|
import torch |
|
from torch import Tensor |
|
import torch.nn.functional as F |
|
from torch.utils.data import Dataset |
|
from typing import * |
|
from pathlib import Path |
|
import re |
|
import xarray as xr |
|
import numpy as np |
|
import h5py |
|
|
|
|
|
IGRA_VARS = ['air_temperature', 'relative_humidity', 'wind_speed', 'geopotential_height', 'air_dewpoint_depression'] |
|
|
|
CLARA_VARS_D = { |
|
'CFC': ['cfc'], |
|
'CTO': ['ctt', 'cth', 'ctp'], |
|
'IWP': ['iwp', 'cot_ice', 'cre_ice'], |
|
'LWP': ['lwp', 'cot_liq', 'cre_liq'] |
|
} |
|
|
|
CLARA_VARS = [value for values_list in CLARA_VARS_D.values() for value in values_list] |
|
|
|
|
|
class ERA5Dataset(Dataset): |
|
def __init__( |
|
self, |
|
size: Tuple[int] = (720, 1440), |
|
window: int = 1, |
|
flatten: bool = True, |
|
mode: str = 'train' |
|
) -> None: |
|
|
|
self.size = size |
|
self.window = window |
|
self.flatten = flatten |
|
self.mode = mode |
|
self.data_dir = Path('.') / 'era5' |
|
self.normalization_dir = Path('.') / 'era5' / 'stats_v0' |
|
|
|
|
|
self.file_paths = list((self.data_dir / self.mode).glob('*.h5')) |
|
self.file_paths.sort() |
|
|
|
self.sample_indices = [] |
|
for file_idx, file_path in enumerate(self.file_paths): |
|
h5_file = h5py.File(file_path, 'r') |
|
num_samples = h5_file['fields'].shape[0] |
|
self.sample_indices.extend([(file_idx, i) for i in range(num_samples)]) |
|
h5_file.close() |
|
|
|
|
|
|
|
self.normalization_mean = np.load(self.normalization_dir / 'global_means.npy') |
|
self.normalization_sigma = np.load(self.normalization_dir / 'global_stds.npy') |
|
|
|
|
|
def _open_file(self, file_path, sample_idx): |
|
h5_file = h5py.File(file_path, 'r') |
|
sample = h5_file['fields'][sample_idx] |
|
h5_file.close() |
|
|
|
return sample[:, :self.size[0], :self.size[1]] |
|
|
|
|
|
def __len__(self): |
|
return len(self.sample_indices) - self.window + 1 |
|
|
|
|
|
def __getitem__(self, i): |
|
step_indices = [target_idx for target_idx in range(i, i + self.window)] |
|
|
|
x = list() |
|
for step_idx in step_indices: |
|
file_idx, sample_idx = self.sample_indices[step_idx] |
|
x.append(self._open_file(self.file_paths[file_idx], sample_idx)) |
|
|
|
x = (x - self.normalization_mean) / self.normalization_sigma |
|
x = torch.tensor(x).float() |
|
|
|
if self.flatten: |
|
return x.flatten(0, 1), {} |
|
else: |
|
return x, {} |
|
|
|
|
|
class AuxDataset(Dataset): |
|
def __init__( |
|
self, |
|
data_var: str = '', |
|
size: Tuple[int] = (720, 1440), |
|
window: int = 1, |
|
flatten: bool = True, |
|
mode: str = 'train' |
|
) -> None: |
|
|
|
assert data_var in ['igra', 'clara'], 'Dataset is not implemented, choose one of [igra, clara]' |
|
|
|
self.data_var = data_var |
|
self.size = size |
|
self.window = window |
|
self.flatten = flatten |
|
self.mode = mode |
|
|
|
self.data_dir = Path('.') / data_var |
|
self.normalization_file = Path('.') / 'climatology' / f'climatology_{self.data_var}.zarr' |
|
|
|
|
|
if self.mode == 'train': |
|
years = [str(year) for year in np.arange(2011,2016)] |
|
elif self.mode == 'val': |
|
years = [str(year) for year in np.arange(2016,2018)] |
|
elif self.mode == 'test': |
|
years = [str(year) for year in np.arange(2018,2019)] |
|
else: |
|
raise NotImplementedError('Mode is invalid, choose one of [train, val, test]') |
