/ModernBERT-large",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | sentence-similarity | "2024-12-23T20:46:33Z" | ---
base_model: answerdotai/ModernBERT-large
base_model_relation: finetune
datasets:
- sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1
language:
- en
library_name: sentence-transformers
metrics:
- cosine_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:11662655
- loss:CachedMultipleNegativesRankingLoss
widget:
- source_sentence: what county is lyndhurst, ohio in
sentences:
- This article is about the song written by Kenneth Gamble, Leon Huff and Cary Gilbert.
For the Tina Turner song, see Don't Leave Me This Way (Tina Turner song). Don't
Leave Me This Way is a song written by Kenneth Gamble, Leon Huff and Cary Gilbert.
First charting as a hit for Harold Melvin & the Blue Notes featuring Teddy Pendergrass,
an act on Gamble & Huff's Philadelphia International label in 1975, Don't Leave
Me This Way was later a huge disco hit for Motown artist Thelma Houston in 1977.
- "Lyndhurst is a city in Cuyahoga County, Ohio, United States. The population was\
\ 14,001 at the 2010 census. Lyndhurst is located in northeastern Ohio, and is\
\ a suburb of Cleveland. A small part of Lyndhurst was originally part of Mayfield\
\ Township. It used to be called Euclidville before Lyndhurst was chosen. Lyndhurst\
\ is located at 41°31â\x80²17â\x80³N 81°29â\x80²25â\x80³W / 41.52139°N 81.49028°W\
\ / 41.52139; -81.49028 (41.521352, -81.490141)."
- Welcome to Trumbull County... Trumbull County, the county seat, located in Warren,
Ohio, consists of a combination of both urban and rural communities situated in
the northeast corner of Ohio. It is situated roughly between the Youngstown, Cleveland
and Akron corridors.
- source_sentence: who founded the american graphophone company
sentences:
- In 1886, Graham Bell and Charles Sumner Tainter founded the American Graphophone
Company to distribute and sell graphophones in the US and Canada under license
from the Volta Graphophone Company. In 1890, the American Graphophone Company
stopped production of new phonographs due to sagging orders.
- ShelfGenie How much does a ShelfGenie franchise cost? ShelfGenie has a franchise
fee of up to $45,000, with a total initial investment range of $70,100 to $107,750.
Local ShelfGenie franchise opportunities. ShelfGenie is looking to grow in a number
of cities around the country. To find out if there's a franchise opportunity in
your city, unlock more information.
- "A+E Networks. The technology that made the modern music business possible came\
\ into existence in the New Jersey laboratory where Thomas Alva Edison created\
\ the first device to both record sound and play it back. He was awarded U.S.\
\ Patent No. 200,521 for his inventionâ\x80\x93the phonographâ\x80\x93on this\
\ day in 1878."
- source_sentence: is housekeeping camp flooded?
sentences:
- 'What is the importance of housekeeping at work? A: Workplace housekeeping promotes
sanitation, safety, organization and productivity. It also boosts morale. Daily
housekeeping maintenance keeps the workplac... Full Answer >'
- The back patio area of a cabin is partially submerged in flood water at Housekeeping
Camp on Monday, Jan. 9, 2017, in Yosemite National Park. The Merced River, swollen
with storm runoff, crested at 12.7 feet at 4 a.m. SILVIA FLORES sflores@fresnobee.com.
- "1 Bake for 8 minutes, then rotate the pan and check the underside of the bagels.\
\ 2 If theyâ\x80\x99re getting too dark, place another pan under the baking sheet.\
\ ( 3 Doubling the pan will insulate the first baking sheet.) Bake for another\
\ 8 to 12 minutes, until the bagels are a golden brown. 4 13."
- source_sentence: causes for infection in the nerve of tooth
sentences:
- If a cavity is causing the toothache, your dentist will fill the cavity or possibly
extract the tooth, if necessary. A root canal might be needed if the cause of
the toothache is determined to be an infection of the tooth's nerve. Bacteria
that have worked their way into the inner aspects of the tooth cause such an infection.
An antibiotic may be prescribed if there is fever or swelling of the jaw.
- "According to Article III, Section 1 of the Constitution, judges and justices\
\ of the Judicial Branch serve during good behavior.. This means they are appointed\
\ for life, unles â\x80¦ s they are impeached and removed from office. + 50 others\
\ found this useful.he term length for members of the House are two years and\
\ a staggering six years for members of the Senate."
- Inflamed or infected pulp (pulpitis) most often causes a toothache. To relieve
the pain and prevent further complications, the tooth may be extracted (surgically
removed) or saved by root canal treatment.
- source_sentence: what county is hayden in
sentences:
- Normally, the Lead Agency is the agency with general governmental powers such
as a city or a county. Agencies with limited powers or districts that provide
a public service/utility such as a recreation and park district will tend to be
a Responsible Agency.
