Commit
·
9b11261
1
Parent(s):
9e947fd
Convert dataset to Parquet (#2)
Browse files- Convert dataset to Parquet (876ca3db3c88ce83c229e295697f7f9f6a8f15f5)
- Delete loading script (c98b927ec946fa53d8257106b7efbe148a7830a6)
- Delete legacy dataset_infos.json (e5de150e641d53a15557d91e5297ed018e9de25d)
- README.md +11 -4
- data/test-00000-of-00001.parquet +3 -0
- data/validation-00000-of-00001.parquet +3 -0
- dataset_infos.json +0 -1
- jfleg.py +0 -144
README.md
CHANGED
@@ -29,13 +29,20 @@ dataset_info:
|
|
29 |
sequence: string
|
30 |
splits:
|
31 |
- name: validation
|
32 |
-
num_bytes:
|
33 |
num_examples: 755
|
34 |
- name: test
|
35 |
-
num_bytes:
|
36 |
num_examples: 748
|
37 |
-
download_size:
|
38 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
---
|
40 |
|
41 |
# Dataset Card for JFLEG
|
|
|
29 |
sequence: string
|
30 |
splits:
|
31 |
- name: validation
|
32 |
+
num_bytes: 379979
|
33 |
num_examples: 755
|
34 |
- name: test
|
35 |
+
num_bytes: 379699
|
36 |
num_examples: 748
|
37 |
+
download_size: 289093
|
38 |
+
dataset_size: 759678
|
39 |
+
configs:
|
40 |
+
- config_name: default
|
41 |
+
data_files:
|
42 |
+
- split: validation
|
43 |
+
path: data/validation-*
|
44 |
+
- split: test
|
45 |
+
path: data/test-*
|
46 |
---
|
47 |
|
48 |
# Dataset Card for JFLEG
|
data/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3e5328a79aebb6fd559d19291c055824ed1040c5038731b3449e0e9efb1d59b
|
3 |
+
size 141012
|
data/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:102d7bd261223c00e2a39f0dd239857de9e5f91f94ae2aefbdd50a38ac6fddf8
|
3 |
+
size 148081
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"default": {"description": "JFLEG (JHU FLuency-Extended GUG) is an English grammatical error correction (GEC) corpus.\nIt is a gold standard benchmark for developing and evaluating GEC systems with respect to\nfluency (extent to which a text is native-sounding) as well as grammaticality.\n\nFor each source document, there are four human-written corrections (ref0 to ref3).\n", "citation": "@InProceedings{napoles-sakaguchi-tetreault:2017:EACLshort,\n author = {Napoles, Courtney\n and Sakaguchi, Keisuke\n and Tetreault, Joel},\n title = {JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction},\n booktitle = {Proceedings of the 15th Conference of the European Chapter of the\n Association for Computational Linguistics: Volume 2, Short Papers},\n month = {April},\n year = {2017},\n address = {Valencia, Spain},\n publisher = {Association for Computational Linguistics},\n pages = {229--234},\n url = {http://www.aclweb.org/anthology/E17-2037}\n}\n@InProceedings{heilman-EtAl:2014:P14-2,\n author = {Heilman, Michael\n and Cahill, Aoife\n and Madnani, Nitin\n and Lopez, Melissa\n and Mulholland, Matthew\n and Tetreault, Joel},\n title = {Predicting Grammaticality on an Ordinal Scale},\n booktitle = {Proceedings of the 52nd Annual Meeting of the\n Association for Computational Linguistics (Volume 2: Short Papers)},\n month = {June},\n year = {2014},\n address = {Baltimore, Maryland},\n publisher = {Association for Computational Linguistics},\n pages = {174--180},\n url = {http://www.aclweb.org/anthology/P14-2029}\n}\n", "homepage": "https://github.com/keisks/jfleg", "license": "CC BY-NC-SA 4.0", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "corrections": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "jfleg", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 379991, "num_examples": 755, "dataset_name": "jfleg"}, "test": {"name": "test", "num_bytes": 379711, "num_examples": 748, "dataset_name": "jfleg"}}, "download_checksums": {"https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.src": {"num_bytes": 