|
|
|
|
|
self.EXTENSION = 'nc' |
|
self.ENGINE = 'netcdf4' |
|
self.PARAMS = IGRA_VARS if self.data_var == 'igra' else CLARA_VARS |
|
|
|
file_paths = list() |
|
for year in years: |
|
pattern = rf'.*{year}\d{{4}}\.{self.EXTENSION}$' |
|
curr_files = list(self.data_dir.glob(f'*{year}*.{self.EXTENSION}')) |
|
file_paths.extend( |
|
[f for f in curr_files if re.match(pattern, str(f.name)) and not self._is_leap(f.name)] |
|
) |
|
|
|
self.file_paths = file_paths |
|
self.file_paths.sort() |
|
|
|
|
|
self.sample_indices = [] |
|
if data_var == 'igra': |
|
self.sample_indices = [(file_idx, i) for file_idx in range(len(self.file_paths)) for i in range(4)] |
|
|
|
else: |
|
self.sample_indices = [(file_idx, 0) for file_idx in range(len(self.file_paths)) for i in range(4)] |
|
|
|
|
|
self.normalization = xr.open_dataset(self.normalization_file, engine='zarr') |
|
self.normalization = self.normalization.sel(param=self.PARAMS) |
|
self.normalization_mean = self.normalization['mean'].values[np.newaxis, :, np.newaxis, np.newaxis] |
|
self.normalization_sigma = self.normalization['sigma'].values[np.newaxis, :, np.newaxis, np.newaxis] |
|
|
|
|
|
def _is_leap(self, filename): |
|
"""FCN training data for ERA5 ignores leap day""" |
|
match = re.search(r'(\d{4})(\d{2})(\d{2})', filename) |
|
if match: |
|
year, month, day = map(int, match.groups()) |
|
return month == 2 and day == 29 |
|
|
|
return False |
|
|
|
def _open_file(self, file_path, sample_idx): |
|
sample = xr.open_dataset(file_path, engine=self.ENGINE) |
|
sample = sample[self.PARAMS] |
|
sample = sample.sortby('lat', ascending=False) |
|
sample = sample.roll(lon=len(sample.lon) // 2, roll_coords=True) |
|
|
|
|
|
if self.data_var == 'igra': |
|
|
|
|
|
try: |
|
sample = sample.isel(time=sample_idx).to_array().values |
|
|
|
except: |
|
sample = np.full((len(IGRA_VARS), self.size[0], self.size[1]), np.nan) |
|
|
|
|
|
else: |
|
sample = sample.to_array().values |
|
|
|
return sample |
|
|
|
|
|
def __len__(self): |
|
return len(self.sample_indices) - self.window + 1 |
|
|
|
|
|
def __getitem__(self, i): |
|
step_indices = [target_idx for target_idx in range(i, i + self.window)] |
|
|
|
x = list() |
|
for step_idx in step_indices: |
|
file_idx, sample_idx = self.sample_indices[step_idx] |
|
x.append(self._open_file(self.file_paths[file_idx], sample_idx)) |
|
|
|
x = (x - self.normalization_mean) / self.normalization_sigma |
|
x = torch.tensor(x).float() |
|
x = torch.nan_to_num(x) |
|
|
|
if self.flatten: |
|
return x.flatten(0, 1), {} |
|
else: |
|
return x, {} |
|
|
|
|
|
class MultimodalDataset(Dataset): |
|
def __init__( |
|
self, |
|
datasets, |
|
background: bool=False |
|
): |
|
self.datasets = datasets |
|
self.is_flatten = datasets[0].flatten |
|
|
|
|
|
self.background = background |
|
|
|
def __len__(self): |
|
if self.background: |
|
return len(self.datasets[0]) - 1 |
|
else: |
|
return len(self.datasets[0]) |
|
|
|
def __getitem__(self, idx): |
|
dim = 0 if self.is_flatten else 1 |
|
x = [dataset[idx][0] for dataset in self.datasets] |
|
x = torch.cat(x, dim=dim).float() |
|
|
|
if self.background: |
|
|
|
y = [dataset[idx+1][0] for dataset in self.datasets] |
|
y = torch.cat(y, dim=dim).float() |
|
return x, y, {} |
|
|
|
else: |
|
return x, {} |