|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition""" |
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{tjong-kim-sang-de-meulder-2003-introduction, |
|
title = "Introduction to the Fault_Detection_Ner Task: Language-Independent Named Entity Recognition", |
|
author = "Tian Jie", |
|
year = "2022" |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
用于故障诊断领域相关知识的命名实体识别语料 |
|
""" |
|
|
|
|
|
|
|
_URL = "https://huggingface.co/datasets/leonadase/fdner/resolve/main/fdner11.zip" |
|
_TRAINING_FILE = "train.txt" |
|
_DEV_FILE = "valid.txt" |
|
_TEST_FILE = "test.txt" |
|
|
|
|
|
class fdnerConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for fdNer""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for fdNer. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
logger.info("Generating examples from 1") |
|
super(fdnerConfig, self).__init__(**kwargs) |
|
|
|
|
|
class fdner(datasets.GeneratorBasedBuilder): |
|
"""fdNer dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
fdnerConfig(name="fdner", version=datasets.Version("1.0.0"), description="fdner dataset"), |
|
] |
|
|
|
def _info(self): |
|
logger.info("Generating examples from 1") |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"O", |
|
"B-EN", |
|
"I-EN", |
|
"B-STRUC", |
|
"I-STRUC", |
|
"B-CHA", |
|
"I-CHA", |
|
"B-KIND", |
|
"I-KIND", |
|
"B-ADV", |
|
"I-ADV", |
|
"B-DISA", |
|
"I-DISA", |
|
"B-METH", |
|
"I-METH", |
|
"B-NUM", |
|
"I-NUM", |
|
"B-PRO", |
|
"I-PRO", |
|
"B-THE", |
|
"I-THE", |
|
"B-DEF", |
|
"I-DEF", |
|
"B-FUC", |
|
"I-FUC", |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
logger.info("Generating examples from 2") |
|
"""Returns SplitGenerators.""" |
|
downloaded_file = dl_manager.download_and_extract(_URL) |
|
data_files = { |
|
"train": os.path.join(downloaded_file, _TRAINING_FILE), |
|
"dev": os.path.join(downloaded_file, _DEV_FILE), |
|
"test": os.path.join(downloaded_file, _TEST_FILE), |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}), |
|
] |
|
def _generate_examples(self, filepath): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
guid = 0 |
|
tokens = [] |
|
ner_tags = [] |
|
for line in f: |
|
if line.startswith("-DOCSTART-") or line == "" or line == "\n": |
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
} |
|
guid += 1 |
|
tokens = [] |
|
ner_tags = [] |
|
else: |
|
|
|
splits = line.split(" ") |
|
tokens.append(splits[0]) |
|
ner_tags.append(splits[1].rstrip()) |
|
|
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
} |
|
|