- According to the United States Census Bureau, the city has a total area of 9.61
square miles (24.89 km2), of which 9.60 square miles (24.86 km2) is land and 0.01
square miles (0.03 km2) is water. It lies at the southwestern end of Hayden Lake,
and the elevation of the city is 2,287 feet (697 m) above sea level. Hayden is
located on U.S. Route 95 at the junction of Route 41. It is also four miles (6
km) north of Interstate 90 and Coeur d'Alene. The Coeur d'Alene airport is northwest
of Hayden.
- Hayden is a city in Kootenai County, Idaho, United States. Located in the northern
portion of the state, just north of Coeur d'Alene, its population was 13,294 at
the 2010 census.
model-index:
- name: SentenceTransformer based on answerdotai/ModernBERT-large
results:
- task:
type: triplet
name: Triplet
dataset:
name: msmarco co condenser dev
type: msmarco-co-condenser-dev
metrics:
- type: cosine_accuracy
value: 0.994
name: Cosine Accuracy
- task:
type: retrieval
dataset:
name: SCIDOCS
type: SCIDOCS
split: test
metrics:
- type: ndcg@10
value: 0.15789
- task:
type: retrieval
dataset:
name: FiQA2018
type: FiQA2018
split: test
metrics:
- type: ndcg@10
value: 0.33974
- task:
type: retrieval
dataset:
name: HotpotQA
type: HotpotQA
split: test
metrics:
- type: ndcg@10
value: 0.51818
- task:
type: retrieval
dataset:
name: ArguAna
type: ArguAna
split: test
metrics:
- type: ndcg@10
value: 0.47797
- task:
type: retrieval
dataset:
name: NFCorpus
type: NFCorpus
split: test
metrics:
- type: ndcg@10
value: 0.28443
- task:
type: retrieval
dataset:
name: SciFact
type: SciFact
split: test
metrics:
- type: ndcg@10
value: 0.60626
- task:
type: retrieval
dataset:
name: TRECCOVID
type: TRECCOVID
split: test
metrics:
- type: ndcg@10
value: 0.77495
---
# SentenceTransformer based on answerdotai/ModernBERT-large
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on the [msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
I finetune ModernBERT-base using script from offical repo [train_st.py](https://github.com/AnswerDotAI/ModernBERT/blob/main/examples/train_st.py) on a RTX 4090 GPU with the only change of setting mini-batch size of `CachedMultipleNegativesRankingLoss` to 64. Training for 1 epoch takes less than 2 hours.
The mini-batch size of GradCache should not change model performnace, but the finetuned model performs better than that recorded in the paper.
Training logs can be found here: https://api.wandb.ai/links/joe32140/ekuauaao.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) <!-- at revision f87846cf8be76fceb18718f0245d18c8e6571215 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("joe32140/ModernBERT-large-msmarco")
# Run inference
sentences = [
'what county is hayden in',
"Hayden is a city in Kootenai County, Idaho, United States. Located in the northern portion of the state, just north of Coeur d'Alene, its population was 13,294 at the 2010 census.",
"According to the United States Census Bureau, the city has a total area of 9.61 square miles (24.89 km2), of which 9.60 square miles (24.86 km2) is land and 0.01 square miles (0.03 km2) is water. It lies at the southwestern end of Hayden Lake, and the elevation of the city is 2,287 feet (697 m) above sea level. Hayden is located on U.S. Route 95 at the junction of Route 41. It is also four miles (6 km) north of Interstate 90 and Coeur d'Alene. The Coeur d'Alene airport is northwest of Hayden.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Dataset: `msmarco-co-condenser-dev`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:----------|
| **cosine_accuracy** | **0.994** |
#### Retrieval tasks compared to original numbers in the paper
| | ModernBERT-base | ModernBERT-base (ours) | ModernBERT-large | ModernBERT-large (ours) |
|:------------------|------------------|-------------------------|-------------------|--------------------------|
