Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
shuyangcao commited on
Commit
e16adeb
1 Parent(s): ffb7021

First version

Browse files
Files changed (6) hide show
  1. .gitattributes +1 -0
  2. README.md +229 -0
  3. data/test.jsonl +3 -0
  4. data/train.jsonl +3 -0
  5. data/valid.jsonl +3 -0
  6. gov_report_qs.py +285 -0
.gitattributes CHANGED
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
35
  *.mp3 filter=lfs diff=lfs merge=lfs -text
36
  *.ogg filter=lfs diff=lfs merge=lfs -text
37
  *.wav filter=lfs diff=lfs merge=lfs -text
 
 
35
  *.mp3 filter=lfs diff=lfs merge=lfs -text
36
  *.ogg filter=lfs diff=lfs merge=lfs -text
37
  *.wav filter=lfs diff=lfs merge=lfs -text
38
+ *.jsonl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - expert-generated
6
+ languages:
7
+ - en
8
+ licenses:
9
+ - cc-by-4.0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 10K<n<100K
14
+ source_datasets:
15
+ - launch/gov_report
16
+ task_categories:
17
+ - summarization
18
+ task_ids:
19
+ - summarization
20
+ pretty_name: GovReport-QS
21
+ ---
22
+
23
+
24
+ # Dataset Card for GovReport-QS
25
+
26
+ ## Table of Contents
27
+ - [Table of Contents](#table-of-contents)
28
+ - [Dataset Description](#dataset-description)
29
+ - [Dataset Summary](#dataset-summary)
30
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
31
+ - [Languages](#languages)
32
+ - [Dataset Structure](#dataset-structure)
33
+ - [Data Instances](#data-instances)
34
+ - [Data Fields](#data-fields)
35
+ - [Data Splits](#data-splits)
36
+ - [Dataset Creation](#dataset-creation)
37
+ - [Curation Rationale](#curation-rationale)
38
+ - [Source Data](#source-data)
39
+ - [Annotations](#annotations)
40
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
41
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
42
+ - [Social Impact of Dataset](#social-impact-of-dataset)
43
+ - [Discussion of Biases](#discussion-of-biases)
44
+ - [Other Known Limitations](#other-known-limitations)
45
+ - [Additional Information](#additional-information)
46
+ - [Dataset Curators](#dataset-curators)
47
+ - [Licensing Information](#licensing-information)
48
+ - [Citation Information](#citation-information)
49
+ - [Contributions](#contributions)
50
+
51
+ ## Dataset Description
52
+
53
+ - **Homepage:** [https://gov-report-data.github.io](https://gov-report-data.github.io)
54
+ - **Repository:** [https://github.com/ShuyangCao/hibrids_summ](https://github.com/ShuyangCao/hibrids_summ)
55
+ - **Paper:** [https://aclanthology.org/2022.acl-long.58/](https://aclanthology.org/2022.acl-long.58/)
56
+ - **Leaderboard:** [Needs More Information]
57
+ - **Point of Contact:** [Needs More Information]
58
+
59
+ ### Dataset Summary
60
+
61
+ Based on the GovReport dataset, GovReport-QS additionally includes annotated question-summary hierarchies for government reports. This hierarchy proactively highlights the document structure, to further promote content engagement and comprehension.
62
+
63
+ ### Supported Tasks and Leaderboards
64
+
65
+ [More Information Needed]
66
+
67
+ ### Languages
68
+
69
+ English
70
+
71
+ ## Dataset Structure
72
+
73
+ Two configs are available:
74
+ - **paragraph** (default): paragraph-level annotated data
75
+ - **document**: aggregated paragraph-level annotated data for the same document
76
+
77
+ To use different configs, set the `name` argument of the `load_dataset` function.
78
+
79
+ ### Data Instances
80
+
81
+ #### paragraph
82
+
83
+ An example looks as follows.
