aadelucia commited on
Commit
c574a69
·
1 Parent(s): d9ef9df

add loading script

Browse files
Files changed (1) hide show
  1. bernice-pretrain-data.py +121 -0
bernice-pretrain-data.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # TODO: Address all TODOs and remove all explanatory comments
15
+ """Bernice pretrain data"""
16
+
17
+
18
+ import csv
19
+ import json
20
+ import os
21
+ import gzip
22
+ import datasets
23
+
24
+
25
+ # TODO: Add BibTeX citation
26
+ # Find for instance the citation on arxiv or on the dataset repo/website
27
+ _CITATION = """\
28
+ Alexandra DeLucia, Shijie Wu, Aaron Mueller, Carlos Aguirre, Philip Resnik, and Mark Dredze. 2022.
29
+ Bernice: A Multilingual Pre-trained Encoder for Twitter. In Proceedings of the 2022 Conference on
30
+ Empirical Methods in Natural Language Processing, pages 6191–6205, Abu Dhabi, United Arab Emirates.
31
+ Association for Computational Linguistics.
32
+ """
33
+
34
+ # You can copy an official description
35
+ _DESCRIPTION = """\
36
+ Tweet IDs for the 2.5 billion multilingual tweets used to train Bernice, a Twitter encoder.
37
+ The tweets are from the public 1% Twitter API stream from January 2016 to December 2021.
38
+ Twitter-provided language metadata is provided with the tweet ID. The data contains 66 unique languages,
39
+ as identified by ISO 639 language codes, including `und` for undefined languages.
40
+ Tweets need to be re-gathered via the Twitter API.
41
+ """
42
+
43
+ _HOMEPAGE = "https://preview.aclanthology.org/emnlp-22-ingestion/2022.emnlp-main.415"
44
+
45
+ # TODO: Add the licence for the dataset here if you can find it
46
+ _LICENSE = ""
47
+
48
+ # TODO: Add link to the official dataset URLs here
49
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
50
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
51
+ # If the data files live in the same folder or repository of the dataset script,
52
+ # you can just pass the relative paths to the files instead of URLs.
53
+ # Only train data, validation split not provided
54
+ _URLS = {
55
+ "train": "data"
56
+ }
57
+
58
+
59
+ # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
60
+ class BernicePretrainData(datasets.GeneratorBasedBuilder):
61
+ """Tweet IDs for the 2.5 billion multilingual tweets used to train Bernice, a Twitter encoder."""
62
+ VERSION = datasets.Version("1.1.0")
63
+
64
+ def _info(self):
65
+ return datasets.DatasetInfo(
66
+ # This is the description that will appear on the datasets page.
67
+ description=_DESCRIPTION,
68
+ # This defines the different columns of the dataset and their types
69
+ # Here we define them above because they are different between the two configurations
70
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
71
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
72
+ # supervised_keys=("sentence", "label"),
73
+ # Homepage of the dataset for documentation
74
+ features=datasets.Features(
75
+ {
76
+ "tweet_id": datasets.Value("string"),
77
+ "lang": datasets.Value("string"),
78
+ "year": datasets.Value("string")
79
+ }
80
+ ),
81
+ homepage=_HOMEPAGE,
82
+ # License for the dataset if available
83
+ license=_LICENSE,
84
+ # Citation for the dataset
85
+ citation=_CITATION,
86
+ )
87
+
88
+ def _split_generators(self, dl_manager):
89
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
90
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
91
+
92
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
93
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
94
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
95
+ dir_url = self._URLS["train"]
96
+ urls_to_download = [f"{dir_url}/{f}" for f in os.listdir(dir_url)]
97
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
98
+ return [
99
+ datasets.SplitGenerator(
100
+ name=datasets.Split.TRAIN,
101
+ # These kwargs will be passed to _generate_examples
102
+ gen_kwargs={
103
+ "filepaths": downloaded_files,
104
+ "split": "train",
105
+ },
106
+ )
107
+ ]
108
+
109
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
110
+ def _generate_examples(self, filepaths, split):
111
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
112
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
113
+ for filepath in filepaths:
114
+ with gzip.open(filepath, "rb") as f:
115
+ for line_number, instance in enumerate(f):
116
+ tweet_id, lang, year = instance.strip().split("\t")
117
+ yield tweet_id, {
118
+ "tweet_id": tweet_id,
119
+ "lang": lang,
120
+ "year": year
121
+ }