| NFCorpus | 23.7 | 26.66 | 26.2 | 28.44 |
| SciFact | 57.0 | 61.64 | 60.4 | 63.66 |
| TREC-Covid | 72.1 | 71.43 | 74.1 | 77.49 |
| FiQA | 28.8 | 30.73 | 33.1 | 34.35 |
| ArguAna | 35.7 | 46.38 | 38.2 | 47.79 |
| SciDocs | 12.5 | 13.67 | 13.8 | 15.78 |
| FEVER | 59.9 | 65.7 | 62.7 | 68.2 |
| Climate-FEVER | 23.6 | 22.6 | 20.5 | 22.9 |
| MLDR - OOD | 27.4 | 30.58 | 34.3 | 38.99 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1
* Dataset: [msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1) at [84ed2d3](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1/tree/84ed2d35626f617d890bd493b4d6db69a741e0e2)
* Size: 11,662,655 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 9.26 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 79.14 tokens</li><li>max: 222 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 80.09 tokens</li><li>max: 436 tokens</li></ul> |
* Samples:
| query | positive | negative |
|:---------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what is the meaning of menu planning</code> | <code>Menu planning is the selection of a menu for an event. Such as picking out the dinner for your wedding or even a meal at a Birthday Party. Menu planning is when you are preparing a calendar of meals and you have to sit down and decide what meat and veggies you want to serve on each certain day.</code> | <code>Menu Costs. In economics, a menu cost is the cost to a firm resulting from changing its prices. The name stems from the cost of restaurants literally printing new menus, but economists use it to refer to the costs of changing nominal prices in general.</code> |
| <code>how old is brett butler</code> | <code>Brett Butler is 59 years old. To be more precise (and nerdy), the current age as of right now is 21564 days or (even more geeky) 517536 hours. That's a lot of hours!</code> | <code>Passed in: St. John's, Newfoundland and Labrador, Canada. Passed on: 16/07/2016. Published in the St. John's Telegram. Passed away suddenly at the Health Sciences Centre surrounded by his loving family, on July 16, 2016 Robert (Bobby) Joseph Butler, age 52 years. Predeceased by his special aunt Geri Murrin and uncle Mike Mchugh; grandparents Joe and Margaret Murrin and Jack and Theresa Butler.</code> |
| <code>when was the last navajo treaty sign?</code> | <code>In Executive Session, Senate of the United States, July 25, 1868. Resolved, (two-thirds of the senators present concurring,) That the Senate advise and consent to the ratification of the treaty between the United States and the Navajo Indians, concluded at Fort Sumner, New Mexico, on the first day of June, 1868.</code> | <code>Share Treaty of Greenville. The Treaty of Greenville was signed August 3, 1795, between the United States, represented by Gen. Anthony Wayne, and chiefs of the Indian tribes located in the Northwest Territory, including the Wyandots, Delawares, Shawnees, Ottawas, Miamis, and others.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1
* Dataset: [msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1) at [84ed2d3](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1/tree/84ed2d35626f617d890bd493b4d6db69a741e0e2)
* Size: 11,662,655 evaluation samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:--------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 9.2 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 80.44 tokens</li><li>max: 241 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 80.38 tokens</li><li>max: 239 tokens</li></ul> |
* Samples:
| query | positive | negative |