84
+ ```
85
+ {
86
+ "doc_id": "GAO_123456",
87
+ "summary_paragraph_index": 2,
88
+ "document_sections": {
89
+ "title": ["test docment section 1 title", "test docment section 1.1 title"],
90
+ "paragraphs": ["test document\nsection 1 paragraphs", "test document\nsection 1.1 paragraphs"],
91
+ "depth": [1, 2]
92
+ },
93
+ "question_summary_pairs": {
94
+ "question": ["What is the test question 1?", "What is the test question 1.1?"],
95
+ "summary": ["This is the test answer 1.", "This is the test answer 1.1"],
96
+ "parent_pair_index": [-1, 0]
97
+ }
98
+ }
99
+ ```
100
+
101
+ #### document
102
+
103
+ An example looks as follows.
104
+ ```
105
+ {
106
+ "doc_id": "GAO_123456",
107
+ "document_sections": {
108
+ "title": ["test docment section 1 title", "test docment section 1.1 title"],
109
+ "paragraphs": ["test document\nsection 1 paragraphs", "test document\nsection 1.1 paragraphs"],
110
+ "depth": [1, 2],
111
+ "alignment": ["h0_title", "h0_full"]
112
+ },
113
+ "question_summary_pairs": {
114
+ "question": ["What is the test question 1?", "What is the test question 1.1?"],
115
+ "summary": ["This is the test answer 1.", "This is the test answer 1.1"],
116
+ "parent_pair_index": [-1, 0],
117
+ "summary_paragraph_index": [2, 2]
118
+ }
119
+ }
120
+ ```
121
+
122
+ ### Data Fields
123
+
124
+ #### paragraph
125
+
126
+ **Note that document_sections in this config are the sections aligned with the annotated summary paragraph.**
127
+
128
+ - `doc_id`: a `string` feature.
129
+ - `summary_paragraph_index`: a `int32` feature.
130
+ - `document_sections`: a dictionary feature containing lists of (each element corresponds to a section):
131
+ - `title`: a `string` feature.
132
+ - `paragraphs`: a of `string` feature, with `\n` separating different paragraphs.
133
+ - `depth`: a `int32` feature.
134
+ - `question_summary_pairs`: a dictionary feature containing lists of (each element corresponds to a question-summary pair):
135
+ - `question`: a `string` feature.
136
+ - `summary`: a `string` feature.
137
+ - `parent_pair_index`: a `int32` feature indicating which question-summary pair is the parent of the current pair. `-1` indicates that the current pair does not have parent.
138
+
139
+ #### document
140
+
141
+ **Note that document_sections in this config are the all sections in the document.**
142
+
143
+ - `id`: a `string` feature.
144
+ - `document_sections`: a dictionary feature containing lists of (each element corresponds to a section):
145
+ - `title`: a `string` feature.
146
+ - `paragraphs`: a of `string` feature, with `\n` separating different paragraphs.
147
+ - `depth`: a `int32` feature.
148
+ - `alignment`: a `string` feature. Whether the `full` section or the `title` of the section should be included when aligned with each annotated hierarchy. For example, `h0_full` indicates that the full section should be included for the hierarchy indexed `0`.
149
+ - `question_summary_pairs`: a dictionary feature containing lists of:
150
+ - `question`: a `string` feature.
151
+ - `summary`: a `string` feature.
152
+ - `parent_pair_index`: a `int32` feature indicating which question-summary pair is the parent of the current pair. `-1` indicates that the current pair does not have parent. Note that the indices start from `0` for pairs with the same `summary_paragraph_index`.
153
+ - `summary_paragraph_index`: a `int32` feature indicating which summary paragraph the question-summary pair is annotated for.
