|
import pandas as pd |
|
import datasets |
|
from sklearn.model_selection import train_test_split |
|
import numpy as np |
|
|
|
_CITATION = "N/A" |
|
_DESCRIPTION = "N/A" |
|
_HOMEPAGE = "N/A" |
|
_LICENSE = "apache-2.0" |
|
|
|
|
|
class JesterEmbedding(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("0.0.1") |
|
|
|
def _info(self): |
|
features = datasets.Features({ |
|
"user_id": datasets.Value("int64"), |
|
"item_id": datasets.Value("int64"), |
|
"rating": datasets.Value("float64"), |
|
}) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = "./jester_rating.parquet" |
|
data_dir = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
"split": "dev", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
"split": "test" |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
df = pd.read_parquet(filepath) |
|
|
|
rng = np.random.RandomState(42) |
|
|
|
train_df, test_df, val_df = [], [], [] |
|
|
|
for user_id in df.user_id.unique(): |
|
if len(df[df.user_id == user_id]) < 3: |
|
continue |
|
_train_df, _test_df = train_test_split(df[df.user_id == user_id], test_size=0.2, random_state=rng) |
|
_train_df, _val_df = train_test_split(_train_df, test_size=0.2, random_state=rng) |
|
|
|
train_df.append(_train_df) |
|
val_df.append(_val_df) |
|
test_df.append(_test_df) |
|
|
|
train_df = pd.concat(train_df) |
|
test_df = pd.concat(test_df) |
|
val_df = pd.concat(val_df) |
|
|
|
if split == "train": |
|
for _id, row in train_df.iterrows(): |
|
user_id, item_id, rating = row |
|
user_id, item_id = int(user_id), int(item_id) |
|
yield _id, {"user_id": user_id, "item_id": item_id, "rating": rating} |
|
elif split == "test": |
|
for _id, row in test_df.iterrows(): |
|
user_id, item_id, rating = row |
|
user_id, item_id = int(user_id), int(item_id) |
|
yield _id, {"user_id": user_id, "item_id": item_id, "rating": rating} |
|
else: |
|
for _id, row in val_df.iterrows(): |
|
user_id, item_id, rating = row |
|
user_id, item_id = int(user_id), int(item_id) |
|
yield _id, {"user_id": user_id, "item_id": item_id, "rating": rating} |
|
|