|:------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what county is holly springs nc in</code> | <code>Holly Springs, North Carolina. Holly Springs is a town in Wake County, North Carolina, United States. As of the 2010 census, the town population was 24,661, over 2½ times its population in 2000. Contents.</code> | <code>The Mt. Holly Springs Park & Resort. One of the numerous trolley routes that carried people around the county at the turn of the century was the Carlisle & Mt. Holly Railway Company. The âHolly Trolleyâ as it came to be known was put into service by Patricio Russo and made its first run on May 14, 1901.</code> |
| <code>how long does nyquil stay in your system</code> | <code>In order to understand exactly how long Nyquil lasts, it is absolutely vital to learn about the various ingredients in the drug. One of the ingredients found in Nyquil is Doxylamine, which is an antihistamine. This specific medication has a biological half-life or 6 to 12 hours. With this in mind, it is possible for the drug to remain in the system for a period of 12 to 24 hours. It should be known that the specifics will depend on a wide variety of different factors, including your age and metabolism.</code> | <code>I confirmed that NyQuil is about 10% alcohol, a higher content than most domestic beers. When I asked about the relatively high proof, I was told that the alcohol dilutes the active ingredients. The alcohol free version is there for customers with addiction issues.. also found that in that version there is twice the amount of DXM. When I asked if I could speak to a chemist or scientist, I was told they didn't have anyone who fit that description there. Itâs been eight years since I kicked NyQuil. I've been sober from alcohol for four years.</code> |
| <code>what are mineral water</code> | <code>1 Mineral water â water from a mineral spring that contains various minerals, such as salts and sulfur compounds. 2 It comes from a source tapped at one or more bore holes or spring, and originates from a geologically and physically protected underground water source. Mineral water â water from a mineral spring that contains various minerals, such as salts and sulfur compounds. 2 It comes from a source tapped at one or more bore holes or spring, and originates from a geologically and physically protected underground water source.</code> | <code>Minerals for Your Body. Drinking mineral water is beneficial to health and well-being. But it is not only the amount of water you drink that is important-what the water contains is even more essential.inerals for Your Body. Drinking mineral water is beneficial to health and well-being. But it is not only the amount of water you drink that is important-what the water contains is even more essential.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 512
- `per_device_eval_batch_size`: 512
- `learning_rate`: 0.0001
- `num_train_epochs`: 1
- `warmup_ratio`: 0.05
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 512
- `per_device_eval_batch_size`: 512
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0001
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | msmarco-co-condenser-dev_cosine_accuracy |
|:------:|:----:|:-------------:|:----------------------------------------:|
| 0 | 0 | - | 0.599 |
| 0.0041 | 10 | 6.0983 | - |
| 0.0082 | 20 | 4.4588 | - |
| 0.0123 | 30 | 2.2492 | - |
| 0.0164 | 40 | 0.9969 | - |
| 0.0205 | 50 | 0.5272 | - |
| 0.0246 | 60 | 0.3982 | - |
| 0.0287 | 70 | 0.3335 | - |
| 0.0328 | 80 | 0.3024 | - |
| 0.0369 | 90 | 0.2932 | - |
| 0.0410 | 100 | 0.2695 | - |
| 0.0450 | 110 | 0.2574 | - |
| 0.0491 | 120 | 0.2447 | - |
| 0.0532 | 130 | 0.2491 | - |
| 0.0573 | 140 | 0.2318 | - |
| 0.0614 | 150 | 0.2292 | - |
| 0.0655 | 160 | 0.2213 | - |
| 0.0696 | 170 | 0.218 | - |
| 0.0737 | 180 | 0.2234 | - |
| 0.0778 | 190 | 0.2066 | - |
| 0.0819 | 200 | 0.1987 | - |
| 0.0860 | 210 | 0.1978 | - |
| 0.0901 | 220 | 0.2024 | - |
| 0.0942 | 230 | 0.1959 | - |
| 0.0983 | 240 | 0.1804 | - |
| 0.1024 | 250 | 0.1868 | - |
| 0.1065 | 260 | 0.1983 | - |
| 0.1106 | 270 | 0.1641 | - |
| 0.1147 | 280 | 0.1713 | - |