154
+
155
+ ### Data Splits
156
+
157
+ #### paragraph
158
+
159
+ - train: 17519
160
+ - valid: 974
161
+ - test: 973
162
+
163
+ #### document
164
+
165
+ - train: 1371
166
+ - valid: 171
167
+ - test: 172
168
+
169
+ ## Dataset Creation
170
+
171
+ ### Curation Rationale
172
+
173
+ [More Information Needed]
174
+
175
+ ### Source Data
176
+
177
+ #### Initial Data Collection and Normalization
178
+
179
+ [More Information Needed]
180
+
181
+ #### Who are the source language producers?
182
+
183
+ Editors of the Congressional Research Service and U.S. Government Accountability Office.
184
+
185
+ ### Personal and Sensitive Information
186
+
187
+ None.
188
+
189
+ ## Considerations for Using the Data
190
+
191
+ ### Social Impact of Dataset
192
+
193
+ [More Information Needed]
194
+
195
+ ### Discussion of Biases
196
+
197
+ [More Information Needed]
198
+
199
+ ### Other Known Limitations
200
+
201
+ [More Information Needed]
202
+
203
+ ## Additional Information
204
+
205
+ ### Dataset Curators
206
+
207
+ [More Information Needed]
208
+
209
+ ### Licensing Information
210
+
211
+ CC BY 4.0
212
+
213
+ ### Citation Information
214
+
215
+ ```
216
+ @inproceedings{cao-wang-2022-hibrids,
217
+ title = "{HIBRIDS}: Attention with Hierarchical Biases for Structure-aware Long Document Summarization",
218
+ author = "Cao, Shuyang and
219
+ Wang, Lu",
220
+ booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
221
+ month = may,
222
+ year = "2022",
223
+ address = "Dublin, Ireland",
224
+ publisher = "Association for Computational Linguistics",
225
+ url = "https://aclanthology.org/2022.acl-long.58",
226
+ pages = "786--807",
227
+ abstract = "Document structure is critical for efficient information consumption. However, it is challenging to encode it efficiently into the modern Transformer architecture. In this work, we present HIBRIDS, which injects Hierarchical Biases foR Incorporating Document Structure into attention score calculation. We further present a new task, hierarchical question-summary generation, for summarizing salient content in the source document into a hierarchy of questions and summaries, where each follow-up question inquires about the content of its parent question-summary pair. We also annotate a new dataset with 6,153 question-summary hierarchies labeled on government reports. Experiment results show that our model produces better question-summary hierarchies than comparisons on both hierarchy quality and content coverage, a finding also echoed by human judges. Additionally, our model improves the generation of long-form summaries from long government reports and Wikipedia articles, as measured by ROUGE scores.",
228
+ }
229
+ ```
data/test.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ae97dec4e32d519540ee140d8e3cdc22be0b139e58916e0ae0b171300b8cfcf
3
+ size 13637334
data/train.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eac7ee49967c109be5901433995818352b0d416b6db01a02583d5a6286e92c92
3
+ size 102144221
data/valid.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caa05c1d7058ada8ab9d7432543609a77c8d8f78fe45f7ee2dcb79879e9b5871
3
+ size 13362516
gov_report_qs.py ADDED
@@ -0,0 +1,285 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """GovReport: The Government Report Hierarchical Question-summary Generation Dataset."""
2
+
3
+
4
+ import json
5
+
6
+ import datasets
7
+
8
+
9
+ logger = datasets.logging.get_logger(__name__)
10
+
11
+
12
+ _CITATION = """\
13
+ @inproceedings{cao-wang-2022-hibrids,
14
+ title = "{HIBRIDS}: Attention with Hierarchical Biases for Structure-aware Long Document Summarization",
15
+ author = "Cao, Shuyang and
16
+ Wang, Lu",
17
+ booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
18
+ month = may,
19
+ year = "2022",
20
+ address = "Dublin, Ireland",
21
+ publisher = "Association for Computational Linguistics",
22
+ url = "https://aclanthology.org/2022.acl-long.58",
23
+ pages = "786--807",
24
+ abstract = "Document structure is critical for efficient information consumption. However, it is challenging to encode it efficiently into the modern Transformer architecture. In this work, we present HIBRIDS, which injects Hierarchical Biases foR Incorporating Document Structure into attention score calculation. We further present a new task, hierarchical question-summary generation, for summarizing salient content in the source document into a hierarchy of questions and summaries, where each follow-up question inquires about the content of its parent question-summary pair. We also annotate a new dataset with 6,153 question-summary hierarchies labeled on government reports. Experiment results show that our model produces better question-summary hierarchies than comparisons on both hierarchy quality and content coverage, a finding also echoed by human judges. Additionally, our model improves the generation of long-form summaries from long government reports and Wikipedia articles, as measured by ROUGE scores.",
25
+ }
26
+ """
27
+
28
+ _DESCRIPTION = """\
29
+ GovReport-QS hierarchical question-summary generation dataset.
