|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition"""
|
|
|
|
import os
|
|
|
|
import datasets
|
|
|
|
|
|
logger = datasets.logging.get_logger(__name__)
|
|
|
|
|
|
_CITATION = """\
|
|
@inproceedings{tjong-kim-sang-de-meulder-2003-introduction,
|
|
title = "Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition",
|
|
author = "Tjong Kim Sang, Erik F. and
|
|
De Meulder, Fien",
|
|
booktitle = "Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003",
|
|
year = "2003",
|
|
url = "https://www.aclweb.org/anthology/W03-0419",
|
|
pages = "142--147",
|
|
}
|
|
"""
|
|
|
|
_DESCRIPTION = """\
|
|
The shared task of CoNLL-2003 concerns language-independent named entity recognition. We will concentrate on
|
|
four types of named entities: persons, locations, organizations and names of miscellaneous entities that do
|
|
not belong to the previous three groups.
|
|
The CoNLL-2003 shared task data files contain four columns separated by a single space. Each word has been put on
|
|
a separate line and there is an empty line after each sentence. The first item on each line is a word, the second
|
|
a part-of-speech (POS) tag, the third a syntactic chunk tag and the fourth the named entity tag. The chunk tags
|
|
and the named entity tags have the format I-TYPE which means that the word is inside a phrase of type TYPE. Only
|
|
if two phrases of the same type immediately follow each other, the first word of the second phrase will have tag
|
|
B-TYPE to show that it starts a new phrase. A word with tag O is not part of a phrase. Note the dataset uses IOB2
|
|
tagging scheme, whereas the original dataset uses IOB1.
|
|
For more details see https://www.clips.uantwerpen.be/conll2003/ner/ and https://www.aclweb.org/anthology/W03-0419
|
|
"""
|
|
|
|
_URL = "https://cdn-lfs.huggingface.co/datasets/leonadase/mycoll3/88f1f7111b6ccb1897ba06879b5a782f237755dfa48640610adedbe6ce098937"
|
|
_TRAINING_FILE = "train.txt"
|
|
_DEV_FILE = "valid.txt"
|
|
_TEST_FILE = "test.txt"
|
|
|
|
|
|
class Conll2003Config(datasets.BuilderConfig):
|
|
"""BuilderConfig for Conll2003"""
|
|
|
|
def __init__(self, **kwargs):
|
|
"""BuilderConfig forConll2003.
|
|
Args:
|
|
**kwargs: keyword arguments forwarded to super.
|
|
"""
|
|
super(Conll2003Config, self).__init__(**kwargs)
|
|
|
|
|
|
class Conll2003(datasets.GeneratorBasedBuilder):
|
|
"""Conll2003 dataset."""
|
|
|
|
BUILDER_CONFIGS = [
|
|
Conll2003Config(name="conll2003", version=datasets.Version("1.0.0"), description="Conll2003 dataset"),
|
|
]
|
|
|
|
def _info(self):
|
|
return datasets.DatasetInfo(
|
|
description=_DESCRIPTION,
|
|
features=datasets.Features(
|
|
{
|
|
"id": datasets.Value("string"),
|
|
"tokens": datasets.Sequence(datasets.Value("string")),
|
|
"pos_tags": datasets.Sequence(
|
|
datasets.features.ClassLabel(
|
|
names=[
|
|
'"',
|
|
"''",
|
|
"#",
|
|
"$",
|
|
"(",
|
|
")",
|
|
",",
|
|
".",
|
|
":",
|
|
"``",
|
|
"CC",
|
|
"CD",
|
|
"DT",
|
|
"EX",
|
|
"FW",
|
|
"IN",
|
|
"JJ",
|
|
"JJR",
|
|
"JJS",
|
|
"LS",
|
|
"MD",
|
|
"NN",
|
|
"NNP",
|
|
"NNPS",
|
|
"NNS",
|
|
"NN|SYM",
|
|
"PDT",
|
|
"POS",
|
|
"PRP",
|
|
"PRP$",
|
|
"RB",
|
|
"RBR",
|
|
"RBS",
|
|
"RP",
|
|
"SYM",
|
|
"TO",
|
|
"UH",
|
|
"VB",
|
|
"VBD",
|
|
"VBG",
|
|
"VBN",
|
|
"VBP",
|
|
"VBZ",
|
|
"WDT",
|
|
"WP",
|
|
"WP$",
|
|
"WRB",
|
|
]
|
|
)
|
|
),
|
|
"chunk_tags": datasets.Sequence(
|
|
datasets.features.ClassLabel(
|
|
names=[
|
|
"O",
|
|
"B-ADJP",
|
|
"I-ADJP",
|
|
"B-ADVP",
|
|
"I-ADVP",
|
|
"B-CONJP",
|
|
"I-CONJP",
|
|
"B-INTJ",
|
|
"I-INTJ",
|
|
"B-LST",
|
|
"I-LST",
|
|
"B-NP",
|
|
"I-NP",
|
|
"B-PP",
|
|
"I-PP",
|
|
"B-PRT",
|
|
"I-PRT",
|
|
"B-SBAR",
|
|
"I-SBAR",
|
|
"B-UCP",
|
|
"I-UCP",
|
|
"B-VP",
|
|
"I-VP",
|
|
]
|
|
)
|
|
),
|
|
"ner_tags": datasets.Sequence(
|
|
datasets.features.ClassLabel(
|
|
names=[
|
|
"O",
|
|
"B-PER",
|
|
"I-PER",
|
|
"B-ORG",
|
|
"I-ORG",
|
|
"B-LOC",
|
|
"I-LOC",
|
|
"B-MISC",
|
|
"I-MISC",
|
|
]
|
|
)
|
|
),
|
|
}
|
|
),
|
|
supervised_keys=None,
|
|
homepage="https://www.aclweb.org/anthology/W03-0419/",
|
|
citation=_CITATION,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
"""Returns SplitGenerators."""
|
|
downloaded_file = dl_manager.download_and_extract(_URL)
|
|
data_files = {
|
|
"train": os.path.join(downloaded_file, _TRAINING_FILE),
|
|
"dev": os.path.join(downloaded_file, _DEV_FILE),
|
|
"test": os.path.join(downloaded_file, _TEST_FILE),
|
|
}
|
|
|
|
return [
|
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
|
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}),
|
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}),
|
|
]
|
|
|
|
def _generate_examples(self, filepath):
|
|
logger.info("⏳ Generating examples from = %s", filepath)
|
|
with open(filepath, encoding="utf-8") as f:
|
|
guid = 0
|
|
tokens = []
|
|
pos_tags = []
|
|
chunk_tags = []
|
|
ner_tags = []
|
|
for line in f:
|
|
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
|
|
if tokens:
|
|
yield guid, {
|
|
"id": str(guid),
|
|
"tokens": tokens,
|
|
"pos_tags": pos_tags,
|
|
"chunk_tags": chunk_tags,
|
|
"ner_tags": ner_tags,
|
|
}
|
|
guid += 1
|
|
tokens = []
|
|
pos_tags = []
|
|
chunk_tags = []
|
|
ner_tags = []
|
|
else:
|
|
|
|
splits = line.split(" ")
|
|
tokens.append(splits[0])
|
|
pos_tags.append(splits[1])
|
|
chunk_tags.append(splits[2])
|
|
ner_tags.append(splits[3].rstrip())
|
|
|
|
yield guid, {
|
|
"id": str(guid),
|
|
"tokens": tokens,
|
|
"pos_tags": pos_tags,
|
|
"chunk_tags": chunk_tags,
|
|
"ner_tags": ner_tags,
|
|
} |