| 0.1188 | 290 | 0.1726 | - |
| 0.1229 | 300 | 0.17 | - |
| 0.1269 | 310 | 0.1783 | - |
| 0.1310 | 320 | 0.1742 | - |
| 0.1351 | 330 | 0.1654 | - |
| 0.1392 | 340 | 0.1663 | - |
| 0.1433 | 350 | 0.1616 | - |
| 0.1474 | 360 | 0.157 | - |
| 0.1515 | 370 | 0.1574 | - |
| 0.1556 | 380 | 0.1529 | - |
| 0.1597 | 390 | 0.1561 | - |
| 0.1638 | 400 | 0.1435 | - |
| 0.1679 | 410 | 0.1555 | - |
| 0.1720 | 420 | 0.1455 | - |
| 0.1761 | 430 | 0.1416 | - |
| 0.1802 | 440 | 0.1407 | - |
| 0.1843 | 450 | 0.138 | - |
| 0.1884 | 460 | 0.1387 | - |
| 0.1925 | 470 | 0.1499 | - |
| 0.1966 | 480 | 0.1372 | - |
| 0.2007 | 490 | 0.1308 | - |
| 0.2048 | 500 | 0.1367 | - |
| 0.2088 | 510 | 0.1324 | - |
| 0.2129 | 520 | 0.1317 | - |
| 0.2170 | 530 | 0.1263 | - |
| 0.2211 | 540 | 0.1209 | - |
| 0.2252 | 550 | 0.1201 | - |
| 0.2293 | 560 | 0.1213 | - |
| 0.2334 | 570 | 0.1329 | - |
| 0.2375 | 580 | 0.1207 | - |
| 0.2416 | 590 | 0.1211 | - |
| 0.2457 | 600 | 0.1164 | - |
| 0.2498 | 610 | 0.1292 | - |
| 0.2539 | 620 | 0.1223 | - |
| 0.2580 | 630 | 0.1237 | - |
| 0.2621 | 640 | 0.1088 | - |
| 0.2662 | 650 | 0.1196 | - |
| 0.2703 | 660 | 0.1209 | - |
| 0.2744 | 670 | 0.1155 | - |
| 0.2785 | 680 | 0.1101 | - |
| 0.2826 | 690 | 0.1127 | - |
| 0.2867 | 700 | 0.1082 | - |
| 0.2907 | 710 | 0.1083 | - |
| 0.2948 | 720 | 0.1132 | - |
| 0.2989 | 730 | 0.1121 | - |
| 0.3030 | 740 | 0.1146 | - |
| 0.3071 | 750 | 0.1088 | - |
| 0.3112 | 760 | 0.0982 | - |
| 0.3153 | 770 | 0.0952 | - |
| 0.3194 | 780 | 0.1034 | - |
| 0.3235 | 790 | 0.1017 | - |
| 0.3276 | 800 | 0.1016 | - |
| 0.3317 | 810 | 0.1054 | - |
| 0.3358 | 820 | 0.1003 | - |
| 0.3399 | 830 | 0.0932 | - |
| 0.3440 | 840 | 0.0997 | - |
| 0.3481 | 850 | 0.0921 | - |
| 0.3522 | 860 | 0.0958 | - |
| 0.3563 | 870 | 0.0973 | - |
| 0.3604 | 880 | 0.0931 | - |
| 0.3645 | 890 | 0.0964 | - |
| 0.3686 | 900 | 0.0982 | - |
| 0.3726 | 910 | 0.0908 | - |
| 0.3767 | 920 | 0.0917 | - |
| 0.3808 | 930 | 0.0857 | - |
| 0.3849 | 940 | 0.0925 | - |
| 0.3890 | 950 | 0.0915 | - |
| 0.3931 | 960 | 0.089 | - |
| 0.3972 | 970 | 0.0876 | - |
| 0.4013 | 980 | 0.0959 | - |
| 0.4054 | 990 | 0.0879 | - |
| 0.4095 | 1000 | 0.0883 | - |
| 0.4136 | 1010 | 0.0824 | - |
| 0.4177 | 1020 | 0.0897 | - |
| 0.4218 | 1030 | 0.0954 | - |
| 0.4259 | 1040 | 0.0815 | - |
| 0.4300 | 1050 | 0.0806 | - |
| 0.4341 | 1060 | 0.0918 | - |
| 0.4382 | 1070 | 0.0851 | - |
| 0.4423 | 1080 | 0.0888 | - |
| 0.4464 | 1090 | 0.0863 | - |
| 0.4505 | 1100 | 0.0856 | - |
| 0.4545 | 1110 | 0.0809 | - |
| 0.4586 | 1120 | 0.085 | - |
| 0.4627 | 1130 | 0.0756 | - |
| 0.4668 | 1140 | 0.0836 | - |
| 0.4709 | 1150 | 0.0815 | - |
| 0.4750 | 1160 | 0.084 | - |
| 0.4791 | 1170 | 0.0751 | - |
| 0.4832 | 1180 | 0.0794 | - |
| 0.4873 | 1190 | 0.0844 | - |
| 0.4914 | 1200 | 0.0835 | - |
| 0.4955 | 1210 | 0.0798 | - |
| 0.4996 | 1220 | 0.0825 | - |
| 0.5037 | 1230 | 0.0796 | - |
| 0.5078 | 1240 | 0.0758 | - |
| 0.5119 | 1250 | 0.0765 | - |
| 0.5160 | 1260 | 0.0806 | - |
| 0.5201 | 1270 | 0.072 | - |
| 0.5242 | 1280 | 0.0775 | - |
| 0.5283 | 1290 | 0.076 | - |
| 0.5324 | 1300 | 0.0767 | - |
| 0.5364 | 1310 | 0.0782 | - |
| 0.5405 | 1320 | 0.07 | - |
| 0.5446 | 1330 | 0.0724 | - |
| 0.5487 | 1340 | 0.0703 | - |
| 0.5528 | 1350 | 0.072 | - |
| 0.5569 | 1360 | 0.0763 | - |
| 0.5610 | 1370 | 0.0703 | - |
| 0.5651 | 1380 | 0.0688 | - |
| 0.5692 | 1390 | 0.0703 | - |
| 0.5733 | 1400 | 0.0659 | - |
| 0.5774 | 1410 | 0.0688 | - |
| 0.5815 | 1420 | 0.0713 | - |
| 0.5856 | 1430 | 0.0722 | - |
| 0.5897 | 1440 | 0.0682 | - |
| 0.5938 | 1450 | 0.07 | - |
| 0.5979 | 1460 | 0.0649 | - |
| 0.6020 | 1470 | 0.0659 | - |
| 0.6061 | 1480 | 0.0675 | - |
| 0.6102 | 1490 | 0.0629 | - |
| 0.6143 | 1500 | 0.0683 | - |
| 0.6183 | 1510 | 0.0687 | - |
| 0.6224 | 1520 | 0.0724 | - |
| 0.6265 | 1530 | 0.0638 | - |
| 0.6306 | 1540 | 0.0709 | - |