30
+
31
+ There are two configs:
32
+ - paragraph: paragraph-level annotated data
33
+ - document: aggregated paragraph-level annotated data for the same document
34
+ """
35
+
36
+ _URL = "https://huggingface.co/datasets/shuyangcao/gov_report_qs/resolve/main/data/"
37
+ _URLS = {
38
+ "train": _URL + "train.jsonl",
39
+ "valid": _URL + "valid.jsonl",
40
+ "test": _URL + "test.jsonl",
41
+ }
42
+
43
+
44
+ def _recursive_load(section, keep_letter=False, depth=0, section_title_list=None, aligned_section_titles=None):
45
+ aligned_hierarchies = set()
46
+ alignment = set()
47
+ sections = []
48
+ if section["section_title"] != "Letter" or (section["section_title"] == "Letter" and keep_letter):
49
+ section_title = " ".join(section["section_title"].strip().split())
50
+ section_paragraphs = "\n".join([" ".join(paragraph.strip().split()) for paragraph in section["paragraphs"]])
51
+ if section_title:
52
+ section_title_list = section_title_list + (section_title,)
53
+
54
+ child_sections = []
55
+ for subsection in section["subsections"]:
56
+ child_section, child_aligned_hierarchies = _recursive_load(subsection, keep_letter, depth + 1, section_title_list, aligned_section_titles)
57
+ child_sections.extend(child_section)
58
+ aligned_hierarchies.update(child_aligned_hierarchies)
59
+
60
+ for hierarchy_id, aligned_section_title in enumerate(aligned_section_titles):
61
+ if section_title_list in aligned_section_title:
62
+ aligned_hierarchies.add(hierarchy_id)
63
+ alignment.add(f'h{hierarchy_id}_full')
64
+
65
+ for hierarchy_id in aligned_hierarchies:
66
+ if f'h{hierarchy_id}_full' not in alignment:
67
+ alignment.add(f'h{hierarchy_id}_title')
68
+
69
+ sections.append({
70
+ "title": section_title,
71
+ "paragraphs": section_paragraphs,
72
+ "depth": depth,
73
+ "alignment": " ".join(alignment),
74
+ })
75
+ sections.extend(child_sections)
76
+
77
+ else:
78
+ for subsection in section["subsections"]:
79
+ child_sections, child_aligned_hierarchies = _recursive_load(subsection, keep_letter, depth, section_title_list, aligned_section_titles)
80
+ sections.extend(child_sections)
81
+ aligned_hierarchies.update(child_aligned_hierarchies)
82
+
83
+ return sections, aligned_hierarchies
84
+
85
+
86
+ def _recursive_load_qs_pairs(qs_pair, current_id=0, parent_id=-1):
87
+ qs_pairs = []
88
+ qs_pairs.append({
89
+ "question": qs_pair["question"],
90
+ "summary": qs_pair["answer"],
91
+ "parent_pair_index": parent_id,
92
+ })
93
+ child_id = current_id + 1
94
+ for child_qs_pair in qs_pair["child_questions"]:
95
+ child_qs_pairs, current_child_id = _recursive_load_qs_pairs(child_qs_pair, child_id, current_id)
96
+ qs_pairs.extend(child_qs_pairs)
97
+ child_id = current_child_id
98
+ return qs_pairs, child_id
99
+
100
+
101
+ class GovReportQSConfig(datasets.BuilderConfig):
102
+ """BuilderConfig for GovReport."""
