rsna-2023-abdominal-trauma-detection / rsna-2023-abdominal-trauma-detection.py
jherng's picture
Update rsna-2023-abdominal-trauma-detection.py
2d20647
raw
history blame
14.2 kB
import pandas as pd
import urllib
import datasets
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {RSNA 2023 Abdominal Trauma Detection Dataset},
author={Hong Jia Herng},
year={2023}
}
@misc{rsna-2023-abdominal-trauma-detection,
author = {Errol Colak, Hui-Ming Lin, Robyn Ball, Melissa Davis, Adam Flanders, Sabeena Jalal, Kirti Magudia, Brett Marinelli, Savvas Nicolaou, Luciano Prevedello, Jeff Rudie, George Shih, Maryam Vazirabad, John Mongan},
title = {RSNA 2023 Abdominal Trauma Detection},
publisher = {Kaggle},
year = {2023},
url = {https://kaggle.com/competitions/rsna-2023-abdominal-trauma-detection}
}
"""
_DESCRIPTION = """\
This dataset is the preprocessed version of the dataset from RSNA 2023 Abdominal Trauma Detection Kaggle Competition.
It is tailored for segmentation and classification tasks. It contains 3 different configs as described below:
- segmentation: 206 instances where each instance includes a CT scan in NIfTI format, a segmentation mask in NIfTI format, and its relevant metadata (e.g., patient_id, series_id, incomplete_organ, aortic_hu, pixel_representation, bits_allocated, bits_stored)
- classification: 4711 instances where each instance includes a CT scan in NIfTI format, target labels (e.g., extravasation, bowel, kidney, liver, spleen, any_injury), and its relevant metadata (e.g., patient_id, series_id, incomplete_organ, aortic_hu, pixel_representation, bits_allocated, bits_stored)
- classification-with-mask: 206 instances where each instance includes a CT scan in NIfTI format, a segmentation mask in NIfTI format, target labels (e.g., extravasation, bowel, kidney, liver, spleen, any_injury), and its relevant metadata (e.g., patient_id, series_id, incomplete_organ, aortic_hu, pixel_representation, bits_allocated, bits_stored)
All CT scans and segmentation masks had already been resampled with voxel spacing (2.0, 2.0, 3.0) and thus its reduced file size.
"""
_NAME = "rsna-2023-abdominal-trauma-detection"
_HOMEPAGE = f"https://huggingface.co/datasets/jherng/{_NAME}"
_LICENSE = "MIT"
_URL = f"https://huggingface.co/datasets/jherng/{_NAME}/resolve/main/"
class RSNA2023AbdominalTraumaDetectionSegmentation(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="segmentation",
version=VERSION,
description="This part of the dataset loads the CT scans, segmentation masks, and metadata.",
),
datasets.BuilderConfig(
name="classification",
version=VERSION,
description="This part of the dataset loads the CT scans, target labels, and metadata.",
),
datasets.BuilderConfig(
name="classification-with-mask",
version=VERSION,
description="This part of the dataset loads the CT scans, segmentation masks, target labels, and metadata.",
),
]
DEFAULT_CONFIG_NAME = "classification" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
if self.config.name == "segmentation":
features = datasets.Features(
{
"img_path": datasets.Value("string"),
"seg_path": datasets.Value("string"),
"metadata": {
"series_id": datasets.Value("int32"),
"patient_id": datasets.Value("int32"),
"incomplete_organ": datasets.Value("bool"),
"aortic_hu": datasets.Value("float32"),
"pixel_representation": datasets.Value("int32"),
"bits_allocated": datasets.Value("int32"),
"bits_stored": datasets.Value("int32"),
},
}
)
elif self.config.name == "classification-with-mask":
features = datasets.Features(
{
"img_path": datasets.Value("string"),
"seg_path": datasets.Value("string"),
"bowel": datasets.ClassLabel(
num_classes=2, names=["healthy", "injury"]
),
"extravasation": datasets.ClassLabel(
num_classes=2, names=["healthy", "injury"]
),
"kidney": datasets.ClassLabel(
num_classes=3, names=["healthy", "low", "high"]
),
"liver": datasets.ClassLabel(
num_classes=3, names=["healthy", "low", "high"]
),
"spleen": datasets.ClassLabel(
num_classes=3, names=["healthy", "low", "high"]
),
"any_injury": datasets.Value("bool"),
"metadata": {
"series_id": datasets.Value("int32"),
"patient_id": datasets.Value("int32"),
"incomplete_organ": datasets.Value("bool"),
"aortic_hu": datasets.Value("float32"),
"pixel_representation": datasets.Value("int32"),
"bits_allocated": datasets.Value("int32"),
"bits_stored": datasets.Value("int32"),
},
}
)
else:
features = datasets.Features(
{
"img_path": datasets.Value("string"),
"bowel": datasets.ClassLabel(
num_classes=2, names=["healthy", "injury"]
),
"extravasation": datasets.ClassLabel(
num_classes=2, names=["healthy", "injury"]
),
"kidney": datasets.ClassLabel(
num_classes=3, names=["healthy", "low", "high"]
),
"liver": datasets.ClassLabel(
num_classes=3, names=["healthy", "low", "high"]
),
"spleen": datasets.ClassLabel(
num_classes=3, names=["healthy", "low", "high"]
),
"any_injury": datasets.Value("bool"),
"metadata": {
