Finish dataset loading script
Browse files- xd-violence.py +66 -20
xd-violence.py
CHANGED
@@ -52,20 +52,42 @@ class XDViolence(datasets.GeneratorBasedBuilder):
|
|
52 |
DEFAULT_CONFIG_NAME = "video"
|
53 |
BUILDER_CONFIG_CLASS = XDViolenceConfig
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
def _info(self):
|
56 |
if self.config.name == "rgb":
|
57 |
features = datasets.Features(
|
58 |
{
|
|
|
59 |
"rgb_feats": datasets.Array3D(
|
60 |
shape=(None, 10, 2048),
|
61 |
dtype="float32", # (num_frames, num_crops, feature_dim) use 10 crops by default as of now
|
62 |
),
|
63 |
"binary_target": datasets.ClassLabel(
|
64 |
-
names=["
|
65 |
),
|
66 |
"multilabel_targets": datasets.Sequence(
|
67 |
datasets.ClassLabel(
|
68 |
names=[
|
|
|
69 |
"Fighting",
|
70 |
"Shooting",
|
71 |
"Riot",
|
@@ -86,13 +108,15 @@ class XDViolence(datasets.GeneratorBasedBuilder):
|
|
86 |
else: # default = "video"
|
87 |
features = datasets.Features(
|
88 |
{
|
|
|
89 |
"video_path": datasets.Value("string"),
|
90 |
"binary_target": datasets.ClassLabel(
|
91 |
-
names=["
|
92 |
),
|
93 |
"multilabel_targets": datasets.Sequence(
|
94 |
datasets.ClassLabel(
|
95 |
names=[
|
|
|
96 |
"Fighting",
|
97 |
"Shooting",
|
98 |
"Riot",
|
@@ -170,8 +194,8 @@ class XDViolence(datasets.GeneratorBasedBuilder):
|
|
170 |
|
171 |
# Function to read annotations
|
172 |
annotation_readers = {
|
173 |
-
"train":
|
174 |
-
"test":
|
175 |
}
|
176 |
|
177 |
return [
|
@@ -194,24 +218,34 @@ class XDViolence(datasets.GeneratorBasedBuilder):
|
|
194 |
]
|
195 |
|
196 |
def _generate_examples(self, annotation_path, video_paths, annotation_reader):
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
"""Reads the train_list.txt file and returns a list of video ids."""
|
210 |
-
return pd.read_csv(path, header=None, sep=" ", usecols=[0], names=["video_id"])[
|
211 |
-
"video_id"
|
212 |
-
].to_list()
|
213 |
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
"""Reads the test_annotations.txt file and returns a list of annotations."""
|
216 |
url_components = urllib.parse.urlparse(path)
|
217 |
is_url = url_components.scheme == "https" or url_components.scheme == "http"
|
@@ -250,3 +284,15 @@ class XDViolence(datasets.GeneratorBasedBuilder):
|
|
250 |
)
|
251 |
|
252 |
return annotations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
DEFAULT_CONFIG_NAME = "video"
|
53 |
BUILDER_CONFIG_CLASS = XDViolenceConfig
|
54 |
|
55 |
+
CODE2LABEL = {
|
56 |
+
"A": "Normal",
|
57 |
+
"B1": "Fighting",
|
58 |
+
"B2": "Shooting",
|
59 |
+
"B4": "Riot",
|
60 |
+
"B5": "Abuse",
|
61 |
+
"B6": "Car accident",
|
62 |
+
"G": "Explosion",
|
63 |
+
}
|
64 |
+
|
65 |
+
LABEL2IDX = {
|
66 |
+
"Normal": 0,
|
67 |
+
"Fighting": 1,
|
68 |
+
"Shooting": 2,
|
69 |
+
"Riot": 3,
|
70 |
+
"Abuse": 4,
|
71 |
+
"Car accident": 5,
|
72 |
+
"Explosion": 6,
|
73 |
+
}
|
74 |
+
|
75 |
def _info(self):
|
76 |
if self.config.name == "rgb":
|
77 |
features = datasets.Features(
|
78 |
{
|
79 |
+