103
+
104
+ def __init__(self, **kwargs):
105
+ """BuilderConfig for GovReport.
106
+ Args:
107
+ **kwargs: keyword arguments forwarded to super.
108
+ """
109
+ super(GovReportQSConfig, self).__init__(**kwargs)
110
+
111
+
112
+ class GovReportQS(datasets.GeneratorBasedBuilder):
113
+ VERSION = datasets.Version("1.0.0")
114
+
115
+ DEFAULT_CONFIG_NAME = "paragraph"
116
+
117
+ BUILDER_CONFIGS = [
118
+ GovReportQSConfig(
119
+ name="paragraph",
120
+ version=VERSION,
121
+ description="paragraph-level annotated data",
122
+ ),
123
+ GovReportQSConfig(
124
+ name="document",
125
+ version=VERSION,
126
+ description="aggregated paragraph-level annotated data for the same document",
127
+ ),
128
+ ]
129
+
130
+ def _info(self):
131
+ if self.config.name == "paragraph":
132
+ features = datasets.Features(
133
+ {
134
+ "doc_id": datasets.Value("string"),
135
+ "summary_paragraph_index": datasets.Value("int32"),
136
+ "document_sections": datasets.features.Sequence(
137
+ {
138
+ "title": datasets.Value("string"),
139
+ "paragraphs": datasets.Value("string"),
140
+ "depth": datasets.Value("int32"),
141
+ }
142
+ ),
143
+ "question_summary_pairs": datasets.features.Sequence(
144
+ {
145
+ "question": datasets.Value("string"),
146
+ "summary": datasets.Value("string"),
147
+ "parent_pair_index": datasets.Value("int32"),
148
+ }
149
+ ),
150
+ }
151
+ )
152
+ elif self.config.name == "document":
153
+ features = datasets.Features(
154
+ {
155
+ "doc_id": datasets.Value("string"),
156
+ "document_sections": datasets.features.Sequence(
157
+ {
158
+ "title": datasets.Value("string"),
159
+ "paragraphs": datasets.Value("string"),
160
+ "depth": datasets.Value("int32"),
161
+ "alignment": datasets.Value("string")
162
+ }
163
+ ),
164
+ "question_summary_pairs": datasets.features.Sequence(
165
+ {
166
+ "question": datasets.Value("string"),
167
+ "summary": datasets.Value("string"),
168
+ "parent_pair_index": datasets.Value("int32"),
169
+ "summary_paragraph_index": datasets.Value("int32"),
170
+ }
171
+ ),
172
+ }
173
+ )
174
+ else:
175
+ raise ValueError("Unsupported config name {}".format(self.config.name))
176
+
177
+ return datasets.DatasetInfo(
178
+ description=_DESCRIPTION,
179
+ features=features,
180
+ supervised_keys=None,
181
+ homepage="",
182
+ citation=_CITATION,
183
+ )
184
+
185
+ def _split_generators(self, dl_manager):
186
+ downloaded_files = dl_manager.download_and_extract(_URLS)
187
+
188
+ return [
189
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
190
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["valid"]}),
191
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
192
+ ]
193
+
194
+ def _generate_examples(self, filepath):
195
+ """This function returns the examples in the raw (text) form."""
