|
import urllib |
|
import numpy as np |
|
import pandas as pd |
|
import datasets |
|
from sklearn.model_selection import train_test_split |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {RSNA 2023 Abdominal Trauma Detection Dataset}, |
|
author={Hong Jia Herng}, |
|
year={2023} |
|
} |
|
@misc{rsna-2023-abdominal-trauma-detection, |
|
author = {Errol Colak, Hui-Ming Lin, Robyn Ball, Melissa Davis, Adam Flanders, Sabeena Jalal, Kirti Magudia, Brett Marinelli, Savvas Nicolaou, Luciano Prevedello, Jeff Rudie, George Shih, Maryam Vazirabad, John Mongan}, |
|
title = {RSNA 2023 Abdominal Trauma Detection}, |
|
publisher = {Kaggle}, |
|
year = {2023}, |
|
url = {https://kaggle.com/competitions/rsna-2023-abdominal-trauma-detection} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset is the preprocessed version of the dataset from RSNA 2023 Abdominal Trauma Detection Kaggle Competition. |
|
It is tailored for segmentation and classification tasks. It contains 3 different configs as described below: |
|
- segmentation: 206 instances where each instance includes a CT scan in NIfTI format, a segmentation mask in NIfTI format, and its relevant metadata (e.g., patient_id, series_id, incomplete_organ, aortic_hu, pixel_representation, bits_allocated, bits_stored) |
|
- classification: 4711 instances where each instance includes a CT scan in NIfTI format, target labels (e.g., extravasation, bowel, kidney, liver, spleen, any_injury), and its relevant metadata (e.g., patient_id, series_id, incomplete_organ, aortic_hu, pixel_representation, bits_allocated, bits_stored) |
|
- classification-with-mask: 206 instances where each instance includes a CT scan in NIfTI format, a segmentation mask in NIfTI format, target labels (e.g., extravasation, bowel, kidney, liver, spleen, any_injury), and its relevant metadata (e.g., patient_id, series_id, incomplete_organ, aortic_hu, pixel_representation, bits_allocated, bits_stored) |
|
|
|
All CT scans and segmentation masks had already been resampled with voxel spacing (2.0, 2.0, 3.0) and thus its reduced file size. |
|
""" |
|
|
|
_NAME = "rsna-2023-abdominal-trauma-detection" |
|
|
|
_HOMEPAGE = f"https://huggingface.co/datasets/jherng/{_NAME}" |
|
|
|
_LICENSE = "MIT" |
|
|
|
_URL = f"https://huggingface.co/datasets/jherng/{_NAME}/resolve/main/" |
|
|
|
|
|
class RSNA2023AbdominalTraumaDetectionConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
self.test_size = kwargs.pop("test_size", 0.1) |
|
self.random_state = kwargs.pop("random_state", 42) |
|
super(RSNA2023AbdominalTraumaDetectionConfig, self).__init__(**kwargs) |
|
|
|
|
|
class RSNA2023AbdominalTraumaDetection(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
RSNA2023AbdominalTraumaDetectionConfig( |
|
name="segmentation", |
|
version=VERSION, |
|
description="This part of the dataset loads the CT scans, segmentation masks, and metadata.", |
|
), |
|
RSNA2023AbdominalTraumaDetectionConfig( |
|
name="classification", |
|
version=VERSION, |
|
description="This part of the dataset loads the CT scans, target labels, and metadata.", |
|
), |
|
RSNA2023AbdominalTraumaDetectionConfig( |
|
name="classification-with-mask", |
|
version=VERSION, |
|
description="This part of the dataset loads the CT scans, segmentation masks, target labels, and metadata.", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "classification" |
|
BUILDER_CONFIG_CLASS = RSNA2023AbdominalTraumaDetectionConfig |
|
|
|
def _info(self): |
|
if self.config.name == "segmentation": |
|
features = datasets.Features( |
|
{ |
|
"img_path": datasets.Value("string"), |
|
"seg_path": datasets.Value("string"), |
|
"metadata": { |
|
"series_id": datasets.Value("int32"), |
|
"patient_id": datasets.Value("int32"), |
|
"incomplete_organ": datasets.Value("bool"), |
|
"aortic_hu": datasets.Value("float32"), |
|
"pixel_representation": datasets.Value("int32"), |
|
"bits_allocated": datasets.Value("int32"), |
|
"bits_stored": datasets.Value("int32"), |
|
}, |
|
} |
|
) |
|
elif self.config.name == "classification-with-mask": |
|
features = datasets.Features( |
|
{ |
|
"img_path": datasets.Value("string"), |
|
"seg_path": datasets.Value("string"), |