"video_id": datasets.Value("string"),
|
80 |
"rgb_feats": datasets.Array3D(
|
81 |
shape=(None, 10, 2048),
|
82 |
dtype="float32", # (num_frames, num_crops, feature_dim) use 10 crops by default as of now
|
83 |
),
|
84 |
"binary_target": datasets.ClassLabel(
|
85 |
+
names=["Non-violence", "Violence"]
|
86 |
),
|
87 |
"multilabel_targets": datasets.Sequence(
|
88 |
datasets.ClassLabel(
|
89 |
names=[
|
90 |
+
"Normal",
|
91 |
"Fighting",
|
92 |
"Shooting",
|
93 |
"Riot",
|
|
|
108 |
else: # default = "video"
|
109 |
features = datasets.Features(
|
110 |
{
|
111 |
+
"video_id": datasets.Value("string"),
|
112 |
"video_path": datasets.Value("string"),
|
113 |
"binary_target": datasets.ClassLabel(
|
114 |
+
names=["Non-violence", "Violence"]
|
115 |
),
|
116 |
"multilabel_targets": datasets.Sequence(
|
117 |
datasets.ClassLabel(
|
118 |
names=[
|
119 |
+
"Normal",
|
120 |
"Fighting",
|
121 |
"Shooting",
|
122 |
"Riot",
|
|
|
194 |
|
195 |
# Function to read annotations
|
196 |
annotation_readers = {
|
197 |
+
"train": self._read_train_list,
|
198 |
+
"test": self._read_test_annotations,
|
199 |
}
|
200 |
|
201 |
return [
|
|
|
218 |
]
|
219 |
|
220 |
def _generate_examples(self, annotation_path, video_paths, annotation_reader):
|
221 |
+
ann_data = annotation_reader(annotation_path)
|
222 |
+
|
223 |
+
for key, (video_path, annotation) in enumerate(zip(video_paths, ann_data)):
|
224 |
+
video_id = annotation["video_id"]
|
225 |
+
frame_annotations = annotation.get("frame_annotations", [])
|
226 |
+
|
227 |
+
binary, multilabel = self.extract_labels(video_id)
|
228 |
+
|
229 |
+
yield key, {
|
230 |
+
"video_id": video_id,
|
231 |
+
"video_path": video_path,
|
232 |
+
"binary_target": binary,
|
233 |
+
"multilabel_targets": multilabel,
|
234 |
+
"frame_annotations": frame_annotations,
|
235 |
+
}
|
236 |
+
|
237 |
+
@staticmethod
|
238 |
+
def _read_train_list(path):
|
239 |
"""Reads the train_list.txt file and returns a list of video ids."""
|
|
|
|
|
|
|
240 |
|
241 |
+
train_list = pd.read_csv(
|
242 |
+
path, header=None, sep=" ", usecols=[0], names=["video_id"]
|
243 |
+
)
|
244 |
+
train_list["video_id"] = train_list["video_id"].apply(lambda x: x.split("/")[1])
|
245 |
+
return train_list.to_dict("records")
|
246 |
+
|
247 |
+
@staticmethod
|
248 |
+
def _read_test_annotations(path):
|
249 |
"""Reads the test_annotations.txt file and returns a list of annotations."""
|
250 |
url_components = urllib.parse.urlparse(path)
|
251 |
is_url = url_components.scheme == "https" or url_components.scheme == "http"
|
|
|
284 |
)
|
285 |
|
286 |
return annotations
|
287 |
+
|
288 |
+
@classmethod
|
289 |
+
def extract_labels(cls, video_id):
|
290 |
+
"""Extracts labels from the video id."""
|
291 |
+
codes = video_id.split("_")[-1].split("-")
|
292 |
+
|
293 |
+
binary = 1 if len(codes) > 1 else 0
|
294 |
+
multilabel = [
|
295 |
+
cls.LABEL2IDX[cls.CODE2LABEL[code]] for code in codes if code != "0"
|
296 |
+
]
|
297 |
+
|
298 |
+
return binary, multilabel
|