196
+ logger.info(f"generating examples from = {filepath}")
197
+
198
+ with open(filepath) as f:
199
+ key = 0
200
+ for line in f:
201
+ line = line.strip()
202
+ if not line:
203
+ continue
204
+ data = json.loads(line)
205
+
206
+ doc_id = data["id"]
207
+
208
+ annotated_hierarchies = data["annotated_hierarchies"]
209
+ aligned_section_titles = [set([tuple([" ".join(title.strip().split()) for title in section]) for section in hierarchy["aligned_sections"]]) for hierarchy in annotated_hierarchies]
210
+
211
+ if doc_id.startswith("GAO"):
212
+ document_sections = []
213
+ for lv1_section in data["report"]:
214
+ document_sections.extend(_recursive_load(lv1_section, keep_letter=False, depth=1, section_title_list=tuple(), aligned_section_titles=aligned_section_titles)[0])
215
+ elif doc_id.startswith("CRS"):
216
+ document_sections = _recursive_load(data["reports"], keep_letter=True, depth=0, section_title_list=tuple(), aligned_section_titles=aligned_section_titles)[0]
217
+ else:
218
+ raise ValueError("Invalid document id {}".format(doc_id))
219
+
220
+ annotated_qs_pairs = []
221
+ for hierarchy_id, annotated_hierarchy in enumerate(annotated_hierarchies):
222
+ summary_paragraph_index = annotated_hierarchy["paragraph_index"]
223
+
224
+ qs_pairs = []
225
+ current_id = 0
226
+ for lv1_qs_pair in annotated_hierarchy["questions"]:
227
+ child_qs_pairs, current_id = _recursive_load_qs_pairs(lv1_qs_pair, current_id=current_id, parent_id=-1)
228
+ qs_pairs.extend(child_qs_pairs)
229
+
230
+ annotated_qs_pairs.append({
231
+ "hierarchy_id": hierarchy_id,
232
+ "summary_paragraph_index": summary_paragraph_index,
233
+ "question_summary_pairs": qs_pairs,
234
+ })
235
+
236
+ if self.config.name == "paragraph":
237
+ for annotated_qs_pair in annotated_qs_pairs:
238
+ _id = f"{doc_id}_{annotated_qs_pair['summary_paragraph_index']}_{key}"
239
+
240
+ aligned_sections = []
241
+ for section in document_sections:
242
+ if f"h{annotated_qs_pair['hierarchy_id']}_full" in section["alignment"]: # both title and paragraphs
243
+ aligned_sections.append({
244
+ "title": section["title"],
245
+ "paragraphs": section["paragraphs"],
246
+ "depth": section["depth"],
247
+ })
248
+ elif f"f{annotated_qs_pair['hierarchy_id']}_title" in section["alignment"]: # only title
249
+ aligned_sections.append({
250
+ "title": section["title"],
251
+ "paragraphs": "",
252
+ "depth": section["depth"],
253
+ })
254
+
255
+ if aligned_sections:
256
+ yield _id, {
257
+ "doc_id": doc_id,
258
+ "summary_paragraph_index": annotated_qs_pair["summary_paragraph_index"],
259
+ "document_sections": aligned_sections,
260
+ "question_summary_pairs": annotated_qs_pair["question_summary_pairs"],
261
+ }
262
+ else:
263
+ print(f"{doc_id}_{key} has no aligned sections")
264
+ key += 1
265
+ elif self.config.name == "document":
266
+ _id = f"{doc_id}"
267
+
268
+ question_summary_pairs = []
269
+ for annotated_qs_pair in annotated_qs_pairs:
270
+ summary_paragraph_index = annotated_qs_pair["summary_paragraph_index"]
271
+ for qs_pair in annotated_qs_pair["question_summary_pairs"]:
272
+ question_summary_pairs.append({
273
+ "question": qs_pair["question"],
274
+ "summary": qs_pair["summary"],
275
+ "parent_pair_index": qs_pair["parent_pair_index"],
276
+ "summary_paragraph_index": summary_paragraph_index,
277
+ })
278
+
279
+ yield _id, {
280
+ "doc_id": doc_id,
281
+ "document_sections": document_sections,
282
+ "question_summary_pairs": question_summary_pairs,
283
+ }
284
+ else:
285
+ raise ValueError("Unsupported config name {}".format(self.config.name))