| 0.6347 | 1550 | 0.064 | - |
| 0.6388 | 1560 | 0.0646 | - |
| 0.6429 | 1570 | 0.0673 | - |
| 0.6470 | 1580 | 0.0607 | - |
| 0.6511 | 1590 | 0.0671 | - |
| 0.6552 | 1600 | 0.0627 | - |
| 0.6593 | 1610 | 0.0644 | - |
| 0.6634 | 1620 | 0.0629 | - |
| 0.6675 | 1630 | 0.0656 | - |
| 0.6716 | 1640 | 0.0633 | - |
| 0.6757 | 1650 | 0.062 | - |
| 0.6798 | 1660 | 0.0627 | - |
| 0.6839 | 1670 | 0.0583 | - |
| 0.6880 | 1680 | 0.0612 | - |
| 0.6921 | 1690 | 0.066 | - |
| 0.6962 | 1700 | 0.0645 | - |
| 0.7002 | 1710 | 0.0599 | - |
| 0.7043 | 1720 | 0.0552 | - |
| 0.7084 | 1730 | 0.065 | - |
| 0.7125 | 1740 | 0.0614 | - |
| 0.7166 | 1750 | 0.0615 | - |
| 0.7207 | 1760 | 0.0567 | - |
| 0.7248 | 1770 | 0.0528 | - |
| 0.7289 | 1780 | 0.0541 | - |
| 0.7330 | 1790 | 0.0548 | - |
| 0.7371 | 1800 | 0.0568 | - |
| 0.7412 | 1810 | 0.053 | - |
| 0.7453 | 1820 | 0.0603 | - |
| 0.7494 | 1830 | 0.0594 | - |
| 0.7535 | 1840 | 0.0549 | - |
| 0.7576 | 1850 | 0.0601 | - |
| 0.7617 | 1860 | 0.0604 | - |
| 0.7658 | 1870 | 0.0524 | - |
| 0.7699 | 1880 | 0.057 | - |
| 0.7740 | 1890 | 0.057 | - |
| 0.7781 | 1900 | 0.0551 | - |
| 0.7821 | 1910 | 0.0574 | - |
| 0.7862 | 1920 | 0.0555 | - |
| 0.7903 | 1930 | 0.0564 | - |
| 0.7944 | 1940 | 0.052 | - |
| 0.7985 | 1950 | 0.054 | - |
| 0.8026 | 1960 | 0.0573 | - |
| 0.8067 | 1970 | 0.056 | - |
| 0.8108 | 1980 | 0.0503 | - |
| 0.8149 | 1990 | 0.0525 | - |
| 0.8190 | 2000 | 0.0505 | - |
| 0.8231 | 2010 | 0.0547 | - |
| 0.8272 | 2020 | 0.0531 | - |
| 0.8313 | 2030 | 0.0534 | - |
| 0.8354 | 2040 | 0.0542 | - |
| 0.8395 | 2050 | 0.0536 | - |
| 0.8436 | 2060 | 0.0512 | - |
| 0.8477 | 2070 | 0.0508 | - |
| 0.8518 | 2080 | 0.0517 | - |
| 0.8559 | 2090 | 0.0516 | - |
| 0.8600 | 2100 | 0.0558 | - |
| 0.8640 | 2110 | 0.0571 | - |
| 0.8681 | 2120 | 0.0536 | - |
| 0.8722 | 2130 | 0.0561 | - |
| 0.8763 | 2140 | 0.0489 | - |
| 0.8804 | 2150 | 0.0513 | - |
| 0.8845 | 2160 | 0.0455 | - |
| 0.8886 | 2170 | 0.0479 | - |
| 0.8927 | 2180 | 0.0498 | - |
| 0.8968 | 2190 | 0.0523 | - |
| 0.9009 | 2200 | 0.0513 | - |
| 0.9050 | 2210 | 0.049 | - |
| 0.9091 | 2220 | 0.0504 | - |
| 0.9132 | 2230 | 0.0462 | - |
| 0.9173 | 2240 | 0.0469 | - |
| 0.9214 | 2250 | 0.0501 | - |
| 0.9255 | 2260 | 0.046 | - |
| 0.9296 | 2270 | 0.0475 | - |
| 0.9337 | 2280 | 0.0504 | - |
| 0.9378 | 2290 | 0.0483 | - |
| 0.9419 | 2300 | 0.0536 | - |
| 0.9459 | 2310 | 0.0442 | - |
| 0.9500 | 2320 | 0.0499 | - |
| 0.9541 | 2330 | 0.0478 | - |
| 0.9582 | 2340 | 0.0499 | - |
| 0.9623 | 2350 | 0.048 | - |
| 0.9664 | 2360 | 0.0451 | - |
| 0.9705 | 2370 | 0.0501 | - |
| 0.9746 | 2380 | 0.0464 | - |
| 0.9787 | 2390 | 0.0451 | - |
| 0.9828 | 2400 | 0.0413 | - |
| 0.9869 | 2410 | 0.0478 | - |
| 0.9910 | 2420 | 0.0466 | - |
| 0.9951 | 2430 | 0.0515 | - |
| 0.9992 | 2440 | 0.0484 | - |
| 1.0 | 2442 | - | 0.994 |
</details>
### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.3.0
- Transformers: 4.48.0.dev0
- PyTorch: 2.4.0
- Accelerate: 1.2.1
- Datasets: 2.21.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CachedMultipleNegativesRankingLoss
```bibtex
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |
xgmab123/r3b-1.2 | xgmab123 | "2024-12-30T20:25:17Z" | 12 | 0 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-12-30T20:22:36Z" | ---
base_model: xgmab123/r3b-1.1
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** xgmab123
- **License:** apache-2.0
- **Finetuned from model :** xgmab123/r3b-1.1
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
sail-rvc/leafyv2 | sail-rvc | "2023-07-14T07:40:31Z" | 2 | 0 | transformers | [
"transformers",
"rvc",
"sail-rvc",
"audio-to-audio",
"endpoints_compatible",
"region:us"
] | audio-to-audio | "2023-07-14T07:39:51Z" |
---
pipeline_tag: audio-to-audio
tags:
- rvc
- sail-rvc
---
# leafyv2
## RVC Model
![banner](https://i.imgur.com/xocCjhH.jpg)
This model repo was automatically generated.
