|
"""Korean Dataset for NLI and STS""" |
|
|
|
|
|
import csv |
|
|
|
import pandas as pd |
|
|
|
import datasets |
|
|
|
|
|
_CITATAION = """\ |
|
@article{ham2020kornli, |
|
title={KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding}, |
|
author={Ham, Jiyeon and Choe, Yo Joong and Park, Kyubyong and Choi, Ilji and Soh, Hyungjoon}, |
|
journal={arXiv preprint arXiv:2004.03289}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The dataset contains data for bechmarking korean models on NLI and STS |
|
""" |
|
|
|
_URL = "https://github.com/kakaobrain/KorNLUDatasets" |
|
|
|
_DATA_URLS = { |
|
"nli": { |
|
|
|
"snli-train": "https://raw.githubusercontent.com/kakaobrain/KorNLUDatasets/master/KorNLI/snli_1.0_train.ko.tsv", |
|
"xnli-dev": "https://raw.githubusercontent.com/kakaobrain/KorNLUDatasets/master/KorNLI/xnli.dev.ko.tsv", |
|
"xnli-test": "https://raw.githubusercontent.com/kakaobrain/KorNLUDatasets/master/KorNLI/xnli.test.ko.tsv", |
|
}, |
|
"sts": { |
|
"train": "https://raw.githubusercontent.com/kakaobrain/KorNLUDatasets/master/KorSTS/sts-train.tsv", |
|
"dev": "https://raw.githubusercontent.com/kakaobrain/KorNLUDatasets/master/KorSTS/sts-dev.tsv", |
|
"test": "https://raw.githubusercontent.com/kakaobrain/KorNLUDatasets/master/KorSTS/sts-test.tsv", |
|
}, |
|
} |
|
|
|
|
|
class KorNluConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for korNLU""" |
|
|
|
def __init__(self, description, data_url, citation, url, **kwargs): |
|
""" |
|
Args: |
|
description: `string`, brief description of the dataset |
|
data_url: `dictionary`, dict with url for each split of data. |
|
citation: `string`, citation for the dataset. |
|
url: `string`, url for information about the dataset. |
|
**kwrags: keyword arguments frowarded to super |
|
""" |
|
super(KorNluConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
self.description = description |
|
self.data_url = data_url |
|
self.citation = citation |
|
self.url = url |
|
|
|
|
|
class KorNlu(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
KorNluConfig(name=name, description=_DESCRIPTION, data_url=_DATA_URLS[name], citation=_CITATAION, url=_URL) |
|
for name in ["nli", "sts"] |
|
] |
|
BUILDER_CONFIG_CLASS = KorNluConfig |
|
|
|
def _info(self): |
|
features = {} |
|
if self.config.name == "nli": |
|
labels = ["entailment", "neutral", "contradiction"] |
|
features["premise"] = datasets.Value("string") |
|
features["hypothesis"] = datasets.Value("string") |
|
features["label"] = datasets.features.ClassLabel(names=labels) |
|
|
|
if self.config.name == "sts": |
|
genre = ["main-news", "main-captions", "main-forum", "main-forums"] |
|
filename = [ |
|
"images", |
|
"MSRpar", |
|
"MSRvid", |
|
"headlines", |
|
"deft-forum", |
|
"deft-news", |
|
"track5.en-en", |
|
"answers-forums", |
|
"answer-answer", |
|
] |
|
year = ["2017", "2016", "2013", "2012train", "2014", "2015", "2012test"] |
|
|
|
features["genre"] = datasets.features.ClassLabel(names=genre) |
|
features["filename"] = datasets.features.ClassLabel(names=filename) |
|
features["year"] = datasets.features.ClassLabel(names=year) |
|
features["id"] = datasets.Value("int32") |
|
features["score"] = datasets.Value("float32") |
|
features["sentence1"] = datasets.Value("string") |
|
features["sentence2"] = datasets.Value("string") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, features=datasets.Features(features), homepage=_URL, citation=_CITATAION |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
if self.config.name == "nli": |
|
|
|
snli_train = dl_manager.download_and_extract(self.config.data_url["snli-train"]) |
|
xnli_dev = dl_manager.download_and_extract(self.config.data_url["xnli-dev"]) |
|
xnli_test = dl_manager.download_and_extract(self.config.data_url["xnli-test"]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"filepath": snli_train, "split": "train"} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": xnli_dev, "split": "dev"} |
|
), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": xnli_test, "split": "test"}), |
|
] |
|
|
|
if self.config.name == "sts": |
|
train = dl_manager.download_and_extract(self.config.data_url["train"]) |
|
dev = dl_manager.download_and_extract(self.config.data_url["dev"]) |
|
test = dl_manager.download_and_extract(self.config.data_url["test"]) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train, "split": "train"}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": dev, "split": "dev"}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test, "split": "test"}), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
if self.config.name == "nli": |
|
df = pd.read_csv(filepath, sep="\t") |
|
df = df.dropna() |
|
for id_, row in df.iterrows(): |
|
yield id_, { |
|
"premise": str(row["sentence1"]), |
|
"hypothesis": str(row["sentence2"]), |
|
"label": str(row["gold_label"]), |
|
} |
|
|
|
if self.config.name == "sts": |
|
with open(filepath, encoding="utf-8") as f: |
|
data = csv.DictReader(f, delimiter="\t") |
|
for id_, row in enumerate(data): |
|
yield id_, { |
|
"genre": row["genre"], |
|
"filename": row["filename"], |
|
"year": row["year"], |
|
"id": row["id"], |
|
"sentence1": row["sentence1"], |
|
"sentence2": row["sentence2"], |
|
"score": row["score"], |
|
} |
|
|