defamation-japanese-twitter / defamation-japanese-twitter.py
kubota's picture
Update defamation-japanese-twitter.py
b06c772
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """
"""
_DESCRIPTION = """
"""
_URL = "https://raw.githubusercontent.com/kubotaissei/defamation_japanese_twitter/master/input/"
_URLS = {"dataset": _URL + "data_twitter.json"}
class DefamationJapaneseTwitterConfig(datasets.BuilderConfig):
"""BuilderConfig for DefamationJapaneseTwitterConfig."""
def __init__(self, **kwargs):
"""BuilderConfig for DefamationJapaneseTwitterConfig.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(DefamationJapaneseTwitterConfig, self).__init__(**kwargs)
class DefamationJapaneseTwitter(datasets.GeneratorBasedBuilder):
"""DefamationJapaneseTwitterConfig: Japanese Defamation Detection Twitter Dataset. Version 1.0."""
BUILDER_CONFIGS = [
DefamationJapaneseTwitterConfig(
name="plain_text",
version=datasets.Version("1.0.0", ""),
description="Plain text",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"target": datasets.features.Sequence(
datasets.ClassLabel(names=["C", "A1", "A2", "A3"])
),
"label": datasets.features.Sequence(
datasets.ClassLabel(names=["C", "B1", "B2", "B3", "B4"])
),
"user_id_list": datasets.features.Sequence(datasets.Value("int32")),
}
),
# No default supervised_keys (as we have to pass both question
# and context as input).
supervised_keys=None,
homepage="",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": downloaded_files},
),
]
def _generate_examples(self, filepath):
"""This function returns the examples depending on split"""
with open(filepath["dataset"], encoding="utf-8") as f:
data = json.load(f)
for i, (id, v) in enumerate(data.items()):
yield i, {
"id": id,
"target": v["target"],
"label": v["label"],
"user_id_list": v["user_id_list"],
}