Upload czech_parliament_plenary_hearings.py
Browse files
czech_parliament_plenary_hearings.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import Dataset, GeneratorBasedBuilder, Features
|
2 |
+
import os
|
3 |
+
import tarfile
|
4 |
+
import librosa
|
5 |
+
import datasets
|
6 |
+
_LICENSE = "https://creativecommons.org/licenses/by/4.0/"
|
7 |
+
_HOMEPAGE = "https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3126"
|
8 |
+
_DATASET_URL = "https://lindat.mff.cuni.cz/repository/xmlui/bitstream/handle/11234/1-3126{/snemovna.tar.xz}"
|
9 |
+
|
10 |
+
_DESCRIPTION = "Large corpus of Czech parliament plenary sessions, originaly released 2019-11-29 by Kratochvíl Jonáš, Polák Peter and Bojar Ondřej\
|
11 |
+
The dataset consists of 444 hours of transcribed speech audio snippets 1 to 40 seconds long.\
|
12 |
+
Original dataset transcriptions were converted to true case from uppercase using spacy library."
|
13 |
+
|
14 |
+
_CITATION = """\
|
15 |
+
@misc{11234/1-3126,
|
16 |
+
title = {Large Corpus of Czech Parliament Plenary Hearings},
|
17 |
+
author = {Kratochv{\'{\i}}l, Jon{\'a}{\v s} and Pol{\'a}k, Peter and Bojar, Ond{\v r}ej},
|
18 |
+
url = {http://hdl.handle.net/11234/1-3126},
|
19 |
+
note = {{LINDAT}/{CLARIAH}-{CZ} digital library at the Institute of Formal and Applied Linguistics ({{\'U}FAL}), Faculty of Mathematics and Physics, Charles University},
|
20 |
+
copyright = {Creative Commons - Attribution 4.0 International ({CC} {BY} 4.0)},
|
21 |
+
year = {2019} } """
|
22 |
+
|
23 |
+
|
24 |
+
class CzechParliamentPlenaryHearings(GeneratorBasedBuilder):
|
25 |
+
def __init__(self, **kwargs):
|
26 |
+
super().__init__(**kwargs)
|
27 |
+
|
28 |
+
def _info(self):
|
29 |
+
return datasets.DatasetInfo(
|
30 |
+
description=_DESCRIPTION,
|
31 |
+
features=datasets.Features(
|
32 |
+
{
|
33 |
+
"id": datasets.Value("string"),
|
34 |
+
"audio": datasets.features.Audio(sampling_rate=16000),
|
35 |
+
"transcription": datasets.Value("string")
|
36 |
+
}
|
37 |
+
),
|
38 |
+
supervised_keys=None,
|
39 |
+
homepage=_HOMEPAGE,
|
40 |
+
citation=_CITATION,
|
41 |
+
license=_LICENSE
|
42 |
+
)
|
43 |
+
|
44 |
+
def _split_generators(self, dl_manager):
|
45 |
+
data_dir = dl_manager.download_and_extract(_DATASET_URL)
|
46 |
+
data_dir = os.path.join(data_dir, 'ASR_DATA')
|
47 |
+
return [
|
48 |
+
self.SplitGenerator(name='train', gen_kwargs={'split': 'train', 'data_dir': data_dir}),
|
49 |
+
self.SplitGenerator(name='validation', gen_kwargs={'split': 'dev', 'data_dir': data_dir}),
|
50 |
+
self.SplitGenerator(name='test', gen_kwargs={'split': 'test', 'data_dir': data_dir})
|
51 |
+
]
|
52 |
+
|
53 |
+
def _generate_examples(self, split, data_dir):
|
54 |
+
split_dir = os.path.join(data_dir, split)
|
55 |
+
for folder_name in os.listdir(split_dir):
|
56 |
+
folder_path = os.path.join(split_dir, folder_name)
|
57 |
+
if os.path.isdir(folder_path):
|
58 |
+
for audio_file in os.listdir(folder_path):
|
59 |
+
if audio_file.endswith('.wav'):
|
60 |
+
audio_path = os.path.join(folder_path, audio_file)
|
61 |
+
transcription_path = os.path.join(folder_path, audio_file + '.trn')
|
62 |
+
transcription = open(transcription_path).read().strip()
|
63 |
+
|
64 |
+
audio, sr = librosa.load(audio_path, sr=16000)
|
65 |
+
|
66 |
+
yield f"{folder_name}/{audio_file}", {
|
67 |
+
'audio': audio,
|
68 |
+
'transcription': transcription,
|
69 |
+
}
|