|
"bowel": datasets.ClassLabel( |
|
num_classes=2, names=["healthy", "injury"] |
|
), |
|
"extravasation": datasets.ClassLabel( |
|
num_classes=2, names=["healthy", "injury"] |
|
), |
|
"kidney": datasets.ClassLabel( |
|
num_classes=3, names=["healthy", "low", "high"] |
|
), |
|
"liver": datasets.ClassLabel( |
|
num_classes=3, names=["healthy", "low", "high"] |
|
), |
|
"spleen": datasets.ClassLabel( |
|
num_classes=3, names=["healthy", "low", "high"] |
|
), |
|
"any_injury": datasets.Value("bool"), |
|
"metadata": { |
|
"series_id": datasets.Value("int32"), |
|
"patient_id": datasets.Value("int32"), |
|
"incomplete_organ": datasets.Value("bool"), |
|
"aortic_hu": datasets.Value("float32"), |
|
"pixel_representation": datasets.Value("int32"), |
|
"bits_allocated": datasets.Value("int32"), |
|
"bits_stored": datasets.Value("int32"), |
|
}, |
|
} |
|
) |
|
|
|
else: |
|
features = datasets.Features( |
|
{ |
|
"img_path": datasets.Value("string"), |
|
"bowel": datasets.ClassLabel( |
|
num_classes=2, names=["healthy", "injury"] |
|
), |
|
"extravasation": datasets.ClassLabel( |
|
num_classes=2, names=["healthy", "injury"] |
|
), |
|
"kidney": datasets.ClassLabel( |
|
num_classes=3, names=["healthy", "low", "high"] |
|
), |
|
"liver": datasets.ClassLabel( |
|
num_classes=3, names=["healthy", "low", "high"] |
|
), |
|
"spleen": datasets.ClassLabel( |
|
num_classes=3, names=["healthy", "low", "high"] |
|
), |
|
"any_injury": datasets.Value("bool"), |
|
"metadata": { |
|
"series_id": datasets.Value("int32"), |
|
"patient_id": datasets.Value("int32"), |
|
"incomplete_organ": datasets.Value("bool"), |
|
"aortic_hu": datasets.Value("float32"), |
|
"pixel_representation": datasets.Value("int32"), |
|
"bits_allocated": datasets.Value("int32"), |
|
"bits_stored": datasets.Value("int32"), |
|
}, |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
|
|
series_meta_df = pd.read_csv( |
|
dl_manager.download_and_extract( |
|
urllib.parse.urljoin(_URL, "train_series_meta.csv") |
|
) |
|
) |
|
series_meta_df["img_download_url"] = series_meta_df.apply( |
|
lambda x: urllib.parse.urljoin( |
|
_URL, |
|
f"train_images/{int(x['patient_id'])}/{int(x['series_id'])}.nii.gz", |
|
), |
|
axis=1, |
|
) |
|
series_meta_df["seg_download_url"] = series_meta_df.apply( |
|
lambda x: urllib.parse.urljoin( |
|
_URL, f"segmentations/{int(x['series_id'])}.nii.gz" |
|
), |
|
axis=1, |
|
) |
|
if ( |
|
self.config.name == "classification-with-mask" |
|
or self.config.name == "segmentation" |
|
): |
|
series_meta_df = series_meta_df.loc[series_meta_df["has_segmentation"] == 1] |
|
|
|
series_meta_df["img_cache_path"] = dl_manager.download( |
|
series_meta_df["img_download_url"].tolist() |
|
) |
|
series_meta_df["seg_cache_path"] = dl_manager.download( |
|
series_meta_df["seg_download_url"].tolist() |
|
) |
|
|
|
else: |
|
series_meta_df["img_cache_path"] = dl_manager.download( |
|
series_meta_df["img_download_url"].tolist() |
|
) |
|
series_meta_df["seg_cache_path"] = None |
|
|
|
dicom_tags_df = datasets.load_dataset( |
|
"parquet", data_files=urllib.parse.urljoin(_URL, "train_dicom_tags.parquet") |
|
)["train"].to_pandas()[ |
|
[ |
|
"SeriesInstanceUID", |
|
"PixelRepresentation", |
|
"BitsAllocated", |
|
"BitsStored", |
|
] |
|
] |
|
dicom_tags_df["SeriesID"] = dicom_tags_df["SeriesInstanceUID"].apply( |
|
lambda x: int(x.split(".")[-1]) |
|
) |
|
dicom_tags_df = dicom_tags_df.drop(labels=["SeriesInstanceUID"], axis=1) |
|
dicom_tags_df = dicom_tags_df.groupby(by=["SeriesID"], as_index=False).first() |
|
dicom_tags_df = dicom_tags_df.rename( |
|
columns={ |
|
"SeriesID": "series_id", |
|
"PixelRepresentation": "pixel_representation", |
|
"BitsAllocated": "bits_allocated", |
|
"BitsStored": "bits_stored", |
|
} |
|
) |
|
series_meta_df = pd.merge( |
|
left=series_meta_df, right=dicom_tags_df, how="inner", on="series_id" |
|
) |
|
|
|
self.labels_df = ( |
|
pd.read_csv( |
|
dl_manager.download_and_extract(urllib.parse.urljoin(_URL, "train.csv")) |
|
) |
|
if self.config.name != "segmentation" |
|
else None |
|
) |
|
|
|
train_series_meta_df, test_series_meta_df = train_test_split( |
|
