jonathanli commited on
Commit
f105b9d
1 Parent(s): d721963

Update info

Browse files
Files changed (1) hide show
  1. README.md +40 -0
README.md ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - reddit
6
+ - law
7
+ pretty_name: Legal Advice Reddit
8
+ ---
9
+
10
+ # Dataset Card for Legal Advice Reddit Dataset
11
+
12
+ ## Dataset Description
13
+
14
+ - **Paper: [Parameter-Efficient Legal Domain Adaptation](https://aclanthology.org/2022.nllp-1.10/)**
15
+ - **Point of Contact: jxl@queensu.ca**
16
+
17
+ ### Dataset Summary
18
+
19
+ New dataset introduced in [Parameter-Efficient Legal Domain Adaptation](https://aclanthology.org/2022.nllp-1.10) (Li et al., NLLP 2022) from the Legal Advice Reddit community (known as "/r/legaldvice"), sourcing the Reddit posts from the Pushshift
20
+ Reddit dataset. The dataset maps the text and title of each legal question posted into one of eleven classes, based on the original Reddit
21
+ post's "flair" (i.e., tag). Questions are typically informal and use non-legal-specific language. Per the Legal Advice Reddit rules, posts
22
+ must be about actual personal circumstances or situations. We limit the number of labels to the top eleven classes and remove the other
23
+ samples from the dataset.
24
+
25
+ ### Citation Information
26
+ ```
27
+ @inproceedings{li-etal-2022-parameter,
28
+ title = "Parameter-Efficient Legal Domain Adaptation",
29
+ author = "Li, Jonathan and
30
+ Bhambhoria, Rohan and
31
+ Zhu, Xiaodan",
32
+ booktitle = "Proceedings of the Natural Legal Language Processing Workshop 2022",
33
+ month = dec,
34
+ year = "2022",
35
+ address = "Abu Dhabi, United Arab Emirates (Hybrid)",
36
+ publisher = "Association for Computational Linguistics",
37
+ url = "https://aclanthology.org/2022.nllp-1.10",
38
+ pages = "119--129",
39
+ }
40
+ ```