Date: 2023-07-14 07:40:31
Bot Name: juuxnscrap
Model Type: RVC
Source: https://huggingface.co/juuxn/RVCModels/
Reason: Converting into loadable format for https://github.com/chavinlo/rvc-runpod
|
zzmez/Reinforce-model1 | zzmez | "2023-01-08T10:54:22Z" | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | "2023-01-08T10:54:12Z" | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-model1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
zelk12/MT-Merge-gemma-2-9B | zelk12 | "2024-10-24T14:38:36Z" | 6 | 3 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:zelk12/MT-Merge-GMAMUI-gemma-2-9B",
"base_model:merge:zelk12/MT-Merge-GMAMUI-gemma-2-9B",
"base_model:zelk12/MT-Merge-MMB-gemma-2-9B",
"base_model:merge:zelk12/MT-Merge-MMB-gemma-2-9B",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-10-22T16:07:53Z" | ---
library_name: transformers
tags:
- mergekit
- merge
base_model:
- zelk12/MT-Merge-MMB-gemma-2-9B
- zelk12/MT-Merge-GMAMUI-gemma-2-9B
model-index:
- name: MT-Merge-gemma-2-9B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 80.35
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=zelk12/MT-Merge-gemma-2-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 44.32
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=zelk12/MT-Merge-gemma-2-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 11.93
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=zelk12/MT-Merge-gemma-2-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 13.09
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=zelk12/MT-Merge-gemma-2-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 12.1
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=zelk12/MT-Merge-gemma-2-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 37.35
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=zelk12/MT-Merge-gemma-2-9B
name: Open LLM Leaderboard
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* [zelk12/MT-Merge-MMB-gemma-2-9B](https://huggingface.co/zelk12/MT-Merge-MMB-gemma-2-9B)
* [zelk12/MT-Merge-GMAMUI-gemma-2-9B](https://huggingface.co/zelk12/MT-Merge-GMAMUI-gemma-2-9B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: zelk12/MT-Merge-MMB-gemma-2-9B
- model: zelk12/MT-Merge-GMAMUI-gemma-2-9B
merge_method: slerp
base_model: zelk12/MT-Merge-MMB-gemma-2-9B
dtype: bfloat16
parameters:
t: 0.5
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_zelk12__MT-Merge-gemma-2-9B)
| Metric |Value|
|-------------------|----:|
|Avg. |33.19|
|IFEval (0-Shot) |80.35|
|BBH (3-Shot) |44.32|
|MATH Lvl 5 (4-Shot)|11.93|
|GPQA (0-shot) |13.09|
|MuSR (0-shot) |12.10|
|MMLU-PRO (5-shot) |37.35|
|
RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf | RichardErkhov | "2024-06-27T12:25:29Z" | 971 | 0 | null | [
"gguf",
"endpoints_compatible",
"region:us",
"conversational"
] | null | "2024-06-27T12:16:14Z" | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
deepseek-coder-1.3b-chat-and-function-calling - GGUF
- Model creator: https://huggingface.co/AIGym/
- Original model: https://huggingface.co/AIGym/deepseek-coder-1.3b-chat-and-function-calling/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [deepseek-coder-1.3b-chat-and-function-calling.Q2_K.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.Q2_K.gguf) | Q2_K | 0.52GB |
| [deepseek-coder-1.3b-chat-and-function-calling.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.IQ3_XS.gguf) | IQ3_XS | 0.57GB |
| [deepseek-coder-1.3b-chat-and-function-calling.IQ3_S.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.IQ3_S.gguf) | IQ3_S | 0.6GB |
| [deepseek-coder-1.3b-chat-and-function-calling.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.Q3_K_S.gguf) | Q3_K_S | 0.6GB |
| [deepseek-coder-1.3b-chat-and-function-calling.IQ3_M.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.IQ3_M.gguf) | IQ3_M | 0.63GB |
| [deepseek-coder-1.3b-chat-and-function-calling.Q3_K.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.Q3_K.gguf) | Q3_K | 0.66GB |
| [deepseek-coder-1.3b-chat-and-function-calling.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.Q3_K_M.gguf) | Q3_K_M | 0.66GB |
| [deepseek-coder-1.3b-chat-and-function-calling.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.Q3_K_L.gguf) | Q3_K_L | 0.69GB |
| [deepseek-coder-1.3b-chat-and-function-calling.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.IQ4_XS.gguf) | IQ4_XS | 0.7GB |
| [deepseek-coder-1.3b-chat-and-function-calling.Q4_0.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.Q4_0.gguf) | Q4_0 | 0.72GB |
| [deepseek-coder-1.3b-chat-and-function-calling.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.IQ4_NL.gguf) | IQ4_NL | 0.73GB |
| [deepseek-coder-1.3b-chat-and-function-calling.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.Q4_K_S.gguf) | Q4_K_S | 0.76GB |
| [deepseek-coder-1.3b-chat-and-function-calling.Q4_K.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.Q4_K.gguf) | Q4_K | 0.81GB |
| [deepseek-coder-1.3b-chat-and-function-calling.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.Q4_K_M.gguf) | Q4_K_M | 0.81GB |
| [deepseek-coder-1.3b-chat-and-function-calling.Q4_1.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.Q4_1.gguf) | Q4_1 | 0.8GB |
| [deepseek-coder-1.3b-chat-and-function-calling.Q5_0.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.Q5_0.gguf) | Q5_0 | 0.87GB |
| [deepseek-coder-1.3b-chat-and-function-calling.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.Q5_K_S.gguf) | Q5_K_S | 0.89GB |
