karoladelk commited on
Commit
13a00ab
·
verified ·
1 Parent(s): 58fb06b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -1
README.md CHANGED
@@ -1,3 +1,76 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ dataset_info:
3
+ features:
4
+ - name: image
5
+ dtype: image
6
+ - name: image_id
7
+ dtype: string
8
+ - name: lesion_id
9
+ dtype: string
10
+ - name: dx
11
+ dtype: string
12
+ - name: dx_type
13
+ dtype: string
14
+ - name: age
15
+ dtype: float64
16
+ - name: sex
17
+ dtype: string
18
+ - name: localization
19
+ dtype: string
20
+ - name: labels
21
+ dtype:
22
+ class_label:
23
+ names:
24
+ '0': actinic_keratoses
25
+ '1': melanoma
26
+ '2': melanocytic_nevi
27
+ '3': dermatofibroma
28
+ '4': basal_cell_carcinoma
29
+ '5': benign_keratosis-like_lesions
30
+ '6': vascular_lesions
31
+ splits:
32
+ - name: train
33
+ num_bytes: 2490501038.358
34
+ num_examples: 9577
35
+ - name: test
36
+ num_bytes: 351507473.24
37
+ num_examples: 1285
38
+ - name: validation
39
+ num_bytes: 681758880.144
40
+ num_examples: 2492
41
+ download_size: 3693626934
42
+ dataset_size: 3523767391.7419996
43
+ task_categories:
44
+ - image-classification
45
+ - image-segmentation
46
+ language:
47
+ - en
48
+ tags:
49
+ - skin_cancer
50
+ - HAM10000
51
+ pretty_name: HAM10000
52
+ size_categories:
53
+ - 1K<n<10K
54
  ---
55
+ # The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions
56
+
57
+ - Original Paper and Dataset [here](https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T)
58
+ - Kaggle dataset [here](https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000?resource=download)
59
+
60
+ # Introduction to datasets
61
+ Training of neural networks for automated diagnosis of pigmented skin lesions is hampered by the small size and lack of diversity of available dataset of dermatoscopic images. We tackle this problem by releasing the HAM10000 ("Human Against Machine with 10000 training images") dataset. We collected dermatoscopic images from different populations, acquired and stored by different modalities. The final dataset consists of 10015 dermatoscopic images which can serve as a training set for academic machine learning purposes. Cases include a representative collection of all important diagnostic categories in the realm of pigmented lesions: Actinic keratoses and intraepithelial carcinoma / Bowen's disease (akiec), basal cell carcinoma (bcc), benign keratosis-like lesions (solar lentigines / seborrheic keratoses and lichen-planus like keratoses, bkl), dermatofibroma (df), melanoma (mel), melanocytic nevi (nv) and vascular lesions (angiomas, angiokeratomas, pyogenic granulomas and hemorrhage, vasc).
62
+
63
+ More than 50% of lesions are confirmed through histopathology (histo), the ground truth for the rest of the cases is either follow-up examination (follow_up), expert consensus (consensus), or confirmation by in-vivo confocal microscopy (confocal).
64
+
65
+ The test set is not public, but the evaluation server remains running (see the challenge website). Any publications written using the HAM10000 data should be evaluated on the official test set hosted there, so that methods can be fairly compared.
66
+
67
+ - Test site can be accessed [here](https://challenge.isic-archive.com/landing/2018/)
68
+
69
+ # Disclaimer and additional information
70
+ This is a contribution to open sourced data in hugging face for image data. Images can be obtained from above links.
71
+
72
+ Train test split was done using a stratified splitting by cancer/diagnosis type. The code to stratify the dataset can be obtained on my github [here](https://github.com/marmal88/skin_cancer).
73
+
74
+ I do not own any rights to above images.
75
+
76
+ [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)