Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
Arabic
Size:
1K - 10K
License:
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""Arabic Jordanian General Tweets.""" | |
import os | |
import openpyxl # noqa: requires this pandas optional dependency for reading xlsx files | |
import pandas as pd | |
import datasets | |
from datasets.tasks import TextClassification | |
_DESCRIPTION = """\ | |
Arabic Jordanian General Tweets (AJGT) Corpus consisted of 1,800 tweets \ | |
annotated as positive and negative. Modern Standard Arabic (MSA) or Jordanian dialect. | |
""" | |
_CITATION = """\ | |
@inproceedings{alomari2017arabic, | |
title={Arabic tweets sentimental analysis using machine learning}, | |
author={Alomari, Khaled Mohammad and ElSherif, Hatem M and Shaalan, Khaled}, | |
booktitle={International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems}, | |
pages={602--610}, | |
year={2017}, | |
organization={Springer} | |
} | |
""" | |
_URL = "https://raw.githubusercontent.com/komari6/Arabic-twitter-corpus-AJGT/master/" | |
class AjgtConfig(datasets.BuilderConfig): | |
"""BuilderConfig for Ajgt.""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for Ajgt. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(AjgtConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) | |
class AjgtTwitterAr(datasets.GeneratorBasedBuilder): | |
"""Ajgt dataset.""" | |
BUILDER_CONFIGS = [ | |
AjgtConfig( | |
name="plain_text", | |
description="Plain text", | |
) | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"text": datasets.Value("string"), | |
"label": datasets.features.ClassLabel( | |
names=[ | |
"Negative", | |
"Positive", | |
] | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://github.com/komari6/Arabic-twitter-corpus-AJGT", | |
citation=_CITATION, | |
task_templates=[TextClassification(text_column="text", label_column="label")], | |
) | |
def _split_generators(self, dl_manager): | |
urls_to_download = { | |
"train": os.path.join(_URL, "AJGT.xlsx"), | |
} | |
downloaded_files = dl_manager.download(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
] | |
def _generate_examples(self, filepath): | |
"""Generate examples.""" | |
with open(filepath, "rb") as f: | |
df = pd.read_excel(f, engine="openpyxl") | |
for id_, record in df.iterrows(): | |
tweet, sentiment = record["Feed"], record["Sentiment"] | |
yield str(id_), {"text": tweet, "label": sentiment} | |