{"name":"ContinuousLinearEquiv.integrable_comp_iff","declaration":"theorem ContinuousLinearEquiv.integrable_comp_iff {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {E : Type u_5} [NormedAddCommGroup E] {𝕜 : Type u_6} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] {H : Type u_7} [NormedAddCommGroup H] [NormedSpace 𝕜 H] {φ : α → H} (L : H ≃L[𝕜] E) : MeasureTheory.Integrable (fun a => L (φ a)) μ ↔ MeasureTheory.Integrable φ μ"} | |
{"name":"LinearIsometryEquiv.integrable_comp_iff","declaration":"theorem LinearIsometryEquiv.integrable_comp_iff {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {E : Type u_5} [NormedAddCommGroup E] {𝕜 : Type u_6} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] {H : Type u_7} [NormedAddCommGroup H] [NormedSpace 𝕜 H] {φ : α → H} (L : H ≃ₗᵢ[𝕜] E) : MeasureTheory.Integrable (fun a => L (φ a)) μ ↔ MeasureTheory.Integrable φ μ"} | |