| [deepseek-coder-1.3b-chat-and-function-calling.Q5_K.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.Q5_K.gguf) | Q5_K | 0.93GB |
| [deepseek-coder-1.3b-chat-and-function-calling.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.Q5_K_M.gguf) | Q5_K_M | 0.93GB |
| [deepseek-coder-1.3b-chat-and-function-calling.Q5_1.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.Q5_1.gguf) | Q5_1 | 0.95GB |
| [deepseek-coder-1.3b-chat-and-function-calling.Q6_K.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.Q6_K.gguf) | Q6_K | 1.09GB |
| [deepseek-coder-1.3b-chat-and-function-calling.Q8_0.gguf](https://huggingface.co/RichardErkhov/AIGym_-_deepseek-coder-1.3b-chat-and-function-calling-gguf/blob/main/deepseek-coder-1.3b-chat-and-function-calling.Q8_0.gguf) | Q8_0 | 1.33GB |
Original model description:
---
license: apache-2.0
tags:
- finetuned
pipeline_tag: text-generation
model-index:
- name: deepseek-coder-1.3b-chat-and-function-calling
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 26.28
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-1.3b-chat-and-function-calling
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 39.27
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-1.3b-chat-and-function-calling
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 26.92
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-1.3b-chat-and-function-calling
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 43.37
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-1.3b-chat-and-function-calling
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 51.7
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-1.3b-chat-and-function-calling
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 3.41
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-1.3b-chat-and-function-calling
name: Open LLM Leaderboard
---
# deepseek-coder-1.3b-chat-and-function-calling
It was created by starting with the deepseek-coder-1.3b and training it on the open assistant dataset then training yhat on function calling. We have attached the wandb report in pdf form to view the training run at a glance.
# Reson
This model was fine tuned to allow it to work with the openai syntask and will return function when apperate.
# Templete
Us the following templete when interacting with the fine tuned model.
# Referrals
Run Pod - This is who I use to train th emodels on huggingface. If you use it we both get free crdits. - <a href="https://runpod.io?ref=kilq83n1" target="_blank" style="color: #3498db; text-decoration: none; font-weight: bold;">Visit Runpod's Website!</a>
Paypal - If you want to leave a tip, it is appecaheted. - <a href="https://paypal.me/OpenSourceTraining" target="_blank" style="color: #3498db; text-decoration: none; font-weight: bold;">Visit My Paypal!</a>
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_AIGym__deepseek-coder-1.3b-chat-and-function-calling)
| Metric |Value|
|---------------------------------|----:|
|Avg. |31.82|
|AI2 Reasoning Challenge (25-Shot)|26.28|
|HellaSwag (10-Shot) |39.27|
|MMLU (5-Shot) |26.92|
|TruthfulQA (0-shot) |43.37|
|Winogrande (5-shot) |51.70|
|GSM8k (5-shot) | 3.41|
|
tringuyen-uit/MRC_ER_XLM-base_syl_ViWikiFC | tringuyen-uit | "2024-06-13T12:48:52Z" | 124 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"question-answering",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-base",
"base_model:finetune:FacebookAI/xlm-roberta-base",
"license:mit",
"endpoints_compatible",
"region:us"
] | question-answering | "2024-06-13T10:20:12Z" | ---
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: MRC_ER_XLM-base_syl_ViWikiFC
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MRC_ER_XLM-base_syl_ViWikiFC
This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4375
- Exact Match: 0.8010
- F1: 0.8260
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:-----------:|:------:|
| 0.5246 | 1.0 | 2093 | 1.9799 | 0.7751 | 0.8080 |
| 0.4175 | 2.0 | 4186 | 1.9344 | 0.7856 | 0.8126 |
| 0.3522 | 3.0 | 6279 | 2.0761 | 0.7981 | 0.8274 |
| 0.2593 | 4.0 | 8372 | 2.3028 | 0.7990 | 0.8225 |
| 0.1676 | 5.0 | 10465 | 2.4375 | 0.8010 | 0.8260 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1
|
mnicamartins8/bert-base-uncased-with-misspellings-correction | mnicamartins8 | "2023-06-26T01:28:39Z" | 163 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | "2023-06-26T01:22:08Z" | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: bert-base-uncased-with-misspellings-correction
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-with-misspellings-correction
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2307
- Accuracy: 0.9023
- Precision: 0.9090
- Recall: 0.9023
- F1: 0.9045
- Balanced Acc: 0.8858
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|
zachhofstad/xlm-roberta-base-finetuned-panx-de | zachhofstad | "2024-11-17T19:30:18Z" | 135 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-base",
"base_model:finetune:FacebookAI/xlm-roberta-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | "2024-11-17T18:52:40Z" | ---
library_name: transformers
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1399
- F1: 0.8620
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2556 | 1.0 | 525 | 0.1498 | 0.8286 |
| 0.1305 | 2.0 | 1050 | 0.1374 | 0.8535 |
| 0.0786 | 3.0 | 1575 | 0.1399 | 0.8620 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|