|
from collections import defaultdict |
|
import os |
|
import json |
|
import csv |
|
|
|
import datasets |
|
|
|
_NAME="samromur_milljon" |
|
_VERSION="1.0.0" |
|
_AUDIO_EXTENSIONS=".flac" |
|
|
|
_DESCRIPTION = """ |
|
Samrómur Milljón consists of approximately 1 million of speech recordings (967 hours) collected through the platform samromur.is; the transcripts accompanying these recordings were automatically verified using various ASR systems such as: Wav2Vec, Whisper and NeMo. |
|
""" |
|
|
|
_CITATION = """ |
|
@misc{menasamromurmilljon2023, |
|
title={Samrómur Milljón, Audio and Transcriptions}, |
|
author={Hernández Mena, Carlos Daniel and Guðnason, Jón}, |
|
publisher={Reykjavík University} |
|
year={2023}, |
|
url={https://huggingface.co/datasets/language-and-voice-lab/samromur_milljon}, |
|
} |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/language-and-voice-lab/samromur_milljon" |
|
|
|
_LICENSE = "CC-BY-4.0, See https://creativecommons.org/licenses/by/4.0/" |
|
|
|
_BASE_DATA_DIR = "corpus/" |
|
|
|
_METADATA_FEM_LT_18_YRS = os.path.join(_BASE_DATA_DIR,"files","metadata_fem_lt_18_yrs.tsv") |
|
_METADATA_FEM_18TO49_YRS = os.path.join(_BASE_DATA_DIR,"files","metadata_fem_18to49_yrs.tsv") |
|
_METADATA_FEM_GT_49_YRS = os.path.join(_BASE_DATA_DIR,"files","metadata_fem_gt_49_yrs.tsv") |
|
|
|
_METADATA_MALE_LT_18_YRS = os.path.join(_BASE_DATA_DIR,"files","metadata_male_lt_18_yrs.tsv") |
|
_METADATA_MALE_18TO49_YRS = os.path.join(_BASE_DATA_DIR,"files","metadata_male_18to49_yrs.tsv") |
|
_METADATA_MALE_GT_49_YRS = os.path.join(_BASE_DATA_DIR,"files","metadata_male_gt_49_yrs.tsv") |
|
|
|
_METADATA_OTHER = os.path.join(_BASE_DATA_DIR,"files","metadata_other.tsv") |
|
|
|
_TARS_FEM_LT_18_YRS = os.path.join(_BASE_DATA_DIR,"files","tars_fem_lt_18_yrs.paths") |
|
_TARS_FEM_18TO49_YRS = os.path.join(_BASE_DATA_DIR,"files","tars_fem_18to49_yrs.paths") |
|
_TARS_FEM_GT_49_YRS = os.path.join(_BASE_DATA_DIR,"files","tars_fem_gt_49_yrs.paths") |
|
|
|
_TARS_MALE_LT_18_YRS = os.path.join(_BASE_DATA_DIR,"files","tars_male_lt_18_yrs.paths") |
|
_TARS_MALE_18TO49_YRS = os.path.join(_BASE_DATA_DIR,"files","tars_male_18to49_yrs.paths") |
|
_TARS_MALE_GT_49_YRS = os.path.join(_BASE_DATA_DIR,"files","tars_male_gt_49_yrs.paths") |
|
|
|
_TARS_OTHER = os.path.join(_BASE_DATA_DIR,"files","tars_other.paths") |
|
|
|
class SamromurMilljonConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for The Samrómur Milljón""" |
|
|
|
def __init__(self, name, **kwargs): |
|
name=_NAME |
|
super().__init__(name=name, **kwargs) |
|
|
|
class SamromurMilljon(datasets.GeneratorBasedBuilder): |
|
"""Samrómur Milljón""" |
|
|
|
VERSION = datasets.Version(_VERSION) |
|
BUILDER_CONFIGS = [ |
|
SamromurMilljonConfig( |
|
name=_NAME, |
|
version=datasets.Version(_VERSION), |
|
) |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"audio_id": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16000), |
|
"speaker_id": datasets.Value("string"), |
|
"gender": datasets.Value("string"), |
|
"age": datasets.Value("string"), |
|
"duration": datasets.Value("float32"), |
|
"verified_with": datasets.Value("string"), |
|
"normalized_text": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
metadata_fem_lt_18_yrs=dl_manager.download_and_extract(_METADATA_FEM_LT_18_YRS) |
|
metadata_fem_18to49_yrs=dl_manager.download_and_extract(_METADATA_FEM_18TO49_YRS) |
|
metadata_fem_gt_49_yrs=dl_manager.download_and_extract(_METADATA_FEM_GT_49_YRS) |
|
|
|
metadata_male_lt_18_yrs=dl_manager.download_and_extract(_METADATA_MALE_LT_18_YRS) |
|
metadata_male_18to49_yrs=dl_manager.download_and_extract(_METADATA_MALE_18TO49_YRS) |
|
metadata_male_gt_49_yrs=dl_manager.download_and_extract(_METADATA_MALE_GT_49_YRS) |
|
|
|
metadata_other=dl_manager.download_and_extract(_METADATA_OTHER) |
|
|
|
tars_fem_lt_18_yrs=dl_manager.download_and_extract(_TARS_FEM_LT_18_YRS) |
|
tars_fem_18to49_yrs=dl_manager.download_and_extract(_TARS_FEM_18TO49_YRS) |
|
tars_fem_gt_49_yrs=dl_manager.download_and_extract(_TARS_FEM_GT_49_YRS) |
|
|
|
tars_male_lt_18_yrs=dl_manager.download_and_extract(_TARS_MALE_LT_18_YRS) |
|
tars_male_18to49_yrs=dl_manager.download_and_extract(_TARS_MALE_18TO49_YRS) |
|
tars_male_gt_49_yrs=dl_manager.download_and_extract(_TARS_MALE_GT_49_YRS) |
|
|
|
tars_other=dl_manager.download_and_extract(_TARS_OTHER) |
|
|
|
hash_tar_files=defaultdict(dict) |
|
