Datasets:
Tasks:
Text Classification
Sub-tasks:
natural-language-inference
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""Heuristic Analysis for NLI Systems""" | |
import datasets | |
_CITATION = """\ | |
@article{DBLP:journals/corr/abs-1902-01007, | |
author = {R. Thomas McCoy and | |
Ellie Pavlick and | |
Tal Linzen}, | |
title = {Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural | |
Language Inference}, | |
journal = {CoRR}, | |
volume = {abs/1902.01007}, | |
year = {2019}, | |
url = {http://arxiv.org/abs/1902.01007}, | |
archivePrefix = {arXiv}, | |
eprint = {1902.01007}, | |
timestamp = {Tue, 21 May 2019 18:03:36 +0200}, | |
biburl = {https://dblp.org/rec/journals/corr/abs-1902-01007.bib}, | |
bibsource = {dblp computer science bibliography, https://dblp.org} | |
} | |
""" | |
_DESCRIPTION = """\ | |
The HANS dataset is an NLI evaluation set that tests specific hypotheses about invalid heuristics that NLI models are likely to learn. | |
""" | |
class HansConfig(datasets.BuilderConfig): | |
"""BuilderConfig for HANS.""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for HANS. | |
Args: | |
. | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(HansConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) | |
class Hans(datasets.GeneratorBasedBuilder): | |
"""Hans: Heuristic Analysis for NLI Systems.""" | |
BUILDER_CONFIGS = [ | |
HansConfig( | |
name="plain_text", | |
description="Plain text", | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"premise": datasets.Value("string"), | |
"hypothesis": datasets.Value("string"), | |
"label": datasets.features.ClassLabel(names=["entailment", "non-entailment"]), | |
"parse_premise": datasets.Value("string"), | |
"parse_hypothesis": datasets.Value("string"), | |
"binary_parse_premise": datasets.Value("string"), | |
"binary_parse_hypothesis": datasets.Value("string"), | |
"heuristic": datasets.Value("string"), | |
"subcase": datasets.Value("string"), | |
"template": datasets.Value("string"), | |
} | |
), | |
# No default supervised_keys (as we have to pass both premise | |
# and hypothesis as input). | |
supervised_keys=None, | |
homepage="https://github.com/tommccoy1/hans", | |
citation=_CITATION, | |
) | |
def _vocab_text_gen(self, filepath): | |
for _, ex in self._generate_examples(filepath): | |
yield " ".join([ex["premise"], ex["hypothesis"]]) | |
def _split_generators(self, dl_manager): | |
train_path = dl_manager.download_and_extract( | |
"https://raw.githubusercontent.com/tommccoy1/hans/master/heuristics_train_set.txt" | |
) | |
valid_path = dl_manager.download_and_extract( | |
"https://raw.githubusercontent.com/tommccoy1/hans/master/heuristics_evaluation_set.txt" | |
) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_path}), | |
] | |
def _generate_examples(self, filepath): | |
"""Generate hans examples. | |
Args: | |
filepath: a string | |
Yields: | |
dictionaries containing "premise", "hypothesis" and "label" strings | |
""" | |
for idx, line in enumerate(open(filepath, "r", encoding="utf-8")): | |
if idx == 0: | |
continue # skip header | |
line = line.strip() | |
split_line = line.split("\t") | |
# Examples not marked with a three out of five consensus are marked with | |
# "-" and should not be used in standard evaluations. | |
if split_line[0] == "-": | |
continue | |
# Works for both splits even though dev has some extra human labels. | |
yield idx, { | |
"premise": split_line[5], | |
"hypothesis": split_line[6], | |
"label": split_line[0], | |
"binary_parse_premise": split_line[1], | |
"binary_parse_hypothesis": split_line[2], | |
"parse_premise": split_line[3], | |
"parse_hypothesis": split_line[4], | |
"heuristic": split_line[8], | |
"subcase": split_line[9], | |
"template": split_line[10], | |
} | |