|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
from seacrowd.utils import schemas |
|
import jsonlines |
|
from nltk.tokenize.treebank import TreebankWordDetokenizer |
|
|
|
_CITATION = """\ |
|
@INPROCEEDINGS{8629109, |
|
author={Kurniawan, Kemal and Louvan, Samuel}, |
|
booktitle={2018 International Conference on Asian Language Processing (IALP)}, |
|
title={Indosum: A New Benchmark Dataset for Indonesian Text Summarization}, |
|
year={2018}, |
|
volume={}, |
|
number={}, |
|
pages={215-220}, |
|
doi={10.1109/IALP.2018.8629109}} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
_DATASETNAME = "indosum" |
|
|
|
_DESCRIPTION = """\ |
|
INDOSUM is a new benchmark dataset for Indonesian text summarization. |
|
The dataset consists of news articles and manually constructed summaries. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/kata-ai/indosum" |
|
|
|
_LICENSE = "Apache License, Version 2.0" |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://www.kaggle.com/api/v1/datasets/download/siagian/indosum", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SUMMARIZATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IndoSUM(datasets.GeneratorBasedBuilder): |
|
"""INDOSUM is a new benchmark dataset for Indonesian text summarization. The dataset consists of news articles and manually constructed summaries.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = ( |
|
[ |
|
SEACrowdConfig( |
|
name="indosum_fold{fold_number}_source".format(fold_number=i), |
|
version=_SOURCE_VERSION, |
|
description="indosum source schema", |
|
schema="source", |
|
subset_id="indosum_fold{fold_number}".format(fold_number=i), |
|
) for i in range(5) |
|
] |
|
+ |
|
[ |
|
SEACrowdConfig( |
|
name="indosum_fold{fold_number}_seacrowd_t2t".format(fold_number=i), |
|
version=_SEACROWD_VERSION, |
|
description="indosum Nusantara schema", |
|
schema="seacrowd_t2t", |
|
subset_id="indosum_fold{fold_number}".format(fold_number=i), |
|
) for i in range(5) |
|
] |
|
) |
|
|
|
DEFAULT_CONFIG_NAME = "indosum_fold0_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
|
|
features = datasets.Features( |
|
{ |
|
"document": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
"summary": datasets.Value("string") |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _get_fold_index(self): |
|
try: |
|
subset_id = self.config.subset_id |
|
idx_fold = subset_id.index("_fold") |
|
file_id = subset_id[(idx_fold + 5):] |
|
return int(file_id) |
|
except: |
|
return 0 |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
idx = self._get_fold_index() |
|
|
|
urls = _URLS[_DATASETNAME] |
|
|
|
data_dir = Path(dl_manager.download_and_extract(urls)) |
|
|
|
location = { |
|
|
|
|
|
|
|
"train": "train.0{fold_number}.jsonl", |
|
"test": "test.0{fold_number}.jsonl", |
|
"dev": "dev.0{fold_number}.jsonl" |
|
} |
|
|
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, location["train"].format(fold_number=idx+1)), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, location["test"].format(fold_number=idx+1)), |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, location["dev"].format(fold_number=idx+1)), |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _get_full_paragraph_and_summary(self, data: Dict) -> Tuple[str, str]: |
|
detokenizer = TreebankWordDetokenizer() |
|
paragraph = "" |
|
summary = "" |
|
begin_paragraph = True |
|
begin_summary = True |
|
|
|
for each_paragraph in data["paragraphs"]: |
|
for each_sentence in each_paragraph: |
|
detokenized_sentence = detokenizer.detokenize(each_sentence) |
|
if begin_paragraph: |
|
paragraph+=detokenized_sentence |
|
begin_paragraph = False |
|
else: |
|
paragraph = "{} {}".format(paragraph, detokenized_sentence) |
|
|
|
for each_summary in data["summary"]: |
|
detokenized_sentence = detokenizer.detokenize(each_summary) |
|
if begin_summary: |
|
summary+=detokenized_sentence |
|
begin_summary = False |
|
else: |
|
summary = "{} {}".format(summary, detokenized_sentence) |
|
|
|
return paragraph, summary |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
|
|
if self.config.schema == "source": |
|
i = 0 |
|
with jsonlines.open(filepath) as f: |
|
for each_data in f.iter(): |
|
full_paragraph, full_summary = self._get_full_paragraph_and_summary(each_data) |
|
ex = { |
|
"id": each_data["id"], |
|
"document": full_paragraph, |
|
"summary": full_summary |
|
} |
|
yield i, ex |
|
i+=1 |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
i = 0 |
|
with jsonlines.open(filepath) as f: |
|
for each_data in f.iter(): |
|
full_paragraph, full_summary = self._get_full_paragraph_and_summary(each_data) |
|
ex = { |
|
"id": each_data["id"], |
|
"text_1": full_paragraph, |
|
"text_2": full_summary, |
|
"text_1_name": "document", |
|
"text_2_name": "summary" |
|
} |
|
yield i, ex |
|
i+=1 |
|
|