with open(tars_fem_lt_18_yrs,'r') as f: |
|
hash_tar_files['fem_lt_18_yrs']=[path.replace('\n','') for path in f] |
|
with open(tars_fem_18to49_yrs,'r') as f: |
|
hash_tar_files['fem_18to49_yrs']=[path.replace('\n','') for path in f] |
|
with open(tars_fem_gt_49_yrs,'r') as f: |
|
hash_tar_files['fem_gt_49_yrs']=[path.replace('\n','') for path in f] |
|
|
|
with open(tars_male_lt_18_yrs,'r') as f: |
|
hash_tar_files['male_lt_18_yrs']=[path.replace('\n','') for path in f] |
|
with open(tars_male_18to49_yrs,'r') as f: |
|
hash_tar_files['male_18to49_yrs']=[path.replace('\n','') for path in f] |
|
with open(tars_male_gt_49_yrs,'r') as f: |
|
hash_tar_files['male_gt_49_yrs']=[path.replace('\n','') for path in f] |
|
|
|
with open(tars_other,'r') as f: |
|
hash_tar_files['other']=[path.replace('\n','') for path in f] |
|
|
|
hash_meta_paths={"fem_lt_18_yrs":metadata_fem_lt_18_yrs, |
|
"fem_18to49_yrs":metadata_fem_18to49_yrs, |
|
"fem_gt_49_yrs":metadata_fem_gt_49_yrs, |
|
"male_lt_18_yrs":metadata_male_lt_18_yrs, |
|
"male_18to49_yrs":metadata_male_18to49_yrs, |
|
"male_gt_49_yrs":metadata_male_gt_49_yrs, |
|
"other":metadata_other} |
|
|
|
audio_paths = dl_manager.download(hash_tar_files) |
|
|
|
splits=["fem_lt_18_yrs","fem_18to49_yrs","fem_gt_49_yrs","male_lt_18_yrs","male_18to49_yrs","male_gt_49_yrs","other"] |
|
local_extracted_audio_paths = ( |
|
dl_manager.extract(audio_paths) if not dl_manager.is_streaming else |
|
{ |
|
split:[None] * len(audio_paths[split]) for split in splits |
|
} |
|
) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name="female_lt_18_yrs", |
|
gen_kwargs={ |
|
"audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["fem_lt_18_yrs"]], |
|
"local_extracted_archives_paths": local_extracted_audio_paths["fem_lt_18_yrs"], |
|
"metadata_paths": hash_meta_paths["fem_lt_18_yrs"], |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name="female_18to49_yrs", |
|
gen_kwargs={ |
|
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["fem_18to49_yrs"]], |
|
"local_extracted_archives_paths": local_extracted_audio_paths["fem_18to49_yrs"], |
|
"metadata_paths": hash_meta_paths["fem_18to49_yrs"], |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name="female_gt_49_yrs", |
|
gen_kwargs={ |
|
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["fem_gt_49_yrs"]], |
|
"local_extracted_archives_paths": local_extracted_audio_paths["fem_gt_49_yrs"], |
|
"metadata_paths": hash_meta_paths["fem_gt_49_yrs"], |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name="male_lt_18_yrs", |
|
gen_kwargs={ |
|
"audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["male_lt_18_yrs"]], |
|
"local_extracted_archives_paths": local_extracted_audio_paths["male_lt_18_yrs"], |
|
"metadata_paths": hash_meta_paths["male_lt_18_yrs"], |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name="male_18to49_yrs", |
|
gen_kwargs={ |
|
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["male_18to49_yrs"]], |
|
"local_extracted_archives_paths": local_extracted_audio_paths["male_18to49_yrs"], |
|
"metadata_paths": hash_meta_paths["male_18to49_yrs"], |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name="male_gt_49_yrs", |
|
gen_kwargs={ |
|
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["male_gt_49_yrs"]], |
|
"local_extracted_archives_paths": local_extracted_audio_paths["male_gt_49_yrs"], |
|
"metadata_paths": hash_meta_paths["male_gt_49_yrs"], |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name="other", |
|
gen_kwargs={ |
|
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["other"]], |
|
"local_extracted_archives_paths": local_extracted_audio_paths["other"], |
|
"metadata_paths": hash_meta_paths["other"], |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths): |
|
|
|
features = ["speaker_id","gender","age","duration","verified_with","normalized_text"] |
|
|
|
with open(metadata_paths) as f: |
|
metadata = {x["audio_id"]: x for x in csv.DictReader(f, delimiter="\t")} |
|
|
|
for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths): |
|
for audio_filename, audio_file in audio_archive: |
|
audio_id = audio_filename.split(os.sep)[-1].split(_AUDIO_EXTENSIONS)[0] |
|
path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename |
|
|
|
yield audio_id, { |
|
"audio_id": audio_id, |
|
**{feature: metadata[audio_id][feature] for feature in features}, |
|
"audio": {"path": path, "bytes": audio_file.read()}, |
|
} |
|
|