|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tiny Shakespeare dataset.""" |
|
|
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@misc{ |
|
author={Karpathy, Andrej}, |
|
title={char-rnn}, |
|
year={2015}, |
|
howpublished={\\url{https://github.com/karpathy/char-rnn}} |
|
}""" |
|
|
|
_DESCRIPTION = """\ |
|
40,000 lines of Shakespeare from a variety of Shakespeare's plays. \ |
|
Featured in Andrej Karpathy's blog post 'The Unreasonable Effectiveness of \ |
|
Recurrent Neural Networks': \ |
|
http://karpathy.github.io/2015/05/21/rnn-effectiveness/. |
|
|
|
To use for e.g. character modelling: |
|
|
|
``` |
|
d = datasets.load_dataset(name='tiny_shakespeare')['train'] |
|
d = d.map(lambda x: datasets.Value('strings').unicode_split(x['text'], 'UTF-8')) |
|
# train split includes vocabulary for other splits |
|
vocabulary = sorted(set(next(iter(d)).numpy())) |
|
d = d.map(lambda x: {'cur_char': x[:-1], 'next_char': x[1:]}) |
|
d = d.unbatch() |
|
seq_len = 100 |
|
batch_size = 2 |
|
d = d.batch(seq_len) |
|
d = d.batch(batch_size) |
|
``` |
|
""" |
|
|
|
|
|
class TinyShakespeare(datasets.GeneratorBasedBuilder): |
|
"""Tiny Shakespeare dataset builder.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({"text": datasets.Value("string")}), |
|
supervised_keys=None, |
|
homepage="https://github.com/karpathy/char-rnn/blob/master/data/tinyshakespeare/input.txt", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
download_path = dl_manager.download_and_extract( |
|
"https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt" |
|
) |
|
if os.path.isdir(download_path): |
|
|
|
txt_path = os.path.join(download_path, "input.txt") |
|
else: |
|
txt_path = download_path |
|
with open(txt_path, "r", encoding="utf-8") as f: |
|
text = f.read() |
|
|
|
|
|
i = int(len(text) * 0.9) |
|
train_text, text = text[:i], text[i:] |
|
i = int(len(text) * 0.5) |
|
validation_text, text = text[:i], text[i:] |
|
test_text = text |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"split_key": "train", "split_text": train_text}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"split_key": "validation", "split_text": validation_text}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"split_key": "test", "split_text": test_text}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, split_key, split_text): |
|
"""Yields examples.""" |
|
data_key = split_key |
|
feature_dict = {"text": split_text} |
|
yield data_key, feature_dict |
|
|