"series_id": datasets.Value("int32"),
"patient_id": datasets.Value("int32"),
"incomplete_organ": datasets.Value("bool"),
"aortic_hu": datasets.Value("float32"),
"pixel_representation": datasets.Value("int32"),
"bits_allocated": datasets.Value("int32"),
"bits_stored": datasets.Value("int32"),
},
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# segmentation: 206 segmentations and the relevant imgs, train_series_meta.csv, train_dicom_tags.parquet
# classification: 4711 all imgs, train.csv, train_series_meta.csv, train_dicom_tags.parquet
# classification-with-mask: 206 segmentations and the relevant imgs, train.csv, train_series_meta.csv, train_dicom_tags.parquet
series_meta_file = dl_manager.download_and_extract(
urllib.parse.urljoin(_URL, "train_series_meta.csv")
)
dicom_tags_file = dl_manager.download_and_extract(
urllib.parse.urljoin(_URL, "train_dicom_tags.parquet")
)
labels_file = (
dl_manager.download_and_extract(urllib.parse.urljoin(_URL, "train.csv"))
if self.config.name != "segmentation"
else None
)
series_meta_df = pd.read_csv(series_meta_file)
if (
self.config.name == "classification-with-mask"
or self.config.name == "segmentation"
):
series_meta_df = series_meta_df.loc[series_meta_df["has_segmentation"] == 1]
img_files = dl_manager.download(
series_meta_df.apply(
lambda x: urllib.parse.urljoin(
_URL, f"train_images/{x['patient_id']}/{x['series_id']}.nii.gz"
),
axis=1,
).tolist()
)
seg_files = dl_manager.download(
series_meta_df.apply(
lambda x: urllib.parse.urljoin(
_URL, f"segmentations/{x['series_id']}.nii.gz"
),
axis=1,
).tolist()
)
else:
img_files = dl_manager.download(
series_meta_df.apply(
lambda x: urllib.parse.urljoin(
_URL, f"train_images/{x['patient_id']}/{x['series_id']}.nii.gz"
),
axis=1,
).tolist()
)
seg_files = None
return [
datasets.SplitGenerator(
name=datasets.Split.ALL,
gen_kwargs={
"series_ids": series_meta_df["series_id"].tolist(),
"dicom_tags_file": dicom_tags_file,
"series_meta_file": series_meta_file,
"labels_file": labels_file,
"img_files": img_files,
"seg_files": seg_files,
},
),
]
def _generate_examples(
self,
series_ids,
dicom_tags_file,
series_meta_file,
labels_file,
img_files,
seg_files,
):
series_meta_df = pd.read_csv(series_meta_file)
dicom_tags_df = datasets.load_dataset("parquet", data_files=dicom_tags_file)["train"].to_pandas()[
[
"SeriesInstanceUID",
"PixelRepresentation",
"BitsAllocated",
"BitsStored",
]
]
dicom_tags_df["SeriesID"] = dicom_tags_df["SeriesInstanceUID"].apply(
lambda x: int(x.split(".")[-1])
)
dicom_tags_df = dicom_tags_df.drop(labels=["SeriesInstanceUID"], axis=1)
dicom_tags_df = dicom_tags_df.groupby(by=["SeriesID"], as_index=False).first()
dicom_tags_df = dicom_tags_df.rename(
columns={
"SeriesID": "series_id",
"PixelRepresentation": "pixel_representation",
"BitsAllocated": "bits_allocated",
"BitsStored": "bits_stored",
}
)
series_meta_df = pd.merge(
left=series_meta_df, right=dicom_tags_df, how="inner", on="series_id"
)
labels_df = pd.read_csv(labels_file) if self.config.name != "segmentation" else None
if self.config.name == "segmentation":
for key, (series_id, img_path, seg_path) in enumerate(
zip(series_ids, img_files, seg_files)
):
series_meta = (
series_meta_df.loc[series_meta_df["series_id"] == series_id]
.iloc[0]
.to_dict()
)
yield key, {
"img_path": img_path,
"seg_path": seg_path,
"metadata": {
"series_id": series_id,
"patient_id": series_meta["patient_id"],
"incomplete_organ": series_meta["incomplete_organ"],
"aortic_hu": series_meta["aortic_hu"],
"pixel_representation": series_meta["pixel_representation"],
"bits_allocated": series_meta["bits_allocated"],
"bits_stored": series_meta["bits_stored"],
},
}
elif self.config.name == "classification-with-mask":
for key, (series_id, img_path, seg_path) in enumerate(
zip(series_ids, img_files, seg_files)
):
series_meta = (
series_meta_df.loc[series_meta_df["series_id"] == series_id]
.iloc[0]
.to_dict()
)
patient_id = series_meta["patient_id"]
label_data = (
labels_df.loc[labels_df["patient_id"] == patient_id]
.iloc[0]
.to_dict()
)
yield key, {
"img_path": img_path,
"seg_path": seg_path,
"bowel": datasets.ClassLabel(
num_classes=2, names=["healthy", "injury"]
),
"extravasation": datasets.ClassLabel(
num_classes=2, names=["healthy", "injury"]
),
"kidney": datasets.ClassLabel(
num_classes=3, names=["healthy", "low", "high"]
),
"liver": datasets.ClassLabel(
num_classes=3, names=["healthy", "low", "high"]
),
"spleen": datasets.ClassLabel(
num_classes=3, names=["healthy", "low", "high"]
),
"any_injury": datasets.Value("bool"),
"metadata": {
"series_id": series_id,
"patient_id": series_meta["patient_id"],
"incomplete_organ": series_meta["incomplete_organ"],
"aortic_hu": series_meta["aortic_hu"],
"pixel_representation": series_meta["pixel_representation"],
"bits_allocated": series_meta["bits_allocated"],
"bits_stored": series_meta["bits_stored"],
},
}
else:
pass