72726, "checksum": "4a0e8b86d18a1058460ff0a592dac1ba68986d135256efbd27e997ac43f295f8"}, "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref0": {"num_bytes": 73216, "checksum": "adea6287c6e2240b7777e63cd56f8e228e742bbfb42c5152bc0bd2bc91f4e53e"}, "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref1": {"num_bytes": 73129, "checksum": "d40d56ec7468ddab03fdcca97065ab3f9d391d749dbc7097b7c777a19ce4242e"}, "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref2": {"num_bytes": 73394, "checksum": "b070691d633e0c4143d96ba21299ae71cb126086517d2970df47420842067793"}, "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref3": {"num_bytes": 73164, "checksum": "9187fd834693fa77d07957991282d32d61ff84a207c25cbfab318c871bacdbc4"}, "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.src": {"num_bytes": 72684, "checksum": "893db119162487aa7f956b65978453576919e6797cd6c1955f93b7a8b9f4bbd8"}, "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref0": {"num_bytes": 73090, "checksum": "875953280a3ea1dea2827337b1778c0105f0c0aa79f2517a6e0e42db5e5e170c"}, "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref1": {"num_bytes": 73325, "checksum": "190d3398f2765f54a39b5489d1e96c483412a656086c731f8712ad0591087d80"}, "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref2": {"num_bytes": 73018, "checksum": "0e3c6abe934ccd16c9dffb2fd889d6f55afc3ad13a63c1e148c720bb4e99046b"}, "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref3": {"num_bytes": 73365, "checksum": "19f49de6eff813b26505ecf756c20dc301aeb80696696b01ca950298f6e58441"}}, "download_size": 731111, "post_processing_size": null, "dataset_size": 759702, "size_in_bytes": 1490813}}
|
|
|
|
jfleg.py
DELETED
@@ -1,144 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""JFLEG dataset."""
|
16 |
-
|
17 |
-
|
18 |
-
import datasets
|
19 |
-
|
20 |
-
|
21 |
-
_CITATION = """\
|
22 |
-
@InProceedings{napoles-sakaguchi-tetreault:2017:EACLshort,
|
23 |
-
author = {Napoles, Courtney
|
24 |
-
and Sakaguchi, Keisuke
|
25 |
-
and Tetreault, Joel},
|
26 |
-
title = {JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction},
|
27 |
-
booktitle = {Proceedings of the 15th Conference of the European Chapter of the
|
28 |
-
Association for Computational Linguistics: Volume 2, Short Papers},
|
29 |
-
month = {April},
|
30 |
-
year = {2017},
|
31 |
-
address = {Valencia, Spain},
|
32 |
-
publisher = {Association for Computational Linguistics},
|
33 |
-
pages = {229--234},
|
34 |
-
url = {http://www.aclweb.org/anthology/E17-2037}
|
35 |
-
}
|
36 |
-
@InProceedings{heilman-EtAl:2014:P14-2,
|
37 |
-
author = {Heilman, Michael
|
38 |
-
and Cahill, Aoife
|
39 |
-
and Madnani, Nitin
|
40 |
-
and Lopez, Melissa
|
41 |
-
and Mulholland, Matthew
|
42 |
-
and Tetreault, Joel},
|
43 |
-
title = {Predicting Grammaticality on an Ordinal Scale},
|
44 |
-
booktitle = {Proceedings of the 52nd Annual Meeting of the
|
45 |
-
Association for Computational Linguistics (Volume 2: Short Papers)},
|
46 |
-
month = {June},
|
47 |
-
year = {2014},
|
48 |
-
address = {Baltimore, Maryland},
|
49 |
-
publisher = {Association for Computational Linguistics},
|
50 |
-
pages = {174--180},
|
51 |
-
url = {http://www.aclweb.org/anthology/P14-2029}
|
52 |
-
}
|
53 |
-
"""
|
54 |
-
|
55 |
-
_DESCRIPTION = """\
|
56 |
-
JFLEG (JHU FLuency-Extended GUG) is an English grammatical error correction (GEC) corpus.
|
57 |
-
It is a gold standard benchmark for developing and evaluating GEC systems with respect to
|
58 |
-
fluency (extent to which a text is native-sounding) as well as grammaticality.