series_meta_df, test_size=self.config.test_size, random_state=self.config.random_state, shuffle=True |
|
) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepaths": train_series_meta_df[ |
|
[ |
|
"series_id", |
|
"patient_id", |
|
"img_cache_path", |
|
"seg_cache_path", |
|
"incomplete_organ", |
|
"aortic_hu", |
|
"pixel_representation", |
|
"bits_allocated", |
|
"bits_stored", |
|
] |
|
].to_dict("records"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepaths": test_series_meta_df[ |
|
[ |
|
"series_id", |
|
"patient_id", |
|
"img_cache_path", |
|
"seg_cache_path", |
|
"incomplete_organ", |
|
"aortic_hu", |
|
"pixel_representation", |
|
"bits_allocated", |
|
"bits_stored", |
|
] |
|
].to_dict("records"), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples( |
|
self, |
|
filepaths, |
|
): |
|
if self.config.name == "segmentation": |
|
for key, series_meta in enumerate(filepaths): |
|
yield key, { |
|
"img_path": series_meta["img_cache_path"], |
|
"seg_path": series_meta["seg_cache_path"], |
|
"metadata": { |
|
"series_id": series_meta["series_id"], |
|
"patient_id": series_meta["patient_id"], |
|
"incomplete_organ": series_meta["incomplete_organ"], |
|
"aortic_hu": series_meta["aortic_hu"], |
|
"pixel_representation": series_meta["pixel_representation"], |
|
"bits_allocated": series_meta["bits_allocated"], |
|
"bits_stored": series_meta["bits_stored"], |
|
}, |
|
} |
|
|
|
elif self.config.name == "classification-with-mask": |
|
for key, series_meta in enumerate(filepaths): |
|
label_data = ( |
|
self.labels_df.loc[ |
|
self.labels_df["patient_id"] == series_meta["patient_id"] |
|
] |
|
.iloc[0] |
|
.to_dict() |
|
) |
|
|
|
yield key, { |
|
"img_path": series_meta["img_cache_path"], |
|
"seg_path": series_meta["seg_cache_path"], |
|
"bowel": np.argmax( |
|
[label_data["bowel_healthy"], label_data["bowel_injury"]] |
|
), |
|
"extravasation": np.argmax( |
|
[ |
|
label_data["extravasation_healthy"], |
|
label_data["extravasation_injury"], |
|
] |
|
), |
|
"kidney": np.argmax( |
|
[ |
|
label_data["kidney_healthy"], |
|
label_data["kidney_low"], |
|
label_data["kidney_high"], |
|
] |
|
), |
|
"liver": np.argmax( |
|
[ |
|
label_data["liver_healthy"], |
|
label_data["liver_low"], |
|
label_data["liver_high"], |
|
] |
|
), |
|
"spleen": np.argmax( |
|
[ |
|
label_data["spleen_healthy"], |
|
label_data["spleen_low"], |
|
label_data["spleen_high"], |
|
] |
|
), |
|
"any_injury": label_data["any_injury"], |
|
"metadata": { |
|
"series_id": series_meta["series_id"], |
|
"patient_id": series_meta["patient_id"], |
|
"incomplete_organ": series_meta["incomplete_organ"], |
|
"aortic_hu": series_meta["aortic_hu"], |
|
"pixel_representation": series_meta["pixel_representation"], |
|
"bits_allocated": series_meta["bits_allocated"], |
|
"bits_stored": series_meta["bits_stored"], |
|
}, |
|
} |
|
else: |
|
for key, series_meta in enumerate(filepaths): |
|
label_data = ( |
|
self.labels_df.loc[ |
|
self.labels_df["patient_id"] == series_meta["patient_id"] |
|
] |
|
.iloc[0] |
|
.to_dict() |
|
) |
|
|
|
yield key, { |
|
"img_path": series_meta["img_cache_path"], |
|
"bowel": np.argmax( |
|
[label_data["bowel_healthy"], label_data["bowel_injury"]] |
|
), |
|
"extravasation": np.argmax( |
|
[ |
|
label_data["extravasation_healthy"], |
|
label_data["extravasation_injury"], |
|
] |
|
), |
|
"kidney": np.argmax( |
|
[ |
|
label_data["kidney_healthy"], |
|
label_data["kidney_low"], |
|
label_data["kidney_high"], |
|
] |
|
), |
|
"liver": np.argmax( |
|
[ |
|
label_data["liver_healthy"], |
|
label_data["liver_low"], |
|
label_data["liver_high"], |
|
] |
|
), |
|
"spleen": np.argmax( |
|
[ |
|
label_data["spleen_healthy"], |
|
label_data["spleen_low"], |
|
label_data["spleen_high"], |
|
] |
|
), |
|
"any_injury": label_data["any_injury"], |
|
"metadata": { |
|
"series_id": series_meta["series_id"], |
|
"patient_id": series_meta["patient_id"], |
|
"incomplete_organ": series_meta["incomplete_organ"], |
|
"aortic_hu": series_meta["aortic_hu"], |
|
"pixel_representation": series_meta["pixel_representation"], |
|
"bits_allocated": series_meta["bits_allocated"], |
|
"bits_stored": series_meta["bits_stored"], |
|
}, |
|
} |
|
|