|
|
|
|
|
|
|
|
|
|
|
import sys |
|
from prody import * |
|
import pandas as pd |
|
from rdkit import Chem |
|
from rdkit.Chem import AllChem |
|
from io import StringIO |
|
import requests |
|
|
|
from mpi4py import MPI |
|
from mpi4py.futures import MPICommExecutor |
|
from mpi4py.futures import MPIPoolExecutor |
|
|
|
import re |
|
from functools import partial |
|
import gzip |
|
from rdkit.Chem.Descriptors import ExactMolWt |
|
import numpy as np |
|
|
|
import os |
|
|
|
|
|
mol_wt_cutoff = 100 |
|
|
|
|
|
punctuation_regex = r"""(\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])""" |
|
|
|
|
|
molecule_regex = r"""(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])""" |
|
|
|
max_seq = 2046 |
|
max_smiles = 510 |
|
|
|
def get_protein_sequence_and_coords(receptor): |
|
calpha = receptor.select('calpha') |
|
xyz = calpha.getCoords() |
|
seq = calpha.getSequence() |
|
return seq, xyz.tolist() |
|
|
|
def tokenize_ligand(mol): |
|
|
|
smi = Chem.MolToSmiles(mol) |
|
|
|
|
|
atom_order = [int(s) for s in list(filter(None,re.sub(r'[\[\]]','',mol.GetProp("_smilesAtomOutputOrder")).split(',')))] |
|
|
|
|
|
tokens = list(filter(None, re.split(molecule_regex, smi))) |
|
|
|
|
|
masked_tokens = [re.sub(punctuation_regex,'',s) for s in tokens] |
|
|
|
k = 0 |
|
token_pos = [] |
|
for i,token in enumerate(masked_tokens): |
|
if token != '': |
|
token_pos.append(tuple(mol.GetConformer().GetAtomPosition(atom_order[k]))) |
|
k += 1 |
|
else: |
|
token_pos.append((np.nan, np.nan, np.nan)) |
|
|
|
return smi, token_pos |
|
|
|
def read_ligand_expo(): |
|
""" |
|
Read Ligand Expo data, try to find a file called |
|
Components-smiles-stereo-oe.smi in the current directory. |
|
If you can't find the file, grab it from the RCSB |
|
:return: Ligand Expo as a dictionary with ligand id as the key |
|
""" |
|
file_name = "Components-smiles-stereo-oe.smi" |
|
try: |
|
df = pd.read_csv(file_name, sep="\t", |
|
header=None, |
|
names=["SMILES", "ID", "Name"]) |
|
except FileNotFoundError: |
|
url = f"http://ligand-expo.rcsb.org/dictionaries/{file_name}" |
|
print(url) |
|
r = requests.get(url, allow_redirects=True) |
|
open('Components-smiles-stereo-oe.smi', 'wb').write(r.content) |
|
df = pd.read_csv(file_name, sep="\t", |
|
header=None, |
|
names=["SMILES", "ID", "Name"]) |
|
df.set_index("ID", inplace=True) |
|
return df.to_dict() |
|
|
|
|
|
def get_pdb_components(pdb_id): |
|
""" |
|
Split a protein-ligand pdb into protein and ligand components |
|
:param pdb_id: |
|
:return: |
|
""" |
|
with gzip.open(pdb_id,'rt') as f: |
|
pdb = parsePDBStream(f) |
|
|
|
protein = pdb.select('protein') |
|
ligand = pdb.select('not protein and not water') |
|
return protein, ligand |
|
|
|
|
|
def process_ligand(ligand, res_name, expo_dict): |
|
""" |
|
Add bond orders to a pdb ligand |
|
1. Select the ligand component with name "res_name" |
|
2. Get the corresponding SMILES from the Ligand Expo dictionary |
|
3. Create a template molecule from the SMILES in step 2 |
|
4. Write the PDB file to a stream |
|
5. Read the stream into an RDKit molecule |
|
6. Assign the bond orders from the template from step 3 |
|
:param ligand: ligand as generated by prody |
|
:param res_name: residue name of ligand to extract |
|
:param expo_dict: dictionary with LigandExpo |
|
:return: molecule with bond orders assigned |
|
""" |
|
output = StringIO() |
|
sub_mol = ligand.select(f"resname {res_name}") |
|
sub_smiles = expo_dict['SMILES'][res_name] |
|
template = AllChem.MolFromSmiles(sub_smiles) |
|
writePDBStream(output, sub_mol) |
|
pdb_string = output.getvalue() |
|
rd_mol = AllChem.MolFromPDBBlock(pdb_string) |
|
new_mol = AllChem.AssignBondOrdersFromTemplate(template, rd_mol) |
|
return new_mol, template |
|
|
|
def process_entry(df_dict, pdb_fn): |
|
try: |
|
""" |
|
Slit pdb into protein and ligands, |
|
parse protein sequence and ligand tokens |
|
:param df_dict: ligand expo data |
|
:param pdb_fn: pdb entry file name |
|
:return: |
|
""" |
|
protein, ligand = get_pdb_components(pdb_fn) |
|
|
|
ligand_mols = [] |
|
ligand_names = [] |
|
|
|
if ligand is not None: |
|
|
|
res_name_list = list(set(ligand.getResnames())) |
|
for res in res_name_list: |
|
mol, template = process_ligand(ligand, res, df_dict) |
|
|
|
mol_wt = ExactMolWt(template) |
|
|
|
if mol_wt >= mol_wt_cutoff: |
|
ligand_mols.append(mol) |
|
ligand_names.append(res) |
|
|
|
ligand_smiles = [] |
|
ligand_xyz = [] |
|
|
|
pdb_name = os.path.basename(pdb_fn).split('.')[-3][3:] |
|
for mol, name in zip(ligand_mols, ligand_names): |
|
print('Processing {} and {}'.format(pdb_name, name)) |
|
smi, xyz = tokenize_ligand(mol) |
|
ligand_smiles.append(smi) |
|
ligand_xyz.append(xyz) |
|
|
|
seq, receptor_xyz = get_protein_sequence_and_coords(protein) |
|
return pdb_name, seq, receptor_xyz, ligand_names, ligand_smiles, ligand_xyz |
|
except Exception as e: |
|
print(repr(e)) |
|
|
|
if __name__ == '__main__': |
|
import glob |
|
|
|
filenames = glob.glob('pdb/*/*.gz') |
|
filenames = sorted(filenames) |
|
comm = MPI.COMM_WORLD |
|
with MPICommExecutor(comm, root=0) as executor: |
|
|
|
if executor is not None: |
|
|
|
df_dict = read_ligand_expo() |
|
|
|
result = executor.map(partial(process_entry, df_dict), filenames, chunksize=512) |
|
result = list(result) |
|
|
|
|
|
pdb_id = [r[0] for r in result if r is not None for ligand in r[3]] |
|
seq = [r[1] for r in result if r is not None for ligand in r[3]] |
|
receptor_xyz = [r[2] for r in result if r is not None for ligand in r[3]] |
|
lig_id = [l for r in result if r is not None for l in r[3]] |
|
lig_smiles = [s for r in result if r is not None for s in r[4]] |
|
lig_xyz = [xyz for r in result if r is not None for xyz in r[5]] |
|
|
|
import pandas as pd |
|
df = pd.DataFrame({'pdb_id': pdb_id, 'lig_id': lig_id, 'seq': seq, 'smiles': lig_smiles, 'receptor_xyz': receptor_xyz, 'ligand_xyz': lig_xyz}) |
|
df.to_parquet('data/pdb.parquet',index=False) |
|
|