|
59 |
-
|
60 |
-
For each source document, there are four human-written corrections (ref0 to ref3).
|
61 |
-
"""
|
62 |
-
|
63 |
-
_HOMEPAGE = "https://github.com/keisks/jfleg"
|
64 |
-
|
65 |
-
_LICENSE = "CC BY-NC-SA 4.0"
|
66 |
-
|
67 |
-
_URLs = {
|
68 |
-
"dev": {
|
69 |
-
"src": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.src",
|
70 |
-
"ref0": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref0",
|
71 |
-
"ref1": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref1",
|
72 |
-
"ref2": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref2",
|
73 |
-
"ref3": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref3",
|
74 |
-
},
|
75 |
-
"test": {
|
76 |
-
"src": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.src",
|
77 |
-
"ref0": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref0",
|
78 |
-
"ref1": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref1",
|
79 |
-
"ref2": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref2",
|
80 |
-
"ref3": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref3",
|
81 |
-
},
|
82 |
-
}
|
83 |
-
|
84 |
-
|
85 |
-
class Jfleg(datasets.GeneratorBasedBuilder):
|
86 |
-
"""JFLEG (JHU FLuency-Extended GUG) grammatical error correction dataset."""
|
87 |
-
|
88 |
-
VERSION = datasets.Version("1.0.0")
|
89 |
-
|
90 |
-
def _info(self):
|
91 |
-
return datasets.DatasetInfo(
|
92 |
-
description=_DESCRIPTION,
|
93 |
-
features=datasets.Features(
|
94 |
-
{"sentence": datasets.Value("string"), "corrections": datasets.Sequence(datasets.Value("string"))}
|
95 |
-
),
|
96 |
-
supervised_keys=None,
|
97 |
-
homepage=_HOMEPAGE,
|
98 |
-
license=_LICENSE,
|
99 |
-
citation=_CITATION,
|
100 |
-
)
|
101 |
-
|
102 |
-
def _split_generators(self, dl_manager):
|
103 |
-
"""Returns SplitGenerators."""
|
104 |
-
|
105 |
-
downloaded_dev = dl_manager.download_and_extract(_URLs["dev"])
|
106 |
-
downloaded_test = dl_manager.download_and_extract(_URLs["test"])
|
107 |
-
|
108 |
-
return [
|
109 |
-
datasets.SplitGenerator(
|
110 |
-
name=datasets.Split.VALIDATION,
|
111 |
-
gen_kwargs={
|
112 |
-
"filepath": downloaded_dev,
|
113 |
-
"split": "dev",
|
114 |
-
},
|
115 |
-
),
|
116 |
-
datasets.SplitGenerator(
|
117 |
-
name=datasets.Split.TEST,
|
118 |
-
gen_kwargs={"filepath": downloaded_test, "split": "test"},
|
119 |
-
),
|
120 |
-
]
|
121 |
-
|
122 |
-
def _generate_examples(self, filepath, split):
|
123 |
-
"""Yields examples."""
|
124 |
-
|
125 |
-
source_file = filepath["src"]
|
126 |
-
with open(source_file, encoding="utf-8") as f:
|
127 |
-
source_sentences = f.read().split("\n")
|
128 |
-
num_source = len(source_sentences)
|
129 |
-
|
130 |
-
corrections = []
|
131 |
-
for n in range(0, 4):
|
132 |
-
correction_file = filepath[f"ref{n}"]
|
133 |
-
with open(correction_file, encoding="utf-8") as f:
|
134 |
-
correction_sentences = f.read().split("\n")
|
135 |
-
num_correction = len(correction_sentences)
|
136 |
-
|
137 |
-
assert len(correction_sentences) == len(
|
138 |
-
source_sentences
|
139 |
-
), f"Sizes do not match: {num_source} vs {num_correction} for {source_file} vs {correction_file}."
|
140 |
-
corrections.append(correction_sentences)
|
141 |
-
|
142 |
-
corrected_sentences = list(zip(*corrections))
|
143 |
-
for id_, source_sentence in enumerate(source_sentences):
|
144 |
-
yield id_, {"sentence": source_sentence, "corrections": corrected_sentences[id_]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|