Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
Russian
Size:
10K - 100K
ArXiv:
License:
# coding=utf-8 | |
"""SberQUAD: Sber Question Answering Dataset.""" | |
import json | |
import datasets | |
from datasets.tasks import QuestionAnsweringExtractive | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@article{Efimov_2020, | |
title={SberQuAD – Russian Reading Comprehension Dataset: Description and Analysis}, | |
ISBN={9783030582197}, | |
ISSN={1611-3349}, | |
url={http://dx.doi.org/10.1007/978-3-030-58219-7_1}, | |
DOI={10.1007/978-3-030-58219-7_1}, | |
journal={Experimental IR Meets Multilinguality, Multimodality, and Interaction}, | |
publisher={Springer International Publishing}, | |
author={Efimov, Pavel and Chertok, Andrey and Boytsov, Leonid and Braslavski, Pavel}, | |
year={2020}, | |
pages={3–15} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Sber Question Answering Dataset (SberQuAD) is a reading comprehension \ | |
dataset, consisting of questions posed by crowdworkers on a set of Wikipedia \ | |
articles, where the answer to every question is a segment of text, or span, \ | |
from the corresponding reading passage, or the question might be unanswerable. \ | |
Russian original analogue presented in Sberbank Data Science Journey 2017. | |
""" | |
_URLS = {"train": "https://sc.link/PNWl", "dev": "https://sc.link/W6oX", "test": "https://sc.link/VOn9"} | |
class Sberquad(datasets.GeneratorBasedBuilder): | |
"""SberQUAD: Sber Question Answering Dataset. Version 1.0.""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [datasets.BuilderConfig(name="sberquad", version=VERSION, description=_DESCRIPTION)] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("int32"), | |
"title": datasets.Value("string"), | |
"context": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"answers": datasets.features.Sequence( | |
{ | |
"text": datasets.Value("string"), | |
"answer_start": datasets.Value("int32"), | |
} | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="", | |
citation=_CITATION, | |
task_templates=[ | |
QuestionAnsweringExtractive( | |
question_column="question", context_column="context", answers_column="answers" | |
) | |
], | |
) | |
def _split_generators(self, dl_manager): | |
downloaded_files = dl_manager.download_and_extract(_URLS) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
logger.info("generating examples from = %s", filepath) | |
key = 0 | |
with open(filepath, encoding="utf-8") as f: | |
squad = json.load(f) | |
for article in squad["data"]: | |
title = article.get("title", "") | |
for paragraph in article["paragraphs"]: | |
context = paragraph["context"] | |
for qa in paragraph["qas"]: | |
answer_starts = [answer["answer_start"] for answer in qa["answers"]] | |
answers = [answer["text"] for answer in qa["answers"]] | |
yield key, { | |
"title": title, | |
"context": context, | |
"question": qa["question"], | |
"id": qa["id"], | |
"answers": { | |
"answer_start": answer_starts, | |
"text": answers, | |
}, | |
} | |
key += 1 | |